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Abstract
We show how to calculate renormalized parameters in order to describe the single-orbital An-
derson impurity model and the two-orbital Anderson Impurity model with Hund’s coupling as
a Fermi liquid. In the two-orbital case we also show that the effective interaction depends on
the kind of excitation and that it can be seperated into two different parts. Furthermore, we
analyze and interpret the behaviour of these renormalized parameters upon varying the bare
parameters of the system.
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1 Introduction
The Single Anderson impurity model describes a single impurity in a bath of electrons, where
the impurity electrons interact with each other via the Coulomb interaction. The Hamiltonian
can generally be written in the following form:

HSIAM = Himp +Hint +Hbath +Hhyb =

=
∑
σ,m

εd,md
†
σ,mdσ,m +Hint +

∑
k,σ

εk,σc
†
k,σck,σ +

∑
k,σ,m

(
Vkd

†
σ,mck,σ + V ∗k c

†
k,σdσ,m

)
. (1)

The term Himp denotes the Hamiltonian for the energy due to the occupancy of the impurity
orbitals. The interaction Hamiltonian is denoted by Hint and thus will depend on which in-
teractions between the impurity electrons we consider. The direct energy contribution due to
the bath is given by Hbath and the hopping of electrons between the bath and the impurity,
that is to say the hybridization, is described by Hhyb. The creation operator for an electron at
the impurity site in the orbital m with spin σ is denoted by d†σ,m and εd,m is the energy level
for the impurity electrons in the orbital m. The operator nd,σ,m = d†σ,mdσ,m then denotes the
number operator for impurity electrons with spin σ in orbital m. The energy of a single bath
electron εk,σ is given by the dispersion relation of the bath electrons. The creation operator
of a bath electron with wave vector k and spin σ is c†k,σ and the hybridization occurs via the
matrix element Vk.
In the case of low-energy excitations the spectrum and self-energy of the Anderson impurity
Model can be calculated via the numerical renormalization group (NRG). The procedure in-
volves approximating the Hamiltonian as an impurity that couples to a semi-infinite chain
instead of the bath-electrons.
The NRG program used in this thesis was provided by F.Kugler and is based on routines writ-
ten by S.-S.Lee and A.Weichselbaum. However, the necessary code to conduct the following
calculations and evaluate their results still had to be written by me.

The single Anderson impurity model is of interest due to its flexibility in applications. For
example, it is closely related to the Kondo model, which describes a magnetic impurity inter-
acting with a non-magnetic bath. The single Anderson impurity model can also describe a
quantum dot, a quantum particle spatially restricted to such an extend that quantum mechan-
ical effects can occur. Another motivation is its use in dynamical mean-field theory (DMFT)
where lattice models of strongly correlated electrons can be mapped onto the Anderson impu-
rity model [2].
Hewson et al. found a way to calculate attributes, such as the susceptibilities or the conductivity
contribution due to the impurity, by describing the model as a Fermi liquid with renormalized
parameters [3].
Fermi liquids are used to describe a system of interacting fermions at low temperatures and
explain their similarities to the ideal Fermi gas, a non-interacting collection of fermions. The
differences between the ideal Fermi gas and Fermi liquids generally manifest in the properties
of the fermions taking on a new effective value, e.g. electrons that have a significantly larger
effective mass than their physical mass.
The renormalized single impurity Anderson model depends on the three parameters: the effec-
tive level energy ε̃d, the effective hybridization strength Ṽ , and the quasiparticle interaction Ũ .

The subject matter covered in this thesis is the following:
In section 2 we outline how to generally calculate the renormalized parameters. We then show
the results of the calculations for the single-orbital case, where we vary the bare parameters εd
and U . In section 3 we transition to the two-orbital case with Hund’s coupling and also present
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the results of the calculations upon varying the bare parameters, including the additional
parameter we obtain through Hund’s coupling. The effective interaction is then proven to
be separable into two different kinds of contributions. The section concludes with the analysis
of the behaviour of the effective interaction upon varying of the filling.

2 Single-Orbital Case
In the case single-orbital case the Hamiltonian of the model is given by

HSIAM =
∑
σ

εdd
†
σdσ + Und,↑nd,↓ +

∑
k,σ

εk,σc
†
k,σck,σ +

∑
k,σ

(Vkd
†
σck,σ + V ∗k c

†
k,σdσ), (2)

where the omission of the index m implies that we only have a single orbital. The interaction
term Hint = Und,↑nd,↓ describes the Coulomb interaction between the impurity electrons, thus
U > 0 since electrons are repulsive to each other. The entire influence of the bath on the
impurity is determined by the spectral function of the hybridization ∆(ω) given by [1]

A∆(ω) = π
∑
k

|Vk|2δ(ω − εk). (3)

As one can see the spectral function of the hybridization is intimately linked with the hopping
elements between the bath and impurity. In this thesis we use a rectangular symmetric function
with length 2D and amplitude 0.1D as A∆(ω). The mathematical representation is therefore:

A∆(ω) = 0.1D ·Θ(D − |ω|). (4)

We use D as the energy unit so we can set D = 1.

As mentioned before, this function is discretized in order to approximate the Hamiltonian.
Logarithmic discretization intervals are chosen, as doing so provides a good resolution on the
low energy scale, while not making the computation impossibly difficult [1]. How fine the
intervals are is given by the discretization parameter Λ. After the discretization the hopping
elements tn are calculated, which connect the bath sites to a chain. Since the discretization
intervals cannot be infinitely many we do not end up with a semi-infinite chain, but a chain of
N bath sites instead. The only site left is the impurity site, which has to couple to the chain
with a parameter V , that can also be calculated from the hybridization function (4). Thus the
Hamiltonian takes on the form

HN
SIAM =

∑
σ

εdd
†
σdσ +Und,↑nd,↓ + V

∑
σ

(
d†σc1,σ + c†1,σdσ

)
+

n=N−1∑
n=1,σ

tn

(
c†n,σ, cn+1,σ + c†n+1,σcn,σ

)
,

(5)
where c(†)

n,σ are the operators of the conduction electron of the n-th site of the chain. In our
convention the first bath site has the index 1, and we have N bath sites as a whole.
The actual calculation is then done by starting out with one bath site, diagonalizing and then
iteratively adding additional sites and diagonalizing again. Since the number of states grows
exponentially with each diagonalization step, at some point the higher energy states have to
be omitted, which causes the kept higher-energy states to be less accurate than the low energy
excitations that we are more interested in. For further information on NRG refer to [1].
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2.1 Calculating Renormalized Parameters

In order to calculate the renormalized parameters we need certain excitation energies, that can
be taken from the low energy excitation spectrum calculated via NRG. Since the spectrum
is calculated by iteratively adding sites we get a different spectrum each time another site
is added. We can thus plot the different excitation energies against the length of the chain
N , which results in a so-called flow diagramm. If the calculations are accurate enough the
excitation energies converge for sufficiently large N [1]. It should be noted that the excitation
energies calculated via NRG are not the actual physical excitation energies, as a factor Λ(N−1)/2

is multiplied in order to get the energies to converge for large N . So even after correctly
selecting the excitation energies we still have to multiply a factor Λ−(N−1)/2 in order to obtain
the actual excitation energies.
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Figure 1: Flow diagramm for the single channel case with U = 0.3 = −εd. The energies
converge for sufficiently large N . The excitations are differentiated via the quantum numbers
U(1)-charge and SU(1)-spin.

In figure 1 we can see an example flow diagramm, which is calculated at U = εd = −0.3,
where εd is chosen such that we do not find ourselves at half-filling, since then the particle- and
hole-excitation energies cannot be differentiated. As one can see, the lines are seperated by
their corresponding quantum numbers. One can choose different quantum numbers to separate
the lines. In our case the U(1)-charge, which is the first number, and the SU(2)-spin, which
is the second number, are chosen. The third number in brackets is the degeneracy, thus 1
corresponds to a singlet state and 3 corresponds to a triplet state.
The flow diagramms for even and uneven N have to be seperated as their energy spectra differ
to a large degree. In this work we only look at uneven N , as the calculation for even N is
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considerably more difficult, mainly due to the fact that the ground state is degenerate.
The excitations we are going to be interested in are:

• single-particle excitations

• single-hole excitations

• two-particle excitations

• two-hole excitations

• particle-hole excitations

The lowest particle excitation energy in this example is the dashed line with the corre-
sponding numbers [1 1] (2), since particles contribute a charge of 1. For single particle and hole
excitations the two-fold degenerate state, indicated by the second 1 or the 2 in brackets, is the
only possible spin state.
For hole excitations the procedure is analogous, resulting in the dotted purple line with num-
bers [−1 1](2) being selected.
When it comes to selecting the two-particle or two-hole excitations the first number has to be
a 2 or -2. In the case of particle-hole excitations the two charges should add up to 0, which
means that one has to avoid picking the ground state energy as the lowest excitation energy,
since that is not an excitation. Due to the fact that two fermion excitations can combine to
either a spin singlet or triplet state the second number can be a 1 or 0. We will not consider
the spin-triplet excitations in the single-channel case, as the excitation energies are too high.

2.1.1 Effective Hybridization and Effective Impurity Energy Level

Next we want to look at the Green’s function of the impurity site if there is no interaction

G00(ω) =
1

ω − εd − V 2g11(ω)
, (6)

where gii(ω) describes the Green’s function of the free chain where every site up to the i-th
site is removed. For example, g11 would be the non-interacting chain without the impurity site.
This Green’s function can be calculated by a recursive relation [3]:

gii(ω) =
1

ω − t2i gi+1,i+1(ω)
and gNN =

1

ω
. (7)

The excitation energies are given by the poles of the Green’s function:

ω
!

= εd + V 2g11(ω). (8)

If the model can be described by a renormalized theory then the transition to the interacting
model should be possible by simply replacing the bare parameters εd and V 2 with their renor-
malized counterparts ε̃d and Ṽ 2. The lowest single hole and particle excitation energies are
then given by the poles of the Green’s function, resulting in the relations

Ep(N) = ε̃d(N) + Ṽ 2g11(Ep(N)),

−Eh(N) = ε̃d(N) + Ṽ 2g11(−Eh(N)).
(9)

From these relations, we can derive expressions for ∆̃ and ε̃d:

Ṽ 2(N) =
Ep(N) + Eh(N)

g11(Ep(N))− g11(−Eh(N))
. (10)
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ε̃d(N) =
g11(Ep(N))Eh(N) + g11(−Eh(N))Ep(N)

g11(−Eh(N))− g11(Ep(N))
. (11)

It should be noted that sometimes the rescaled energies from the NRG calculation are used,
which introduce several Λ(N−1)/2 factors. In this work we use the actual physical excitation
energies.
The chain Hamiltonian comes closer to describing the actual model the longer the chain is.
Therefore the values of Ṽ 2(N) and ε̃d(N) should converge for large N , if the actual model
can be described by a renormalized model. We can then define these converged values as the
renormalized parameters.

2.1.2 Calculation of Parameters via the Self-Energy

The NRG procedure allows one to not just calculate an approximation of the energy spectrum
but also the self-energies for different frequencies, which lets us directly calculate some of the
renormalized parameters through NRG.

The Green’s function can be written in the form

G(ω) =
1

ω − εd −∆(ω)− Σ(ω)
, (12)

where Σ(ω) is the self-energy and ∆(ω) is the hybridization. The hybridization describes the
coupling between the non-interacting chain and the impurity, thus like before we can write
∆(ω) as V 2g11(ω), where g11(ω) is the Green’s function of the non-interacting chain defined in
the section before. If the model is viewed as a Fermi liquid the Green’s function should have
the form

G(ω) =
Z

ω − ε̃d − ∆̃(ω)
=

Z

ω − ε̃d − Ṽ 2g(ω)
, (13)

where Z is the quasiparticle weight. Since we find ourselves in a low energy regime we can
approximate the self-energy with a first order Taylor expansion, so Σ(ω) ≈ Σ(0) + Σ′(0)ω. If
we insert this expression into (12) and reorder we get

1

1− Σ′(0)
· 1

ω − εd+Σ(0)
1−Σ′(0)

− V 2g11(ω)
1−Σ′(0)

. (14)

Comparing this with the Fermi-liquid Green’s function (13), it becomes clear how to define the
renormalized parameters in dependence of the bare parameters and the self-energy:

Z =
1

1− Σ′(0)
ε̃d =

εd + Σ(0)

1− Σ′(0)
= Z(εd + Σ(0)) Ṽ 2 =

V 2

1− Σ′(0)
= Z · V 2. (15)

There is another renormalized parameter that is of interest; the effective quasiparticle in-
teraction Ũ . Its relation to the four-vertex Γ(ω1, ω2, ω3, ω4) at zero frequency is given by [3]

Ũ = Z2Γ(0, 0, 0, 0). (16)

In this work, we from now on only refer to the four-vertex at zero frequency, thus the (0,0,0,0)
is omitted.
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2.1.3 Comparing the Calculation Methods

We have established that the renormalized parameters can either be directly calculated through
NRG or by looking at the poles of the Green’s function. In this section we look at the differ-
ences in the results of the two calculation methods.
The self-energy calculations via NRG can be made a lot more accurate through the usage of
z-shifts. This procedure entails slightly changing the discretization intervals with an exponent
z ∈ [0, 1) and then averaging over the calculations of all the different z that were used. This
obviously increases the computation time, since for each z the spectrum has to be recalculated.
In this work the calculation of the self-energy was only used in certain cases to ensure that
the results are consistent. Reason is that generally the calculation via the self-energy is only
accurate and converges for a rather large number of z-shifts, making calculations much more
time consuming. This is shown in the upper diagramm in figure 2, where Z is calculated two
different ways with U = 0.3 and εd = −U/2, and plotted against the number of z-shifts. ZΣ is
calculated according to the first equation in (15) and ZRPT is calculated by first calculating Ṽ 2

according to (10) and plugging it into the last equation in (15).

0 2 4 6 8 10 12

0.58

0.6

0.62

0.64

200 400 600 800 1000 1200 1400 1600 1800

0.63

0.632

0.634

0.636

0.638

Figure 2: Comparing different Z calculated via the discrete spectrum and the self-energy for
εd = −U/2 = −0.15. In the upper plot we vary the number z-shifts while keeping the number
of kept states at 2000. In the lower plot the number of states is varied and the number of
z-shifts kept at 4. In both cases the calculation via the self-energy takes longer to converge.
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One can also vary the number of states kept after each diagonalization step. Obviously a
higher number of states is computationally more intensive, thus it is again of interest to choose
a number as small as possible, while also keeping the results accurate. When plotting the Z
calculated via the different methods against the number of kept states, as in the lower diagramm
in figure 2, one can see that the Z calculated from the renormalized parameters fluctuate a lot
less than the one calculated from the self-energy.

2.1.4 Effective Interaction Energy

The interaction term can only play a part in multiple hole or particle excitations. Therefore
the effective interaction should be proportional to the difference between a two-particle (hole)
excitation energy and twice the energy of a single excitation. The exact expression is given
by [3]

Epp(N)− 2Ep(N) = Ũ(N)|ψ∗p,1(0)|2|ψ∗p,1(0)|2. (17)

Where |ψp,1(0)|2 is the absolute square of the wave function of the lowest single particle
excitation at the first site i.e. the impurity site. It can be calculated by [3]

|ψp,1(0)|2 =
1

1− Ṽ 2(N)g′11(Ep(N))
. (18)

g′ii(ω) denotes the derivatives of the Green’s functions of non-interacting models from before.
Thus

g′ii(ω) = ∂ωgii(ω) = −
1− t2i g′i+1,i+1(ω)

(ω − t2i gi+1,i+1)2
and g′NN(ω) = −ω−2. (19)

One can also calculate the effective interaction based on two hole excitations and particle-hole
excitations. For the hole-excitation calculation one has to substitute the Epp, Ep and |ψp,1(1)|2
with their hole counterpart. As for the particle-hole excitation, the sign also has to be switched,
i.e. Ep+Eh−Eph, since particles and holes attract each other and Ũ should share the same sign.

An exact derivation of (17) is not given here, but just by looking at the formula one can
intuitively understand why this expression would make sense: The energy difference between
the a two particle excitation, as in the energy of the two single particles and their interaction
energy, and two times the single particle excitation should simply be the interaction energy.
This quasiparticle interaction energy is described by a prefactor Ũ times the product of the two
“charges”, which are the wave functions at the impurity site. After calculating Ũ and Z one
can also calculate Γ according to (16).

2.2 Convergence of Renormalized Parameters

The system described by (5) is only an approximation of the Anderson impurity model, that we
are actually interested in. How accurately (5) can describe this model depends on the number
of sites N in the chain. Therefore only if the chain is long enough do we enter the regime
where (5) can describe a system that can be seen as a Fermi liquid. Thus, if N is rather small,
renormalized parameters that describe a Fermi liquid do not really exist. They only start to
“become clear” as the length of the chain is increased, which is when the definitions (10), (11)
and (17) converge to their respective values.

Earlier we defined the effective interaction Ũ in three different ways according to (17):
Via two-particle excitations as Ũpp, two-hole excitations as Ũhh and particle-hole excitations
as Ũph. For short chains effective parameters that describe the interaction do not really exist,
therefore it is not expected that the different Ũ are the same in that case. When we reach

9



the Fermi liquid regime, however, one would expect Ũ to only depend on the “charges” of the
excitations, which can be expected to be the same for particles and holes, except for the sign,
implying that the absolute values of the different Ũ should also be the same. Additionally, since
we defined Ũph with a flipped sign compared to Ũpp and Ũhh, the sign should be the same as well.

Indeed this is what we find if our NRG calculations were sufficiently accurate, as is shown
in figure 3, where Ũpp, Ũhh and Ũph are plotted against the number of chain sites N for U =
−εd = 0.3, where εd was chosen such that we do not find ourselves at half filling, where the
particle and hole excitation energies are identical, trivially making Ũhh = Ũpp. It should be
noted that while in the current single-orbital case the values continuously converge for bigger
N , in more complicated cases, like the two-orbital case that we will later look at, numerical
instabilities arise for N that are too large, causing the calculated parameters to be inaccurate.
In those cases we have to pick one of the N that is neither too large nor too small to be our
convergence value.

0 10 20 30 40 50

0.15

0.2

0.25

0.3

0.35

0.4

Figure 3: Ũ calculated in three different ways from two particle, two hole and particle-hole
excitations for U = −εd = 0.3. We can see that only for large N do the different Ũ converge to
the same value.

2.3 Effective Parameters in Dependence of the Filling and Coulomb
Interaction strength

After calculating ε̃d (figure 4), Ũ (figure 5), Γ (figure 6) and Z (figure 7) for different fillings,
which are determined by the ratio εd/U , and Coulomb interaction strengths U , we can discuss
the qualtitative behaviour of the parameters:

From the colourplot in figure 4 we can see that the smallest absolute value of ε̃d = 0 is
always found at half-filling and that ε̃d seems to be point-symmetric around half-fillling. From
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Figure 4: ε̃d calculated for different U and εd/U . In the uppereft lineplot we plot ε̃d for three
different U against εd/U , which determines the filling. The dashed black line indicates half-
filling. Just below we fix the filling and vary U to get another lineplot.

the upper left lineplot we can see that when transitioning to the full-orbital regime, that is to
say εd/U is increased, the effective energy level also increases. Analagously, when we transition
to the empty-orbital regime, that is to say εd/U decreases, the effective level becomes negative
and the absolute value increases just like when transitioning to the full-orbital regime. There-
fore, ε̃d is indeed point-symmetric around half filling. We can also see that an increase in U
not only causes the increase of the absolute value of ε̃d to become more drastic, but also more
sudden. The result can be seen in the lower-left lineplot where we vary U instead of the filling.
The effective local level energy ε̃d has a minimum (or maximum if a ε̃d > −U/2 is chosen) that
moves to higher U as the filling is decreased (increased).

Since the colour plots 5, 6 and 7 and the upper left line plots are symmetric, we can conclude
that these parameters are symmetric around half-filling
If U is increased, Ũ also increases initially, as one would naively expect, since an increase in
the bare interaction should also increase the effective interaction. However, at some point Ũ
reaches a maximum and starts converging towards 0. This is shown in figure 5 in the lower left
line plot. This behaviour can be explained by U suppressing charge fluctuations which implies
screening causing a weakening of Ũ . This screening effect apparently scales faster with an
increasing U than the direct strength increase of the effective interaction. Therefore, at some
point the screening effect starts to dominate causing the maximum, after which Ũ continually
decreases.
When we vary the filling and fix U , the minimum of the effective interaction is found at half-
filling as can be seen in the upper left plot. Additionally, one can see that the further one strays
away from half filling the larger Ũ generally becomes and the maximum of Ũ in dependence of
U shifts to higher U , which is shown in the lower left plot. This implies that the screening is
strongest around half-filling and that moving away makes it harder for the screening effect to
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Figure 5: Similar structure to figure 4, but now Ũ is calculated instead of ε̃d. In the upper left
plot the filling is varied while fixing U and in the lower left plot U is varied at a fixed filling.

dominate the effective interaction Ũ .

In the colour plot of figure 6 it is obvious the largest value of Γ is found at half filling with
the largest U value. This is due to the monotonous behaviour of Γ, where decreasing U or mov-
ing away from half filling causes Γ to converge towards 0, as is evident by the lower and upper
left line plot. This was also expected as Γ is the Coulomb interaction U between the actual
physical particles plus all the higher-order Coulomb interactions that can occur. An increase
in U is expected to increase all orders of interactions, thus Γ starts to diverge. The behaviour
of Γ is also consistent with the results in Ũ , as in that a stronger effective physical interaction
causes the charge flucuation supression and thus the screening to also become more pronounced.

While Z also exihibits a monotonous behaviour, the pattern is the exact opposite to Γ,
where for the largest Γ values, i.e. half-filling and large U , Z takes on its smallest values, which
converge towards 0. Moving away from that point causes Z to take on its largest values, which
converge towards 1. That is to be expected since Z can be seen as a measure of how strong
the effects due to the interactions between the electrons are in comparison to a free system.
If Z = 1 then the Green’s functions of Fermi liquids are the same as for the non-interacting
system which matches the behaviour of our effective physical interaction strength Γ converging
towards 0. When Z goes towards 0 the differences to the free gas increase, that is to say the
interactions become stronger, which again matches the behaviour of Γ.
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Figure 6: Analagous to figure 4 and 5, but here it shows the value of Γ. In the lineplots either
U or the filling is varied and the other variable fixed. Unlike Ũ the four-vertex Γ is completely
monotonous.
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Figure 7: Analagous to the other figures in this subsection. This time the quasiparticle weight
Z is calculated. The lineplots can either show a variation of the filling or U . Exihibits the
opposite behaviour to Γ
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3 Two-Orbital Anderson Model with Hund’s Coupling
The Hamiltonian of the two-orbital case is similar to the single channel case. One big differ-
ence is that the creation and annihalation operators now have the additional index m which
corresponds to which orbital the electron is in or is created in. We have two different orbitals
in the two channel case:

HSIAM =
∑
mσ

εdd
†
mσdmσ +

∑
kσ

εkσc
†
kσckσ +

∑
kmσ

(
Vkd

†
mσckσ + V ∗k c

†
kσdmσ

)
+Hint. (20)

Another change is the new interaction term Hint, which can be written in the form:

Hint =
U

2

∑
mm′σσ′

d†mσd
†
m′σ′dm′σ′dmσ +

J

2

∑
mm′σσ′

d†mσd
†
m′σ′dmσ′dm′σ

= (U + J)
∑
m

nd,m↑nd,m↓ + U
∑
m 6=m′

nd,m↑nd,m′↓

+ (U − J)
∑

m<m′,σ

nd,mσnd,m′σ − J
∑
m 6=m′

d†m↑dm↓d
†
m′↓dm′↑.

(21)

Where J is the new Hund’s coupling interaction. The renormalized parameters are defined the
same way as before.

The kinds of excitation energies we are going to be interested are the same one as before.
However, the now possible different orbital configurations introduce another quantum number;
the SU(2) orbital number. In figure 8 an example flow diagramm calculated at U = 0.25,
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Figure 8: Flow diagramm for the 2-channel case with U = 0.25, J = 0.04 and εd = −3.3 · U/2.
We now need an extra quantum number two differentiate the lines.

J = 0.04 and εd = −3.3 · U/2 is shown. The εd was again chosen such that we do not find
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ourselves at half-filling, where we cannot differentiate the particle and hole excitation energies.
The biggest difference in comparison to the single-channel case is that the lines are categorized
by an additional quantum number. In this diagramm the first number is still the U(1) charge,
but the second number is now the SU(2) orbital number and the third number the SU(2) spin.
The selection of the single-particle or hole excitations is again straightforward, since there is
only one possible quantum number configuration; [1 1 1] (4) for one particle and [−1 1 1] (4) for
one hole. The four-fold degeneracy is due to the two-fold degeneracy of the spin and the two-
fold degeneracy of the orbital number combining together.
The double excitations are again more complicated, since we need to differentiate between the
different possible spin and orbital configurations. When selecting the spin singlet orbital singlet
particle-hole excitation one again has to pay attention not to pick the ground state, because
it shares the same quantum numbers. It is possible to have four different excitation energies
for each kind of double excitation. However, the spin-singlet orbital-singlet and the spin-triplet
orbital-triplet excitation energies are relatively high for two-particle and two-hole excitations,
making the values too inaccurate.

3.1 Calculations of the Effective Interaction for Small J at Half-
Filling

Unlike in the single-channel case, the effective interaction Ũ and the four-vertex Γ depend
on whether we look at two particle or particle-hole excitations, and what the other quantum
numbers are, i.e. the SU(2)-spin S and the SU(2)-orbital number T . Therefore we define several
ŨS,T
q , where q ∈ {pp, hh, ph} indicating whether ŨS,T

q was calculated from two-particle, two-hole
or particle-hole excitations. We for now only look at the parameters at half-filling, which in
the two channel case corresponds to εd = −3U/2, starting with the spin-singlet orbital-triplet
particle-particle excitation.

In the colour plot of figure 9, we can see that ŨS=0,T=1
pp is always positive. The lineplot also

shows that there is a maximum when U is fixed and J is varied. After the maximum, ŨS=0,T=1
pp

converges to 0 similar to the single channel case. The position of the maximum shifts towards
smaller J values when U is increased. The increase in U also causes the value of the maximum
to decrease. This is because additional orbital fluctuations exist that are not present in the
single-channel case [4]. These orbital fluctuations can be suppressed by increasing J . Therefore
both U and J have fluctuation-suppressing effects and thus cause screening. The result is the
shifting maximum and the convergence towards 0 for large U and J .

Differences to the single-channel case become even more sharp when looking at the spin-
triplet orbital-singlet particle-particle excitation. In the colourplot of figure 10 we can see that
for sufficiently large U and J the sign of ŨS=1,T=0

pp becomes negative, which would correspond to
an attraction of the quasiparticles despite them possessing the same charge! By again looking at
the J-ŨS=1,T=0

pp plot shown on the left side of the figure we see that unlike before ŨS=1,T=0
pp starts

to drop off immediately until it reaches a minimum with a negative value. At this point the
screening effect due to the increasing J starts to dominate again causing ŨS=1,T=0

pp to converge
to 0. However this time it converges from the negative side meaning that for all large U and J
that the effective interaction is attractive. Similar to the spin-singlet and orbital-triplet case,
an increasing U causes the absolute value of the minimum to decrease and the position to move
towards smaller J values. Since ŨS=1,T=0

pp is positive for J = 0 and the minimum is negative,
there exists a point at which ŨS=1,T=0

pp becomes 0 resulting in an effectively non-interacting
system!

In the lineplots of figure 9 and 10 we also compare two particle excitations and particle-hole
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Figure 9: The effective interaction ŨS=0,T=1
pp calculated while the Coulomb strength U and

Hund’s coupling J is varied at half-filling, i.e. εd = −3U/2. In the line plot U is fixed at different
values and J is varied. ŨS=1,T=0

ph is also shown to illustrate the similar behaviour to ŨS=0,T=1
pp .

The white spaces imply that ŨS,T
q was not calculated for those parameters. Reasoning is that

the Hund’s coupling parameter J cannot be larger than the Coulomb interaction parameter U
meaning that those parameter regimes are not physical.

excitations. For the particle-hole excitations, a similar pattern to the two particle excitations
emerges, with the main difference being that the spin-triplet orbital-singlet is always positive
and has a maximum while the spin-singlet orbital-triplet excitation has a negative minimum.
Thus, if we switch the spin and orbital states of two particle excitations and switch to the
particle-hole excitations, we find that the particle-hole excitations mimic the patterns of the
two particle excitations. It should also be noted that in all four of these excitations that the
values of ŨS,T

q are identical for J = 0.

3.2 Splitting of the Effective Interaction

The four-vertex can be written in the form [5]

Γm1σ1m2σ2;m3σ3m4σ4 =ΓC(δm1m4δm2m3δσ1σ4δσ2σ3 − δm1m3δm2m4δσ1σ3δσ2σ4)

+ Γe(δm1m3δm2m4δσ1σ4δσ2σ3 − δm1m4δm2m3δσ1σ3δσ2σ4),
(22)

where the indices mi and σi are the orbitals and spins of the creation and annihaltion oper-
ators from which the four-vertex can be calculated. Γe vanishes for J = 0 [5], thus it should
correspond to a kind of effective Hund’s coupling interaction. Since this separation into parts
is possible for the four-vertex we expect it to also be possible for the effective quasiparticle
interaction Ũ .
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Figure 10: Similar patterns to figure 9, but ŨS=1,T=0
pp is calculated instead, causing there now be

a minimum, that is actually negative, instead of a maximum. The line plot also shows ŨS=0,T=1
ph

to again show the similarity between the effective two-particle and particle-hole interactions.
The white spaces were not calculated as they are not physical.

This separation into two parts is indeed possible giving us two parts, which we call the
Coulomb part ũ and the Hund’s coupling part j̃. The different Ũ can then be written the
following way:

ŨS=0,T=1
pp =ũ+ j̃.

ŨS=1,T=0
pp =ũ− j̃.

−ŨS=0,T=1
ph =− ũ+ 2j̃.

−ŨS=1,T=0
ph =− ũ− 2j̃.

(23)

These relations were found by simply looking at the values and behaviour of the different ŨS,T
q .

We can prove that this is indeed the case by solving the equations in (23) for ũ and j̃, giving
us several ways to calculate them. We will denote them as ũq and j̃q with q ∈ {pp, ph, hh} to
indicate from what kinds of excitation they were calculated, though since right now we still
have a particle-hole symmetry hh parameters will be omitted:

ũpp =(ŨS=0,T=1
pp + ŨS=1,T=0

pp )/2.

ũph =(ŨS=1,T=0
ph + ŨS=0,T=1

ph )/2.

j̃pp =(ŨS=0,T=1
pp − ŨS=1,T=0

pp )/2.

j̃ph =(ŨS=1,T=0
ph − ŨS=0,T=1

ph )/4.

(24)

The different ũq and j̃q should of course have the same values since we are trying to reduce
the total number of parameters necessary to describe the quasiparticle interaction.
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Figure 11: The Coulomb part ũ of the effective interaction calculated for different U and J ,
while εd is chosen such that we find ourselves at half-filling. In the upper left line plot U is
varied for different J to illustrate the relatively clear maxima. Meanwhile, the lower left line
plot shows ũ when J is varied with fixed U , resulting in mainly monotonous behaviour. In the
line plots the two different ũq denoted by the lower index q are shown. As we can see their
values match up exactly.

We plot these parameters against U for fixed J in the upper left corner and against J for
fixed U in the lower left corner of figure 11 and 12. The different ũq and j̃q can be seen to
indeed match up exactly, showing that a simplification of the effective interaction is possible.
Therefore, we from now on mainly refer to both ũpp and ũph simply as ũ, unless a distinction
is necessary to show how it was calculated. Similarly, the parameters j̃pp and j̃ph are referred
to as j̃.

We can see in the lower left line plot of figure 11 that when J is increased it causes a
screening effect for ũ and that the dropoff of ũ due to the screening becomes faster as U is
increased. In contrast, when J is fixed and one varies U , like in the upper left line plot, one
can see that there exists a clear maximum. Its value becomes smaller and shifts to smaller U
when a larger J is chosen, since the screening strength is increased. To sum up we can say that
increasing either J or U causes screening effects which weaken the effective Coulomb interac-
tion ũ. However U also has a strengthening effect on ũ, even if at some point the supression of
the fluctuations causes ũ to converge towards 0 as we have seen before in the single channel case.

For the plots of j̃ in figure 12 a very similar pattern emerges except that the roles of U
and J are reversed compared to before. That is to say, a stronger U only causes a screening
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Figure 12: Similar to figure 11, but now it is the Hund’s coupling part j̃ of the effective
interaction that is plotted. In the colourplot the positions of the U and J axis have been
switched in order to highlight the similarity of ũ and j̃ if the roles of the bare variables are
switched. Similarly, the line plot where J is varied while fixing U is now in the upper left corner
to illustrate the clear maximum, and the line plot where U is varied is found in the lower left
corner to show the almost monotonous behaviour of j̃ upon varying U . The different ways of
calculating j̃q can again be seen to result in the same values.

effect for j̃ whereas an increasing J causes screening while also having a strengthening effect
on the effective Hund’s coupling, with the former dominating for large J . The result is a clear
maximum when fixing U and varying J , of which the value and position changes for different
U , which can be seen in the upper left line plot. Additionally, we can see in the lower left line
plot that an increase in U again only has a screening-strengthening effect.
It should also be noted that values of j̃ are 0 when J = 0, which is expected if j̃ is a kind of ef-
fective Hund’s coupling. A similar attribute can be expected for ũ but that was not calculated,
as we would then have a non-interacting system.

The naming scheme of the two parts might be a bit misleading, since both ũ and j̃ depend
on U and J , but it was chosen for intuitive purposes. The same can be said about why the
effective particle-hole interactions were written with a minus in (23).
By writing the ŨS,T

q this way and reminding ourselves that the definition of the ŨS,T
ph are in-

verted sign-wise, we can see that the sign of the Coulomb part ũ only depends on the “charges”
of our quasiparticles, as two particles should repel each other and a particle and a hole should
be attractive. In contrast the sign of the Hund’s coupling part j̃ only depends on S and T ,
since if S = 0 and T = 1 j̃ contribute positively, and switching the spin and orbital number
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changes the sign before the j̃.

The decomposition into two parts lets us easily explain the patterns seen in the line plots
of figures 9 and 10: When looking at, for example US=0,T=1

pp , the Coulomb part and Hund’s
coupling part are first “working together”, but the switch to S = 1, T = 0 causes the Hund’s
coupling part to switch signs. Therefore, the two parts are now “working against each other”.
For particle-hole excitations the pattern is similar except the Coulomb part is now attractive
due to the different “charges”. Thus, in the S = 0, T = 1 case the two parts are “working
against each other” and “working together” in the S = 1, T = 0 case.

The decomposition of Ũpp in the two-particle case actually has the same form as the eigen-
values of the interaction part of the Hamiltonian Hint, with the eigenstates being the isolated
impurity with two electrons in the spin singlet orbital triplet or spin triplet orbital singlet state
denoted by |S, T 〉. The eigenvalue equations are given by

Hint|S = 0, T = 1〉 =(U + J)|S = 0, T = 1〉,
Hint|S = 1, T = 0〉 =(U − J)|S = 1, T = 0〉.

(25)

The effective interaction energies ŨS=0,T=1
ph and ŨS=1,T=0

ph can at least still be explained this way,
by assuming the Hund’s coupling part to be twice as strong and making arguments based on
the “charges”. However, the interactions corresponding to other excitations cannot be explained
the same way as we will see .
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Figure 13: In both line plots we vary J while fixing U . The upper plot shows the values of
ŨS=1,T=1
ph and ũpp. The lower plot is similar but now ŨS=0,T=0

ph and −3ũpp are plotted instead.
According to (26) the values in both plots are identical, which is indeed what we see.

In this thesis we do not discuss two-particle excitations where both the spin and the orbital
number are triplet states or singlet states, as these are relatively high energy excitations. As
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we already mentioned, the NRG procedure becomes less accurate for higher energies such that
the calculation of the renormalized parameters from the higher parts of the spectrum becomes
impossible.
Double-singlet and double-triplet particle-hole excitations however are still low enough in the
energy spectrum to be accurately calculated via NRG, such that we can use them to calculate
the effective interaction energies. These Ũ can be described with the Coulomb part from before:

−ŨS=0,T=0
ph =3ũ.

−ŨS=1,T=1
ph =− ũ.

(26)

The veracity of these equations is proven in figure 13, where we plot in the upper plot US=1,T=1
ph

and ũ against J for different U . In the lower plot the same is done for US=0,T=0
ph and −3ũ. We

can again see that the values line up very well.

It should be noted that the results for ŨS=0,T=0
ph might not be completely correct, since one

needs to select the excitation corresponding to [0 0 0], which is the ground state. Therefore,
one needs to select the next highest line, but it might not actually correspond to the lowest
energy excitation. A possible interpretation of US=1,T=1

ph could be the effect of the two triplet
states cancelling each other out. This explanation however would also not match up with the
similarity stated in (25) as the double triplet state has the eigenvalue U + J , which should
correspond to U − J after adjusting the signs according to the logic used before.

3.3 Calculations of the Parameters for Large U and J at Half-Filling

We now take a look at the behaviour in the case of large U and J , while still staying at half-
filling.
For rather large U and J the charge, spin and orbital fluctuations are supressed, therefore the
corresponding susceptibilities can be set to 0. This gives us a relation between ũ and j̃ as was
shown by Nishikawa et al. [4], though in our case the definitions of the Hamiltonian and the
decomposition into parts differ resulting in the relation

2ũ = j̃. (27)

This becomes evident in figure 14 where we plotted 2ũ and j̃ against J for different U . As we
can see, the two lines start to converge for higher J and the convergence is faster if U is larger.
Hewson et al. has shown that for large U in the single-channel case Ũ and

π

2
Ṽ 2 converge to

a single energy scale, the Kondo temperature [3]. Therefore, we expect that in the two-orbital
case ũ, j̃ and

π

2
Ṽ 2 also converge to a single energy scale for large U . Indeed, this is shown in

figure 15 where we plotted ũ, j̃/2 and
π

2
Ṽ 2 against U . If this single energy scale corresponds

to the Kondo temperature is not known, but in analogy to the single-channel it is expected.
In the upper plot this is done only at J = 0.05 to better illustrate the difference between the
three parameters. In the lower plot three different J are chosen to show that in order for the
convergence to take place, a specific J is not necessary. In fact, we can see that the parameters
converge faster for larger J , probably due to the additional suppression of orbital fluctuations.

In figure 16 we plot Z against U and J , which shows us that Z behaves monotonously upon
variation of U and J . The quasiparticle weight has its largest value for small J and U being
almost 1 for J = 0 and U = 0.1. It also converges to 0 when either J or U is increased. This
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Figure 14: Plotting 2ũ and j̃ against J for different U to illustrate their equivalence when
fluctuations are supressed. When U is larger the convergence is significantly faster.
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Figure 15: In both plots 2ũ, j̃ and
π

2
Ṽ 2 are plotted against U for fixed J . In the upper plot we

can see how all three parameters converge to a single energy scale. In the lower plot the three
parameters are harder to differentiate, but the different values of J shows that this convergence
does not require a specific J to take place.
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Figure 16: Z plotted against U and J at half-filling in a colour plot. We can see that Z
decreases monotonously when either U or J are increased, while converging to 1 when both
interaction parameters approach 0.

was expected for the same reason as before; if the interaction parameters U and J go towards 0
then the Fermi liquid transitions to a non-interacting system implying a quasi-particle weight
of 1. Larger U and J also imply stronger physical interactions which again implies that the
correlation strength increases between the electrons, resulting in a small Z.

According to (16) Γ is given by the fraction U/Z2. Since we showed before that for large U
and J the parts of the effective interaction Ũ and Ṽ 2 = Z · V 2 take on the same energy scale
we can conclude that Γ ∝ 1/Z in this parameter regime. Thus, Γ diverges when Z converges to
0, which is again expected as Γ is the sum of all orders of the interactions, which are expected
to become larger if the interaction strength parameters U and J are increased.

3.4 Effective Interaction with Broken Particle-Hole Symmetry

Until now, two-particle excitation energies have been completely identical to two-hole excitation
energies as we have been at half-filling. If we move away from that, particle-hole symmetry is
broken, which could lead to differing Ũpp and Ũhh. However, since we expect the Coulomb ac-
tion part of the interaction to be the same, due to the same charges, and the Hund’s coupling’s
contribution to also be the same, as long as we choose identical spin and orbital number states
for the excitations, we expect that Ũpp and Ũhh converge towards the same value for large N .
This is indeed what we find as long as the NRG calculations are accurate.
This can be seen in figure 17, where we plot ŨS=1,T=0, one time calculated from two particle
excitations and the other time from two hole excitations, against εd/U starting from half-filling
for different J and U = 0.2. It is clear that the two ways of calculating result in values that
match very well. It should be noted that more realistic values of J were chosen, as in U/2 ≥ J .
This was done as high values of J result in peculiar behaviour around half filling.
For the more realisitc J values however a similar pattern to the single channel case emerges; the
minimum of the interaction is again found at half filling. Thus for most values of J a negative
ŨS=1,T=0 is only found around half filling, since only then does the value of the minimum drop
below 0.
In the empty orbital regime it appears that Ũ is proportional to J . Therefore it is also possible
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to have a negative Ũ even in the full orbital/empty orbital regime, as long as the chosen J are
very large.
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Figure 17: The effective interaction ŨS=1,T=0 plotted against εd/U for different J and U = 0.2.
The initial εd/U corresponds to half-filling. The lines were calculated via two particle excitations
and the crosses via two hole excitations. As we can see, their values match up exactly.

In the last section we also split the effective interaction into two parts, which can be used to
describe both two-particle and particle-hole effective interactions. Since the different ŨS,T

hh are
equivalent to their ŨS,T

pp counterparts, they can be decomposed the same way. Similar to the
single-channel case, we only expect this equivalence when the number of sites is large enough
to consider our system a Fermi liquid. This is shown in figure 18 where we plotted the different
ũq and j̃q against the number of sites N with εd = −2U = −4J = −0.4. These parameters
are chosen such that we do not have identical particle and hole excitation energies. We can see
that only for sufficiently large U and J do the different ũq converge towards a single value and
the same pattern can be seen for the 3 different j̃q. The dropoff at the end is due to numerical
instabilities, which were mentioned before in Section 2.2.

4 Conclusion
We have outlined how to calculate the renormalized parameters ε̃d, ∆̃ and Ũ through the bare
parameters of the Anderson impurity model. This includes how the the excitation energies nec-
essary for the calculation are selected from the flow diagramms, that are calculated via NRG.
The calculation methods of the quasiparticle weight Z and four-vertex Γ were also covered. We
have also shown that calculating these parameters by combining NRG and RPT requires sig-
nificantly less computational power than doing so via dynamic results of NRG, while providing
more accurate results.
We then calculated the values of our parameters of interest in the single-channel case while
varying the impurity level energy εd and the Coulomb interaction strength U , which is the only
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Figure 18: The different ũq and j̃q plotted against the number of bath sites N for εd = −2U =
−4J = −0.4. The different ũq and j̃q converge to their respective values for large enough N .

kind of interaction in our single channel model. From those results we can conclude that the
correlation strength increases the closer one is to half-filling and the larger U is. Additionally,
an increase correlation strength also increases the screening strength.
In the two-channel case we still had a single energy level εd for both orbitals, but Hund’s cou-
pling was added to the interaction term, with the strength of the coupling being determined by
the bare parameter J . We then calculated the effective interaction similar to the single-channel
case. However, this time we varied the interaction strengths U and J at half-filling, while
differentiating between the different possible spin and orbital states that the double excitations
can be found in. We discovered that all the effective interactions for all the different excitations
can be written as a linear combination of an effective Coulomb part ũ and an effective Hund’s
coupling part j̃. The effective Hund’s coupling part actually tends to be larger than ũ, causing
the effective interaction between two electrons to actually be attractive if the appropriate spin
and orbital numbers S and T are chosen. For the effective interaction between particles and
holes ŨS,T

ph the influence of the j̃ is twice as strong in comparison to the effective interaction
between two particles ŨS,T

pp . We also observed that as U and J are increased j̃/2, ũ and the
effective hybridization Ṽ 2 converge to a single energy scale and that the correlation strength
increases causing ũ and j̃ to experience stronger screening. At the end we briefly looked at the
case that particle-hole symmetry is broken, where we showed that the minimum is still found
at half-filling and that the effective interaction between holes ŨS,T

hh is identical to the effective
interaction between particles ŨS,T

pp .

In this thesis a lot of aspects were only briefly mentioned but never looked into. Further
research should consider looking into some of the following possibilities: Checking if the single
energy scale for large U and J in two-orbital case actually corresponds to the Kondo temperature
and having different orbital level energies, i.e. εd,m depending on the index m.
Some of the observations made could also not be properly explained, e.g. the doubling of
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the effective Hund’s coupling for particle-hole excitations. Explaining these features might
require a stronger theoretical background or more accurate calculations in order to analyze the
higher-energy excitations.
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