
i

Effect of Grain Growth on
Dust content of

photoevaporative flows in
protostellar discs

George Dadunashvili

Effect of Grain Growth on Dust
content of photoevaporative flows in

protostelar discs

Effekt des Staubteilchen-Wachstums,
auf den Staubdgehalt des

photoevaporativen Flusses der
protostelaren Scheiben

George Dadunashvili

Bachelorarbeit

an der Fakultät für Physik

der Ludwig-Maximilians-Universität

München

Betreuer:

Prof. Dr. Barbara Ercolano

und

MAoSc. Giovanni Rosotti

August 1, 2017

Contents

1. Introduction 2

2. Theoretical Model 4
2.1. Dynamics . 4
2.2. Simulation Parameters . 9

3. Implementation of the Model 11
3.1. Benchmarking . 11
3.2. Variation of grain size distribution in the disc 13

4. Conclusion and Outlook 17

Appendices 18

A. Source Code for calculation of maximum grain size 19

B. Source Code for calculation of dust density distribution 32

C. Supplement plots 35

Bibliography 39

Acknowledgements 40

List of figures 40

Selbstständigkeitserklärung 42

1. Introduction

This thesis is about photoevaporation in edge on discs, driven by Extreme Ultra-

violet Radiation (EUV). It mainly refers to the simulations carried out by James

E. Owen (Owen et al., 2011). The main motivation for this work is to understand

why Owen’s simulations partially failed to reproduce the observations made on the

object PDS 144N (Perrin et al., 2006) and to explore possibilities to correct the

outcome, by altering the initial conditions.

Owen first calculated the photoevaporative mass flow, leaving the disc, which de-

livered data about maximum size of grains entrained in the wind, for each radius.

Final step in his hydrodynamic simulations was to calculate the dust density distri-

bution above the mid plane of the disc. The later one was used to compute synthetic

disc images with MocassinThinimmage (an altered version of radiative transfer

code Mocassin). Calculated images correctly reproduced the morphology of the

disc (’wingnut’ morphology), however the color of the images was dominated by

blue light (see Owen et al. 2010 Figure 4), which is in conflict with observations,

which show that at larger radii and height above the mid plain, preferably red light

is scattered.

One plausible explanation of this deviation between synthetic images and observa-

tions lies in the grain size distribution inside the disc, which was assumed to be

distributed according to the MRN power law.

dN

da
∝ a−3,5

One can see that this distribution is dominated by small grains, so for each large

grain there is a great number of small grains also entrained in the wind. The result of

this behaviour is a dust density distribution where the role of larger grains is almost

negligible. As we know that red light is scattered by larger grains, the outcomes of

the simulations are not surprising any more.

In order to test if grain size really is the decisive quantity for the end result of

3

the calculations, we need to take a new distribution, which is a result of grain

growth simulations, calculate the dust density, and compute new synthetic images.

In this work only the first step will be discussed. Even if the calculation of synthetic

images is necessary for direct comparison with observational data, a new dust density

distribution will already give a hint, to test the previously introduced heuristic

explanation.

Before one changes the initial conditions of Owen’s simulations, his previous results

need to be reproduced. The code used for this calculations will be introduced in

the appendix, the results of the calculations will be discussed and compared to the

outcomes of Owens simulations in following chapters.

2. Theoretical Model

In this chapter, the main theoretical methods, used for calculations will be displayed.

In two subsections the reader first will be introduced to the force equations, gov-

erning the dynamics of the mass flow, and then to the set of input data, used for

simulations in this model. Here is also to mention that, in this thesis, as in Owen’s

paper only the extreme ultraviolet (EUV) photoevaporative flow is considered. A

very pleasing side effect of the EUV regime is that the process is isothermal, so one

does not have to care about the temperature distribution, as it is the same every-

where. This fact makes simulations considerably easier, in comparison with other

regimes (e.g. X-ray regime).

If more information, about the process of photoevaporation is desired by the reader,

the following Paper (Armitage, 2011) gives an informative and well understandable

overview of the topic.

2.1. Dynamics

In this section the forces involved in the process will be discussed and the main

equation used in the source code to calculate the grain size will be introduced.

In our case the equation of forces acting on a single grain entrained in the wind is

the following one:

−→
F tot =

−→
F G +

−→
F d +

−→
F rot (2.1)

where the
−→
F G,
−→
F d and

−→
F rot are, respectively: gravitational force caused by the

star, the drag force caused by the photoevaporative wind and centrifugal force caused

by the rotation of the protostellar disc. The equations of gravitational and centrifu-

gal forces are common knowledge and do not need to be displayed here separately.

However for the drag force the same equation from Owen’s paper will be adopted.

For the origin of the equation see (Takeuchi et al., 2005). The drag force is given

by:

2.1 Dynamics 5

Fd ≈
mdρwv

2
w

ρda
(2.2)

where md , ρd and a are, respectively: mass, density and radius of a single dust

grain, which we assume to have spherical form. ρw and vw are the density and the

velocity of the photoevaporative wind.

After writing down all forces, the grain mass md cancels out and we obtain the

following Equation.:

G
M∗

r2
=
ρwv

2
w

ρda
+
v2
rot

r
(2.3)

where M∗ is the mass of the star, vrot the rotational velocity of the disc and r the

radial distance from the center of the disc to the grain.

The primary task now is to calculate which grains can be entrained in the wind.

In order to do so one rewrites the equation (2.3) for the grain radius a. We de-

note a(r)G ≡ GM∗
r2

for gravitational acceleration and a(r)rot ≡ v2rot
r

for rotational

acceleration and get:

aG =
ρwv

2
w

ρda
+ arot

ρwv
2
w

ρda
= aG − arot

a =
ρwv

2
w

ρd(aG − arot)

As this problem has cylindrical symmetry, one only needs two components of the

wind velocity; vr and vθ. So we finally obtain an equation for a(r)max, a maximum

grain size which can still be entrained in the wind (or streamline) at the given radius

from the star.

a(r)max =
ρw(v2

r + v2
θ)

ρd(a(r)G − a(r)rot)
(2.4)

Note that this equation is only valid for a given streamline at the starting point

of the streamline. To understand this point one has to go back to the equation

2.3. One can assume that the wind flow is approximately spherical at large radii

(z/R > 1 where R is spherical radius) (see Figure 2.1), this implies that ρwvw falls

off as 1/r2. Wind velocity also can be regarded as monotonically growing for larger

6 2. Theoretical Model

radii (see Figure 2.2). So the drag and centrifugal forces both fall off as 1/r and

always dominate over the gravitational force (falling off as 1/r2), at large radius.

This means that if a grain is once entrained in the wind it will stay entrained and be

carried out at large distances. But this also means that the domination of the drag

force over the gravitational force is getting stronger, so at larger radii grains bigger

then amax could be entrained in the wind. This does not happen because there are

no larger grains then amax, as they could not be entrained at the beginning of the

streamlines, and carried out to far distances.

Figure 2.1.: gas density distribution (spherical coordinates): the color map shows the
density distribution of the gas, while the arrows show the magnitude and direction of the
wind velocity. One can clearly see that at large radii gas flow is spherical.

Figure 2.2.: magnitude of the velocity of the wind(for different Θ): one can see that the
magnitude of the velocity has a approximately linear dependence on the cylindrical radius
(for large r).

2.1 Dynamics 7

The equation makes possible determine the dust content of the gas flow. Only

one further step is needed to determine the dust density (the final goal of this

calculations).

Dust density, for MRN distributed grain sizes

If one assumes that that the grain size is distributed according to the MRN power

law, the dust density can be calculated analytically.

The number density of grains with radius a is given by:

dn

da
= ca−3.5 with c as proportionality constant (2.5)

The mass for a spherical grain is: md(a) = 4
3
πρda

3, so the differential mass is:

dm = 4πρda
2da. In order to calculate the total density, one has to integrate over

the number density, for each mass bin:

ρdust =

∫ mmax

mmin

dn

da
dm (2.6)

ρdust =

∫ mmax

mmin

ca−3.5︷︸︸︷
dn

da
dm︸︷︷︸

4πρda2da

= 4πρdc

∫ amax

amin

a−1.5da

ρdust = 8πρdc [a−0.5
min − a−0.5

max]

,

Now one can use the relation for dust to gas ratio, to determine the the constant

c:

ρdust = ερgas in our case ε =
1

100
(2.7)

In this equation now the expression for ρdust can be inserted:

8 2. Theoretical Model

ρdust = 8πρdc [a−0.5
min − a−0.5

max] = ερgas

c =
ερgas

8πρd [a−0.5
min − a−0.5

max]

Now the proportionality constant c is determined, and the dust density distribu-

tion can be calculated, however one has to take in account that not all grains can be

entrained in the wind, so the maximum grain size depends on the cylindrical radius

r. The way to calculate a(r)max will be introduced in he chapter 3.1 (see Figure

3.2).

ρ(r)dust = 4πρd

c︷ ︸︸ ︷
ερgas

8πρd [a−0.5
min − a−0.5

max]

∫ a(r)max

amin

a−1.5da

=
ερgas

2 [a−0.5
min − a−0.5

max]
2 [a−0.5

min − a(r)−0.5
max]

One finally receives the equation for the dust density distribution in the gas flow:

ρ(r)dust =
ερgas

[a−0.5
min − a−0.5

max]
[a−0.5
min − a(r)−0.5

max] (2.8)

This is the equation used in the code (see appendix B; code line 51) to calculate

the dust density images (see Figure 3.4).

Dust density distribution, after grain growth

New grain size distribution is adopted from (Birnstiel et al., 2011) and (Birnstiel

et al., 2012) grain growth simulations Simulations. Due to a lucky accident the

grid of radial coordinates r is very similar for both Owen’s and (tills) simulations

(Average relative difference between two different r-axis points is 1.44%), so no

interpolation between new and old coordinate grids was needed.

Birnstiel’s simulations provide one with dust density for every given grain size at

every given point in the protostellar disc. As it is hard to say where exactly in

the disc the photoevaporative wind is launched, one has to define the launching

surface arbitrarily. This fact does not constitute a problem, as one can see that

with variation of the launching surface the outcomes of simulations do not vary

2.2 Simulation Parameters 9

much. In this case it is much easier to calculate the dust density distribution, as

the maximum grain size is already known (it is the same for both cases), and the

data provide the dust densitiy for each grain size. To determine the total density,

one needs to sum up the densities for individual grain sizes:

ρdust,tot =
∑
i

ρdust,i for all ai (2.9)

Now one has to take in account that not all grains can be entrained in the wind:

ρ(r)dust,cutoff =

a(r)max∑
i

ρ(r)dust,i for each a(r)i < a(r)max (2.10)

The ratio of this two densities is the relevant quantity in order to calculate the

density distribution of the dust content entrained in the wind ρ(r)dust. Just like in

the MRN case we obtain the equation:

ρ(r)dust = ε
ρ(r)dust,cutoff
ρdust,tot

ρgas with ε =
1

100
(2.11)

2.2. Simulation Parameters

In the simulations conducted for this thesis, all parameter were adopted from (Owen

et al., 2011) and (Font et al., 2004).

The system consists of a young 2.5M� star and its disc, and is determined by the

parameters listed in the table (2.1). Also the input data for the simulations, like

the gas density distribution and coordinate grid were the same as in Owen’s sim-

ulations(a spherical grid with Θ = [0; π/2] and r = [0; 40]rg with logarithmically

spaced radial coordinates, to provide high resolution in the region r ∼ rg, where the

mass loss rate has its maximum). For more details see the source code (Appendix

1), where all the relevant constants and variables are commented, this should make

the structure of the code easy to understand.

It is crucial to understand the difference between amax and a(r)max. The Former

one is the maximum grain size, available in the disc, same at every distance. Its

value in MRN case is 1mm and in the case after grain growth 1cm. The latter is

the maximum grain size which can be entrained in the wind, this value is simply a

solution of the equation 2.4. It remains same for both simulations.

10 2. Theoretical Model

Parameter Value [units]

mass of the star M∗ 2.5M�
ionizing luminosity Φ 1043 [s−1]
speed of sound in

ionized gas cs 106 [cm/s]
length scale rg

GM∗
c2s

= 22.18 [AU]

scale parameter for

number density ng 0.1
(

3Φ
4πα2r3g

)
mean mass of ionized

hydrogen atoms m̄H 1.35mH

scale parameter for
gas density density ρg m̄Hng

density of a single dust grain ρd 1 [g/cm3]
maximum grain size available

in the disc (MRN case) amax 1 [mm]
minimum grain size available

in the disc (MRN case) amin 5× 10−3 [µm]

Table 2.1.: Simulation parameters

3. Implementation of the Model

In chapter 2 and its subsections, all information needed for understanding the theory

and the way of its implementation has already bin provided, so in the following

sections (3.1 and 3.2) the results of the simulations can be discussed and interpreted.

3.1. Benchmarking

In this section the focus is laid on reproducing the results of (Owen et al., 2011)

As described in Chapter 2 the first step is to calculate the maximum grain size en-

trained in the wind. To do so one needs to calculate the mass flow, which effectively

are the streamlines (Figure 3.1) (or integral lines) of the velocity vector field (Figure

2.1) (for source code see appendix A subsection calculation of streamlines).

Figure 3.1.: Streamlines: the color map shows the gas density, while the streamlines
display the mass flow (the color of the streamlines is arbitrary).

All simulations were conducted with 40 streamlines. Once the streamlines are

known, the maximum grain size (a(r)max) for each one of them can be easily calcu-

12 3. Implementation of the Model

lated (see Appendix A; source code lines from 181 to 245). So one obtains maximum

grain size as a function of the cylindrical radius (see Figure 3.2)

Figure 3.2.: Maximum grain size, at each starting point of a streamline. Note that the
function has its maximum around r ∼ rg. This behaviour was expected, as in this region
the mass loss rate for EUV driven photoevaporative wind is maximal.

This value remains the same all along the streamline and can be interpolated

between them (see Figure 3.3). This provides one with the necessary values of amax

at each point in the wind. So the dust density distribution can be calculated.

Unfortunately at this point the results of the simulation deviate from the results

presented by Owen et al. by one order of magnitude. As the original source code

used in Owen’s simulations is not available any more, it is impossible to compare the

two simulations directly and determine, if the deviation is caused by a single error

or by the difference between the two methods. At this points the reader can only

find comfort in the fact that the source code, used for the purposes of this thesis,

was tested several times and no errors were found. However one can never prove the

absence of a mistake, so every reader is invited to recheck the code by him-/herself.

Luckily this deviation does not constitute a big problem after all. As the same values

of amax are used in both simulations (MRN case and case after grain growth), one

has same systematic error in both results, so it still makes sense to compare them.

Here should also be noted that, beside the deviation discussed above the morphology

of all distributions match perfectly with the results of (Owen et al., 2011).

As discussed in the chapter 2.1 the distribution of maximum grain size in the

3.2 Variation of grain size distribution in the disc 13

Figure 3.3.: maximum grain size distribution in the wind.

wind, is all one need to calculate the dust density distribution, Figure 3.4 (see Ap-

pendix B).

3.2. Variation of grain size distribution in the disc

After all plots presented in the paper of (Owen et al., 2011) are reconstructed and

the results are satisfying, one can move on to the actual task of this thesis. Testing

the effect of grain growth on the dust density distribution in the photoevaporative

wind. The steps are the very similar as in the first part:

1. define the launching surface in the disc

2. calculate the maximum grain size a(r)max at the starting points of all stream-

lines

3. interpolate the a(r)max values between the streamlines

4. use the formula for the dust density (Equation 2.11) to calculate the distribu-

tion

a) calculate the ratio of total and cut-off dust densities, on the launching

surface

14 3. Implementation of the Model

Figure 3.4.: dust density distribution(MRN case).

b) interpolate the values of density ratio between the streamlines

c) insert the results in the formula for the dust density (Equation 2.11)

The source code used for the MRN case is identical in steps 2. and 3. and can be

used here without any variation. The interesting part begins with the calculation of

dust density ratio (see appendix A, source code lines; from 306 to 343). The result

is displayed in Figure 3.5.

Now all preparations are done to perform the final step, use the Equation2.11 and

calculate the new dust density distribution which is displayed in Figure 3.6.

Note that the maximum value of the density in the case after grain growth is lower

then in MRN case. This is exactly what one would expect, as one has less smaller

grains, which were responsible for high densities in MRN case. I order to see the

difference between the two cases more clearly, one can look at Figure 3.7. Here each

point stands for a grain group of same size, one can see which group contributes to

which density. In the MRN case (blue dots) one can clearly see that each density

region contains all kinds of grains, so for each large grain there are more smaller

grains and for all densities the role of small grains dominates over the role of larger

ones. Whereas after grain growth (green dots), large grains are solely responsible

3.2 Variation of grain size distribution in the disc 15

Figure 3.5.: ratio of dust densities.

for high density regions, and small grains have less importance. This results deliver

reasons to belive that grain growth can indeed explain deviations between synthetic

images calculated by (Owen et al., 2011) and the observed object PDS 144N.

16 3. Implementation of the Model

Figure 3.6.: dust density distribution(after grain growth).

Figure 3.7.: grain size plotted against corresponding dust density bin. Blue pints are
for MRN case and green pints for the ’grain growth’ case.

4. Conclusion and Outlook

In this thesis, the reader was introduced to hydrodynamic simulations, of EUV

driven photoevaporative wind in protostellar discs. The main goal of this simula-

tions were to determine which effect grain growth has on the dust content of photo-

evaporative gas flow. Here first the results of Owen et al. (2010) were reproduced

and then compared with new simulation results where the grain size distribution in

the disc were altered. This was not done arbitrarily, just in order to save the out-

comes of (Owen et al., 2011), but is very well justified physically, as grain growth

in the disc is expected and is one of the early steps for the formation of planets. //

As final conclusion one can say that, the plausibility of the initial assumption, that

grain growth will resolve the problem (deviation between observations and synthetic

images calculated by Owen et al. 2010), were confirmed. However note that, be-

tween plausibility and correctness still is a large gap. In order prove that, the new

dust density distribution is correct, one need to calculate the synthetic images for

the simulations with bigger grains and compare them with observations.

Appendices

A. Source Code for calculation of

maximum grain size

All source codes displayed in Appendix A are derived from the code for simulation

of X-ray driven photoevaporation in low mas star systems, provided by Giovanni

Rosotti. The main part of the code was altered for purposes of this thesis and made

suitable for simulations in EUV regime. However, codes for bilinear interpolation

and streamline calculation were used directly, as they are independent of the pho-

toevaporation regime and do not need any alternation. All parts of the code are

written in the programming language Python2.7.

1 from __future__ import division
2 import pyximport; pyximport.install()
3 import bilinear
4 import matplotlib.pyplot as plt
5 import matplotlib.mlab as mlb
6 import numpy as np
7 import streamlines
8
9

10
11 #constants (in CGS)
12 #---
13 m_p = 1.6726231e-24 # proton mass in g
14 mu_bar = 1.37125
15 gamma = 5./3.
16 k_b = 1.380658e-16 # Boltzmann constant in erg/K
17 rho_dust = 1. # g cm^-3
18 Grav = 6.67259e-8 # gravitational constant in cm^3 g^-1 s^-2
19 M_sun = 1.989e33 # mass of the sun in g
20 M_star = 2.5*M_sun
21 AU = 1.496e13 # astronomical unit in cm
22
23 u = 1.660538782e-24 # atomic mass unit in g
24 c_s = 1.0e6 # Speed of sound in ionized gas
25
26 #the imported Data is in scaled units
27 #Scale parameters (in CGS):
28
29 r_g = (Grav * M_star) / (c_s**2) # length scale
30 print 'r_g [AU]'
31 print r_g
32 print r_g/AU
33 alpha2 = 2.6e-13 # recombination coeff. for all states except ground state
34 m_H = 1.008 * u # Hydrogen mass
35 m_mean = 1.35 * m_H # mean mass per hydrogen atom
36 PHI = 1e43 # ionizing flux s^-1
37
38 #particle density scale
39 n_g = 0.1*((3*PHI) / (4*np.pi*alpha2*(r_g**3)))**(1/2)
40
41 print 'n_g'
42 print n_g
43 ng = 2.8*(1e4)*((PHI/(1e41))**(0.5))*((M_star/M_sun)**(-1.5))
44 print 'ng'
45 print ng
46 print 'n_g - ng :' , n_g - ng
47
48 rho_g = m_mean * n_g
49 print 'rho_g'
50 print rho_g
51 #---
52
53 #Import Data
54
55 r = np.loadtxt("inpdata/radius.dat") * r_g
56 th = np.loadtxt("inpdata/theta.dat")
57 rho = np.loadtxt("inpdata/density.dat" ,delimiter = ",") * rho_g
58 vr = np.loadtxt("inpdata/velocity_r.dat" ,delimiter = ",") * c_s
59 print 'vr: ' , vr
60 vth = np.loadtxt("inpdata/velocity_th.dat" ,delimiter = ",") * c_s
61 print 'vr: ' , vth
62 vphi = np.loadtxt("inpdata/velocity_phi.dat",delimiter = ",") * c_s
63 x_imp = np.loadtxt("inpdata/non_mrn/x.dat")
64
65
66 rel_delta_r_x =np.zeros(40)
67 print 'relative error between x and r grids in %'
68 for i,j in enumerate(np.searchsorted(r,x_imp)):
69 rel_delta_r_x[i] = (r[j] - x_imp[i])/r[j]
70 print i ,' : ', np.round(rel_delta_r_x[i]*100,2),'%'

71 print 'average error'
72 print np.round(np.mean(rel_delta_r_x)*100,2),'%'
73 print 'Standard deviation'
74 print np.round(np.std(rel_delta_r_x)*100,2),'%'
75
76 # create r-theta grid
77 r_gr,th_gr =np.meshgrid(r,th)
78 x =r_gr*np.sin(th_gr)
79 h =r_gr*np.cos(th_gr)
80
81 #calculate carthesian velocity components
82 vh = np.cos(th_gr)*vr - np.sin(th_gr)*vth
83 print 'vh: ' , vh
84 vx = np.sin(th_gr)*vr + np.cos(th_gr)*vth
85 print 'vx: ' , vx
86
87 # plot

density
88 #spherical
89 plt.figure()
90 plt.contourf(r /AU ,th,np.log10(rho),400)
91 plt.xlabel('r [AU]')
92 plt.ylabel('Θ_a')
93 plt.colorbar()
94
95 #overplot velocity
96 sp_arr=5 # spacing of velocity arrows
97 plt.quiver(r[::sp_arr] /AU ,th[::sp_arr],vr[::sp_arr,::sp_arr],vth[::sp_arr,::sp_arr])
98
99

100 plt.figure()
101 plt.contourf(x / AU,h / AU,np.log10(rho / rho_g),400)
102 plt.xlabel('Radius [AU]')
103 plt.ylabel('Height [AU]')
104 plt.ylim(0,25.0*r_g / AU)
105 plt.xlim(0,25.0*r_g / AU)
106 plt.clim(-4.0,0.5)
107 plt.colorbar().set_label('Density [ρ]')
108 #overplot velocity
109
110 plt.quiver(x[::sp_arr,::sp_arr] / AU,
111 h[::sp_arr,::sp_arr] / AU,
112 vx[::sp_arr,::sp_arr] ,
113 vh[::sp_arr,::sp_arr])
114
115
116 plt.show()
117
118 ###
119
120
121 starting_point = np.searchsorted(r,x_imp) # np.arange(1,41,1)
122 print 'starting points of the streamlines'
123 print starting_point
124 print 'number of streamlines'
125 print np.size(starting_point)
126
127 frac = 0.8
128 i_maxstep = 150000
129 ###
130
131
132 #Plot the streamlines
133
134 streams=[]
135 j=0
136 for i in starting_point:
137 streams.append(0)
138 streams[j] = streamlines.compute_stream(r,th,vr,vth,
139 i,48,

140 frac,i_maxstep,
141 reverse = False)
142 plt.plot(streams[j][0] / AU,streams[j][1] /AU)
143 j=j+1
144
145
146
147 plt.xlabel('Radius [AU]')
148 plt.ylabel('Θ [rad]')
149 plt.draw()
150
151
152
153 #ok, now I know the streamlines. For simplicity we now go to cartesian coordinates
154 streams_cart = []
155 plt.figure()
156 for i in range(len(streams)):
157 streams_cart.append(0)
158 streams_cart[i]=[]
159 streams_cart[i].append(0)
160 streams_cart[i][0]=streams[i][0]*np.sin(streams[i][1]) #Streamline x
161 streams_cart[i].append(0)
162 streams_cart[i][1]=streams[i][0]*np.cos(streams[i][1]) #Streamline y
163 plt.plot(streams_cart[i][0] / AU,streams_cart[i][1] / AU)
164
165
166
167 #overplot density
168 plt.contourf(x / AU,h / AU,np.log10(rho / rho_g),600)
169 plt.clim(-4.0,0.5)
170 plt.colorbar().set_label('Density [ρ_g]')
171 plt.ylim(0,40*r_g / AU)
172 plt.xlim(0,40*r_g / AU)
173 plt.xlabel('Radius [AU]')
174 plt.ylabel('Height [AU]')
175
176
177
178 #compute centrifugal acceleration everywhere
179 a_centr=vphi**2/(x)
180
181 #now for each streamline we compute the vector normal to the streamlines at each point
182 #then we compute the force along the streamline
183 #lastly, we compute for each position in the streamline the maximum grain size that is carried away

with the wind
184 #and taking the minimum the one along all the streamline
185 tangent = []
186 amax_streamlines = [] #2D Array
187 amax = [] #1D Array
188 starting_radius = []
189
190
191 for i in range(len(streams)):
192 tangent.append(0)
193 amax_streamlines.append(0)
194
195 #tangent computation
196 tangent[i] = np.zeros((2,streams_cart[i][0].size-1))
197 tangent[i][1] = -(streams_cart[i][1][1:]-streams_cart[i][1][0:-1]) #dh
198 tangent[i][0] = -(streams_cart[i][0][1:]-streams_cart[i][0][0:-1]) #dx
199 norm = np.sqrt(tangent[i][0,:]**2+tangent[i][1,:]**2) #dr
200 tangent[i][0,:] = tangent[i][0,:]/norm
201 tangent[i][1,:] = tangent[i][1,:]/norm
202
203 #now compute the force (centrifugal acceleration)
204 acentr_streamline = bilinear.interpolate2d_grid(r,
205 th,
206 a_centr.T,
207 streams[i][0],
208 streams[i][1])

209
210 acentr_projected = acentr_streamline[1:]*tangent[i][0,:]
211 print "acentr_projected"
212 print acentr_projected
213
214 #e_R is the unity vector of the radial direction
215 e_R = np.zeros((2,streams[i][0].size)) #uniti vectoralong the direction
216 e_R[0,:] = np.sin(streams[i][1])
217 e_R[1,:] = np.cos(streams[i][1])
218
219 agrav_streamline = np.zeros((2,streams[i][0].size))
220 agrav_streamline = -(Grav*M_star/streams[i][0]**2)*e_R #gravitational acceleration vector
221 agrav_projected = agrav_streamline[0,1:]*tangent[i][0,:]+agrav_streamline[1,1:]*tangent[i]

[1,:] #projection alog thestreamline
222 print "agrav_projected"
223 print agrav_projected
224 amax_streamlines[i] = np.zeros(streams_cart[i][0].size)
225
226 # equation for drag force reversed for size
227 amax_streamlines[i] = bilinear.interpolate2d_grid(r,th,rho.T,streams[i][0][1:],streams[i][1]

[1:]) * \
228 (bilinear.interpolate2d_grid(r,th,vr.T,streams[i][0][1:],streams[i][1][1:])**2 + \
229 bilinear.interpolate2d_grid(r,th,vth.T,streams[i][0][1:],streams[i][1][1:])**2) / \
230 (-(agrav_projected+acentr_projected)*rho_dust)
231 print " "
232 print agrav_projected+acentr_projected
233 print " "
234 print "amax_streamlines[i]"
235 print amax_streamlines[i]
236 amax.append(np.min(amax_streamlines[i][np.where(amax_streamlines[i]>0)]))
237 print 'amax: ', amax , i
238 starting_radius.append(streams_cart[i][0][0])
239 print 'starting_radius' , np.asanyarray(starting_radius) / AU
240
241 #plot the maximum grain size carried away in the wind as a function of cylindrical radius (base of

the flow)
242 plt.figure()
243 plt.semilogy(np.asanyarray(starting_radius)/r_g,np.asanyarray(amax)*1e4,'.')
244 plt.xlabel('Cylindrical radius [r_g]')
245 plt.ylabel('Maximum grain size #μm]')
246
247
248 a_max = np.array(amax)
249 np.savetxt("a_max.dat",a_max)
250
251 tot1 = 0
252 for streamline in streams_cart:
253 numb_points = len(streamline[0])
254 tot1 += numb_points
255
256 x_str = np.zeros(tot1) # will contain x coordinates of all streamlines
257 h_str = np.zeros(tot1) # will contain h coordinates of all streamlines
258 a_str = np.zeros(tot1) # will contain a_max values at all x,h coordinates of all streamlines
259
260 tot = 0
261
262 for index , streamline in enumerate(streams_cart):
263 numb_points = len(streamline[0])
264 grain_size = np.ones(numb_points) * a_max[index]
265 a_str[tot : tot + numb_points] = grain_size
266 x_str[tot : tot + numb_points] = streams_cart[index][0]
267 h_str[tot : tot + numb_points] = streams_cart[index][1]
268 tot += numb_points
269
270 #carthesian grid
271 xi = np.linspace(0,40,num = 100) * r_g
272 hi = np.linspace(0,40,num = 100) * r_g
273
274 a_max_interp = mlb.griddata(x_str, h_str, a_str, xi, hi)
275 rho_interp = mlb.griddata(x.flatten(), h.flatten(), rho.flatten(), xi, hi)

276 np.savetxt("a_max_r.dat" , a_max_interp)
277 np.savetxt("rho_r.dat" , rho_interp)
278
279 plt.figure()
280 plt.contourf(xi/r_g,hi/r_g,a_max_interp*1e4,400)
281 plt.xlabel('Cylindrical radius [r_g]')
282 plt.ylabel('Height [r_g]')
283 #plt.clim(0.2,2.0)
284 plt.colorbar().set_label('Maximum grain size [μm]')
285
286
287 #__
288 #__
289
290 ''' NON_MRN GRAINSIZE DISTRIBUTION'''
291
292 #importing data for non mrn distribution
293
294 a = np.loadtxt("inpdata/non_mrn/a.dat")
295 x1D = np.loadtxt('inpdata/non_mrn/x.dat') /AU
296 z = np.loadtxt('inpdata/non_mrn/z.dat') /AU
297 rho_d_disk = np.loadtxt('inpdata/non_mrn/rho_d.dat')
298
299 # transforming x1d into a 2D array, so x and z have same shapes
300 x2D = np.zeros((40,60))
301 for i in range (40):
302 for j in range (60):
303 x2D[i][j] = x1D[i]
304
305
306 # computing total dust density for all grains (a<a_max) in the disk
307 rho_d_sum_amax = np.zeros((40,60))
308 for j in range (60):
309 for i in range (40):
310 for k in range (101):
311 if (a[k] < a_max[i]):
312 rho_d_sum_amax[i][j] += rho_d_disk[i*101+k][j]
313
314 # computing total dust density for all grains in the disk
315 rho_d_disk=np.reshape(rho_d_disk, (40,101,60))
316 rho_d_sum = np.sum(rho_d_disk,1)
317
318 #defining the midplain in the disk
319 mdpl_ind = 3 #midplain index
320 z0 = z[:,mdpl_ind]
321 print z0
322
323
324 #ratio of dust densities
325 ratio = np.zeros((40,60))
326 ratio = rho_d_sum_amax / rho_d_sum
327
328 ratio_1d = np.zeros(40)
329 for i in range(40):
330 ratio_1d[i] = ratio[i][mdpl_ind]
331
332
333 ratio_str = np.zeros(tot1) # will contain ratio values at all x,h coordinates of all streamlines
334
335 tot = 0
336
337 for index , streamline in enumerate(streams_cart):
338 numb_points = len(streamline[0])
339 ratio_along_the_str = np.ones(numb_points) * ratio_1d[index]
340 ratio_str[tot : tot + numb_points] = ratio_along_the_str
341 tot += numb_points
342
343 ratio_1d_interp = mlb.griddata(x_str, h_str, ratio_str, xi, hi)
344 print np.shape(ratio_1d_interp)
345

346 rho_d_non_mrn = np.zeros(np.shape(ratio_1d_interp))
347 rho_d_non_mrn = rho_interp * ratio_1d_interp / 100.0
348
349 np.savetxt('rho_d_non_mrn.dat',rho_d_non_mrn)
350
351 '''
352 PLOTS
353 '''
354
355 #plot the total dust density for all grainsizes in the disk
356 plt.figure()
357 plt.contourf(x2D,z,np.log10(rho_d_sum),100)
358 plt.plot(x1D,z0) #midplane overplot
359 plt.xlabel('Radius [AU]')
360 plt.ylabel('Height [AU]')
361 plt.colorbar()
362
363 '''
364 #plot total dust density up to a_max
365 plt.figure()
366 plt.contourf(x2D,z,np.log10(rho_d_sum_amax),100)
367 plt.xlabel('Radius [AU]')
368 plt.ylabel('Height [AU]')
369 plt.colorbar()
370
371 #plot the ratio of dust densities in the disc
372 plt.figure()
373 plt.contourf(x2D,z,np.log10(ratio),100)
374 plt.xlabel('Radius [AU]')
375 plt.ylabel('Height [AU]')
376 plt.colorbar()
377 '''
378
379 #plot the ratio of dust densities outside the of disc
380 plt.figure()
381 plt.contourf(xi/r_g,hi/r_g,ratio_1d_interp,400)
382 plt.xlabel('Cylindrical radius [r_g]')
383 plt.ylabel('Height [r_g]')
384 #plt.clim(0.2,2.0)
385 plt.colorbar().set_label('ratio of dust densities outside the disc')
386
387
388 plt.show()

26 A. Source Code for calculation of maximum grain size

calculation of streamlines

This subroutine is responsible for calculation of streamlines. It is written in Python,

but it is not called by the main program directly. The cython subroutine firs con-

verts this code c code, which gets compiled in binary code, in order to speed up the

calculation time.

1 from __future__ import division
2 import pyximport; pyximport.install()
3 import bilinear
4 import numpy as np
5 cimport numpy as np
6
7
8 #constants (in CGS)
9 #---

10 m_p = 1.6726231e-24 # proton mass in g
11 mu_bar = 1.37125
12 gamma = 5./3.
13 k_b = 1.380658e-16 # Boltzmann constant in erg/K
14 rho_dust = 1.
15 Grav = 6.67259e-8 # gravitational constant in cm^3 g^-1 s^-2
16 M_sun = 1.989e33 # mass of the sun in g
17 M_star = 2.5*M_sun
18 AU = 1.496e13 # astronomical unit in cm
19
20 u = 1.660538782e-24 # atomic mass unit in g
21 c_s = 1.0e6 # Speed of sound in ionized gas
22 PI = 3.14159265359
23
24 #the imported Data is in scaled units
25 #Scale parameters (in CGS):
26
27 r_g = (Grav * M_star) / (c_s**2) # length scale
28 alpha2 = 2.6e-13 # recombination coeff. for all states except ground state
29 m_H = 1.008 * u # Hydrogen mass
30 m_mean = 1.35 * m_H # mean mass per hydrogen atom
31 PHI = 1.0e43 # ionizing flux ????
32 #particle density scale
33 n_g = 0.1*((3*PHI) / (4*PI*alpha2*(r_g**3)))**(1/2)
34 rho_g = m_mean * n_g
35
36 #---
37
38
39
40 def compute_stream(r,th,vr,vth,irin,ithin,frac,i_maxstep,reverse=False):
41
42 # This function computes a single streamline by integrating velocity.
43 # It uses a crappy Euler first-order integrator.
44
45
46 if reverse:
47 negative=-1.
48 else:
49 negative=1.
50 #assumes regular grid
51 dr = r[1]-r[0]
52 dth = th[1]-th[0]
53
54 r_current = r[irin]
55 th_current = th[ithin]
56 vr_current = vr[ithin,irin]
57 vth_current = vth[ithin,irin]
58 r_stream = np.zeros(i_maxstep)
59 th_stream = np.zeros(i_maxstep)
60 r_stream[0] = r_current
61 th_stream[0] = th_current
62 np.seterr(divide = 'raise')
63
64 for i in range(i_maxstep):
65 vr_current = bilinear.interpolate2d_grid(
66 r,
67 th,
68 vr.T,
69 np.array([r_current]),
70 np.array([th_current])

71)
72 vth_current = bilinear.interpolate2d_grid(
73 r,
74 th,vth.T,
75 np.array([r_current]),
76 np.array([th_current])
77)
78 dt = negative*min(
79 frac*dr/abs(vr_current),
80 frac*dth*r_current/abs(vth_current)
81)
82
83 th_current = th_current+dt*vth_current/r_current
84 r_current = r_current+dt*vr_current
85
86 # break conditions
87 if r_current < r[0]:
88 break
89 if r_current > r[-1]:
90 break
91 if th_current < th[0]:
92 break
93 if th_current > th[-1]:
94 break
95 r_stream[i] = r_current
96 th_stream[i] = th_current
97
98 return r_stream[0:i], th_stream[0:i]

29

bilinear interpolation

This subroutine is responsible for 2D interpolations. It is also written in Python,

but it is also first compiled by the cython subroutine (see before) in binary lan-

guage, in order to speed up the calculation time.

1 import pyximport; pyximport.install()
2 import numpy as np
3 cimport numpy as np
4
5 def interpolate2d_grid(x, y, Z, xnew, ynew):
6 """Fundamental 2D interpolation routine
7
8 Input
9 x: 1D array of x-coordinates of the mesh on which to interpolate

10 y: 1D array of y-coordinates of the mesh on which to interpolate
11 Z: 2D array of values for each x, y pair
12 xnew, ynew: arrays of points where the interpolation is wanted
13
14 Output
15 1D array with same length as points with interpolated values
16
17 Notes
18 Input coordinates x and y are assumed to be monotonically increasing,
19 but need not be equidistantly spaced.
20
21 Z is assumed to have dimension M x N, where M = len(x) and N = len(y).
22 In other words it is assumed that the x values follow the first
23 (vertical) axis downwards and y values the second (horizontal) axis
24 from left to right.
25
26 If this routine is to be used for interpolation of raster grids where
27 data is typically organised with longitudes (x) going from left to
28 right and latitudes (y) from left to right then user
29 interpolate_raster in this module
30 """
31
32
33 #checks right shapes
34 if x.ndim !=1:
35 raise IndexError("x must have only 1 dimension!")
36 if y.ndim !=1:
37 raise IndexError("y must have only 1 dimension!")
38 if Z.shape != (x.size,y.size):
39 raise IndexError("Dimension of Z must be dimx*dimy!")
40 if xnew.size != ynew.size:
41 raise IndexError("xnew and ynew must have the same size!")
42
43 #flattens xnew and ynew
44 if xnew.ndim > 1:
45 xnew=xnew.flatten()
46 if ynew.ndim > 1:
47 ynew=ynew.flatten()
48
49 #checks for points out of bounds
50 # outside = np.count_nonzero(np.where(xnew<x[0]))+np.count_nonzero(np.where(ynew<y[0]))

+np.count_nonzero((xnew>x[-1]))+np.count_nonzero((ynew>y[-1]))
51 # if outside > 0:
52 # raise IndexError("Points out of boundary not implemented yet...")
53
54 outside1=xnew<x[0]
55 outside2=ynew<y[0]
56 outside3=xnew>x[-1]
57 outside4=ynew>y[-1]
58 outside5=np.logical_or(outside1,outside2)
59 outside6=np.logical_or(outside3,outside4)
60 outside=np.logical_or(outside5,outside6)
61 inside=np.logical_not(outside)
62
63
64 # Find upper neighbours for each interpolation point
65 idx = np.searchsorted(x, xnew[inside], side='left')
66 idy = np.searchsorted(y, ynew[inside], side='left')
67
68 # Get the four neighbours for each interpolation point
69 x0 = x[idx - 1]

70 x1 = x[idx]
71 y0 = y[idy - 1]
72 y1 = y[idy]
73
74 z00 = Z[idx - 1, idy - 1]
75 z01 = Z[idx - 1, idy]
76 z10 = Z[idx, idy - 1]
77 z11 = Z[idx, idy]
78
79 # Coefficients for weighting between lower and upper bounds
80 np.seterr(invalid='ignore') # Ignore division by zero
81 alpha = (xnew[inside] - x0) / (x1 - x0)
82 beta = (ynew[inside] - y0) / (y1 - y0)
83
84 # Bilinear interpolation formula
85 dx = z10 - z00
86 dy = z01 - z00
87 z=np.zeros(xnew.size)
88 z[inside] = z00 + alpha * dx + beta * dy + alpha * beta * (z11 - dx - dy - z00)
89 #z[outside]=nan
90 return z
91
92

B. Source Code for calculation of

dust density distribution

This part of the code is responsible for calculation of dust density distributions, for

both MRN and non MRN cases. It was written solely for the purposes of this thesis

also in the programming language Python2.7.

1 from __future__ import division
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5
6 #constants (in CGS)
7 #---
8 m_p = 1.6726231e-24 # proton mass in g
9 mu_bar = 1.37125

10 gamma = 5./3
11 k_b = 1.380658e-16 # Boltzmann constant in erg/K
12 rho_d = 1.
13 Grav = 6.67259e-8 # gravitational constant in cm^3 g^-1 s^-2
14 M_sun = 1.989e33 # mass of the sun in g
15 M_star = 2.5*M_sun
16 AU = 1.496e13 # astronomical unit in cm
17
18 u = 1.660538782e-24 # atomic mass unit in g
19 c_s = 1.0e6 # Speed of sound in ionized gas
20 PI = 3.14159265359
21
22 #the imported Data is in scaled units
23 #Scale parameters (in CGS):
24
25 r_g = (Grav * M_star) / (c_s**2) # length scale
26 alpha2 = 2.6e-13 # recombination coeff. for all states except ground state
27 m_H = 1.008 * u # Hydrogen mass
28 m_mean = 1.35 * m_H # mean mass per hydrogen atom
29 PHI = 1.0e43 # ionizing flux ????
30 #particle density scale
31 n_g = 0.1*((3*PHI) / (4*PI*alpha2*(r_g**3)))**(1/2)
32 rho_g = m_mean * n_g
33
34 amin = 5e-7
35 amax = 0.1
36
37 #---
38
39 x = np.linspace(0,40,num = 100)*r_g
40 h = np.linspace(0,40,num = 100)*r_g
41
42 a_max_r = np.loadtxt("a_max_r.dat")
43 rho_r = np.loadtxt("rho_r.dat")
44 rho_d_non_mrn = np.loadtxt('rho_d_non_mrn.dat')
45
46 xi = np.linspace(0,40,num = 100) * r_g
47 hi = np.linspace(0,40,num = 100) * r_g
48
49 rho_dust = (rho_r/100.0)*(1-np.abs(np.sqrt((amin)/a_max_r)))
50
51 rho_dust_exact = ((rho_r/100.0)/(amin**(-0.5)-amax**(-0.5)))*(amin**(-0.5)-a_max_r**(-0.5))
52
53
54 plt.figure()
55 plt.contourf(x/AU,h/AU,np.log10(rho_r),200)
56
57
58 print rho_dust - rho_dust_exact
59
60 plt.figure()
61 plt.contourf(x/AU,h/AU,np.log10(rho_dust.T),200)
62 plt.xlabel('Radius [AU]')
63 plt.ylabel('Height [AU]')
64 plt.xlim(0,300)
65 plt.ylim(0,300)
66 #plt.clim(-26.,-22.)
67 plt.colorbar().set_label('Dust Density [g cm^-3]')
68
69 plt.figure()
70 plt.contourf(x/AU,h/AU,np.log10(np.abs(rho_dust_exact)),200)

71 plt.xlabel('Radius [AU]')
72 plt.ylabel('Height [AU]')
73 plt.xlim(0,300)
74 plt.ylim(0,300)
75 #plt.clim(-26.,-22.)
76 plt.colorbar().set_label('Dust Density [g cm^-3]')
77
78 plt.figure()
79 plt.contourf(xi/AU,hi/AU,np.log10(np.abs(rho_d_non_mrn)),200)
80 plt.xlabel('Radius [AU]')
81 plt.ylabel('Height [AU]')
82 #plt.xlim(0,300)
83 #plt.ylim(0,300)
84 #plt.clim(-26.,-22.)
85 plt.colorbar().set_label('Dust Density [g cm^-3]')
86
87 plt.show()

C. Supplement plots

This part of the code is responsible for calculation all supplementary plots used in

this thesis, like figure 2.2. It was written solely for the purposes of this thesis also

in the programming language Python2.7.

1
2 from __future__ import division
3
4 import pyximport; pyximport.install()
5 import bilinear
6 import matplotlib.pyplot as plt
7 import matplotlib.mlab as mlb
8 import numpy as np
9 import streamlines

10
11 #constants (in CGS)
12 #---
13 m_p = 1.6726231e-24 # proton mass in g
14 mu_bar = 1.37125
15 gamma = 5./3.
16 k_b = 1.380658e-16 # Boltzmann constant in erg/K
17 rho_dust = 1. # g cm^-3
18 Grav = 6.67259e-8 # gravitational constant in cm^3 g^-1 s^-2
19 M_sun = 1.989e33 # mass of the sun in g
20 M_star = 2.5*M_sun
21 AU = 1.496e13 # astronomical unit in cm
22
23 u = 1.660538782e-24 # atomic mass unit in g
24 c_s = 1.0e6 # Speed of sound in ionized gas
25
26 #the imported Data is in scaled units
27 #Scale parameters (in CGS):
28
29 r_g = (Grav * M_star) / (c_s**2) # length scale
30 print 'r_g [AU]'
31 print r_g
32 print r_g/AU
33 alpha2 = 2.6e-13 # recombination coeff. for all states except ground state
34 m_H = 1.008 * u # Hydrogen mass
35 m_mean = 1.35 * m_H # mean mass per hydrogen atom
36 PHI = 1e43 # ionizing flux s^-1
37
38 #particle density scale
39 n_g = 0.1*((3*PHI) / (4*np.pi*alpha2*(r_g**3)))**(1/2)
40
41 ng = 2.8*(1e4)*((PHI/(1e41))**(0.5))*((M_star/M_sun)**(-1.5))
42
43
44 rho_g = m_mean * n_g
45
46 #---
47
48 #Import Data
49
50 r = np.loadtxt("inpdata/radius.dat") * r_g
51 th = np.loadtxt("inpdata/theta.dat")
52 rho = np.loadtxt("inpdata/density.dat" ,delimiter = ",") * rho_g
53 print 'rho' , np.shape(rho)
54 vr = np.loadtxt("inpdata/velocity_r.dat" ,delimiter = ",") * c_s
55 print 'vr: ' , np.shape(vr)
56 vth = np.loadtxt("inpdata/velocity_th.dat" ,delimiter = ",") * c_s
57 print 'vr: ' , np.shape(vth)
58 vphi = np.loadtxt("inpdata/velocity_phi.dat",delimiter = ",") * c_s
59 print 'vphi: ' , np.shape(vphi)
60
61 # create r-theta grid
62 r_gr,th_gr =np.meshgrid(r,th)
63 x =r_gr*np.sin(th_gr)
64 h =r_gr*np.cos(th_gr)
65
66 v = np.sqrt(vr**2+vth**2)
67 vh = np.cos(th_gr)*vr - np.sin(th_gr)*vth
68 vx = np.sin(th_gr)*vr + np.cos(th_gr)*vth
69
70

71 sp_arr=5
72 plt.figure()
73 plt.contourf(r /AU ,th,np.log10(rho/rho_g),400)
74 plt.xlabel('r [AU]').set_size('x-large')
75 plt.ylabel('Θ [rad]').set_size('xx-large')
76 cbar = plt.colorbar()
77 cbar.set_label('Density [n_g]',size=20)
78 cbar.ax.tick_params(labelsize=20)
79 plt.quiver(r[::sp_arr] /AU ,th[::sp_arr],vr[::sp_arr,::sp_arr],vth[::sp_arr,::sp_arr])
80
81 plt.figure()
82 print np.searchsorted(th,np.pi/4) , ' , pi/4'
83 print np.searchsorted(th,np.pi/6) , ' , pi/6'
84 print np.searchsorted(th,np.pi/3) , ' , pi/3'
85 print np.searchsorted(th,np.pi/2) , ' , pi/2'
86 plt.plot(r/AU,v[0,:]/1e6)
87 plt.plot(r/AU,v[17,:]/1e6)
88 plt.plot(r/AU,v[25,:]/1e6)
89 plt.plot(r/AU,v[33,:]/1e6)
90 plt.legend(("Θ=0","Θ=π/6","Θ=π/4","Θ=π/3"),loc=4)
91 plt.xlabel('r [AU]').set_size('xx-large')
92 plt.ylabel('V_w [km/s]').set_size('xx-large')
93
94
95 #importing data for density weighted grainsize plots
96 a_max_r = np.loadtxt("a_max_r.dat")
97 rho_r = np.loadtxt("rho_r.dat") # gas density distribution
98 rho_d_non_mrn = np.loadtxt('rho_d_non_mrn.dat') #non mrn dust density
99 #distribution

100 rho_dust_exact = np.loadtxt('rho_dust_exact.dat') #mrn dust density
101 #distribution
102
103 #coordinate grid
104 x = np.linspace(0,40,num = 100)*r_g
105 h = np.linspace(0,40,num = 100)*r_g
106
107
108 for i in range(100):
109 for j in range(100):
110 if (i > 10)&(j<10):
111 if (rho_d_non_mrn[i][j]>1e-23):
112 rho_d_non_mrn[i][j]=0
113 for i in range(100):
114 for j in range(100):
115 if (i < 10)&(j>10):
116 if (rho_d_non_mrn[i][j]>1e-23):
117 rho_d_non_mrn[i][j]=0
118
119 plt.figure()
120 plt.contourf(x/AU,h/AU,np.log10(np.abs(rho_d_non_mrn)),200)
121 plt.xlabel('Radius [AU]').set_size('xx-large')
122 plt.ylabel('Height [AU]').set_size('xx-large')
123 plt.colorbar().set_label('Dust Density [g cm^{-3}]',size=20)
124
125
126
127 '''MRN CASE'''
128
129 #a_max_r = np.nan_to_num(a_max_r)
130 a_max_r = a_max_r.flatten()
131 rho_dust_exact = np.nan_to_num(rho_dust_exact.flatten())
132 rho_dust_exact = rho_dust_exact.flatten()
133
134 plt.figure()
135 plt.semilogx(rho_dust_exact,a_max_r*1e4, linestyle='n.an', marker='.',
136 markerfacecolor='b')
137
138 plt.figure()
139 plt.semilogx(rho_dust_exact,a_max_r*1e4,linestyle='nan', marker='.',
140 markerfacecolor='b')

141
142
143
144 '''NON MRN CASE'''
145 rho_d_non_mrn = np.nan_to_num(rho_d_non_mrn)
146 rho_d_non_mrn = rho_d_non_mrn.flatten()
147
148
149 plt.semilogx(rho_d_non_mrn ,a_max_r*1e4,linestyle='nan', marker='.',
150 markerfacecolor='g')
151 plt.xlabel('dust density, logarithmic scale [g/cm^3]').set_size('xx-large')
152 plt.ylabel('grainsize [μm]').set_size('xx-large')
153
154 plt.figure()
155 plt.semilogx(rho_d_non_mrn ,a_max_r*1e4,linestyle='nan', marker='.',
156 markerfacecolor='b')
157 plt.xlabel('dust density, logarithmic scale [g/cm^3]').set_size('xx-large')
158 plt.ylabel('grainsize [μm]').set_size('xx-large')
159 plt.show()
160
161
162
163
164
165
166
167
168
169
170
171
172
173

Bibliography

Armitage, P. J. (2011). Dynamics of Protoplanetary Disks. Annual review of as-

tronomy and Astrophysics, 49:195–236.

Birnstiel, T., Klahr, H., and Ercolano, B. (2012). A simple model for the evolution

of the dust population in protoplanetary disks. , 539:A148.

Birnstiel, T., Ormel, C. W., and Dullemond, C. P. (2011). Dust size distributions in

coagulation/fragmentation equilibrium: numerical solutions and analytical fits. ,

525:A11.

Font, A. S., McCarthy, I. G., Johnstone, D., and Ballantyne, D. R. (2004). Photoe-

vaporation of Circumstellar Disks around Young Stars. The Astrophysical Journal,

607:890–903.

Owen, J. E., Ercolano, B., and Clarke, C. J. (2011). The imprint of photoevaporation

on edge-on discs. Monthly Notices of the Royal Astronomical Society, 411:1104–

1110.

Perrin, M. D., Duchêne, G., Kalas, P., and Graham, J. R. (2006). Discovery of

an Optically Thick, Edge-on Disk around the Herbig Ae Star PDS 144N. The

Astrophysical Journal, 645:1272–1282.

Takeuchi, T., Clarke, C. J., and Lin, D. N. C. (2005). The Differential Lifetimes of

Protostellar Gas and Dust Disks. The Astrophysical Journal, 627:286–292.

Acknowledgements

I would like to thank my advisers Barbara and Giovanni. Both of them were very

supportive, during last month’s and always answered my all questions with great

patience. I have to give Giovanni spatial thanks, for that great amount of time he

invested in me while explaining everything about Phython syntax (and many other

things) from scratch. I also enjoyed the ”astro-ph” meetings and I want to thank the

whole group for that interesting time, and their feedbacks. Finally I want to thank

Silvan and Tobi, all credits for finding this wonderful work group goes to them.

List of Figures

2.1. gas density distribution (spherical coordinates) 6

2.2. magnitude of the wind velocity . 6

3.1. streamlines . 11

3.2. maximum grain size, at each starting point of a streamline 12

3.3. maximum grain size distribution in the wind 13

3.4. dust density distribution(MRN case) 14

3.5. ratio of dust densities . 15

3.6. dust density distribution(after grain growth) 16

3.7. grain size plotted, against corresponding dust density bin 16

Selbstständigkeitserklärung

Hiermit versichere ich,

dass ich diese Bachelorarbeit zum Thema: ”Effekt des Staubteilchen-Wachstums,

auf den Staubdgehalt des photoevaporativen Flusses der protostelaren Scheiben”

selbstständig verfasst habe. Ich habe keine anderen als die angegebenen Quellen

und Hilfsmittel benutzt, sowie Zitate kenntlich gemacht.

Mir ist bekannt, dass Zuwiderhandlung auch nachträglich zur Aberkennung des Ab-

schlusses führen kann.

München, August 1, 2017

Ort, Datum Unterschrift

	Introduction
	Theoretical Model
	Dynamics
	Simulation Parameters

	Implementation of the Model
	Benchmarking
	Variation of grain size distribution in the disc

	Conclusion and Outlook
	Appendices
	Source Code for calculation of maximum grain size
	Source Code for calculation of dust density distribution
	Supplement plots
	Bibliography
	Acknowledgements
	List of figures
	Selbstständigkeitserklärung

