6.4.1 Tolman solution
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Let us consider a spherically symmetric inhomogeneity. In this case one can
always find a coordinate system where

' =a(R,t)q"
and R = |q| is the radial Lagrangian coordinate. The strain tensor is then:
Ji = adl + d'Rn'n, (1)

where a’ = da/OR and n' = ¢'/R. For a point at a given distance from the
center one can always rotate coordinate system to get nt=1,n2=n3=0,s0
that the strain tensor becomes diagonal:

(aR) 0 0
J= 0 a 0 |, (2)
0 0 a

and hence
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Substituting these expressions into equation (6.89) on the page 281, we obtain
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which can be rewritten as
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Integrating this equation over R resutls to
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is the comoving density averaged over the sphere of radius R. Multiplying equa-
tion above by a, we easily derive its first integral
87Go(R)

a* (R,t) — 3a(R,1) =F(R), (7)

where F'(R) is a constant of integration. Note that for a homogeneous matter
distribution p, a and F' do not depend on R and equation (7) coincides with the
Friedmann equation for a matter-dominated universe.

Problem 6.8. Verify that the solution of equation (7) can be written in
the following parametric form:
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a(R,n) = = (coshn —1), t(R,n) = W(smhn —n) +to (R) for F' >0,
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where tg (R) is a further integration constant. Note that the same "conformal
time" 71 generally corresponds to different values of physical time ¢ for different
R. Assuming that the initial singularity (e — 0) occurs at the same moment of
physical time ¢ = 0 everywhere in space, we can set to (R) = 0.

Let us consider the evolution of a spherically symmetric overdense region in
a flat, matter-dominated universe. Far away from the center of this region the
matter remains undisturbed and hence p = gy (R — o0©0) — o,, = const. The
condition of flatness requires F' — 0 as R — oo. Taking the limit |F'| — 0 so
that the ratio 1/+/|F| remains fixed, we immediately obtain from (8)

a (R — oo,t) = (6rGo, )"/ * t¥/3. (10)

The energy density is consequently
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in complete agreement with what one would expect for a flat dust-dominated
universe. Inside the overdense region, F'is negative and the energy density does
not continually decrease. At the center of the cloud p = g, and a’ = 0. Because
in this case ¢ o< a3, the density takes its minimal value ¢,, when a (R = 0,1)
reaches its maximal value a,, = 87Gp,/3|F| at n = 7 (see (8)). This happens
at the moment of physical time
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when the energy density is equal to
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Comparing this result with the averaged density at ¢t = t,,, given by (11), we
find that when the energy density in the center of the overdense region exceeds
the averaged density by a factor of
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the matter there detaches from the Hubble flow and begins to collapse.
Formally the energy density becomes infinite at ¢t = 2¢,,,; in reality, however,
this does not happen because there always exist deviations from exact spherical
symmetry. As a result a spherical cloud of particles virializes and forms a
stationary spherical object.

Problem 6.9. Consider a homogeneous spherical cloud of particles at rest
and, using the virial theorem, verify that after virialization its size is halved.
Assuming that virialization is completed at ¢ = 2t,,,, compare the density inside
the cloud with the average density in the universe at this time. (Hint: The
virial theorem states that at equilibrium, U = —2K, where U and K are the
total potential and kinetic energies respectively.)

Problem 6.10. Assuming that n < 1 and expanding the expressions in
(8) in powers of 7, derive the following expansion for the energy density in the

center of the spherical region in powers of (¢/ tm)Z/ Pt
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where t,,, is defined in (12). The second term inside the brackets is obviously
the amplitude of the linear perturbation §. Thus, when the actual density ex-
ceeds the averaged density by a factor of 5.5, according to the linearized theory
0 (tm) = 3(67r)2/3 /20 ~ 1.06. Later on, at ¢t = 2t,,, the Tolman solution for-

mally gives € — oo, while the linear perturbation theory predicts § (2t,,) ~ 1.
69.




