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Let us consider a spherically symmetric inhomogeneity. In this case one can
always �nd a coordinate system where

xi = a (R; t) qi

and R � jqj is the radial Lagrangian coordinate. The strain tensor is then:

J ik = a�
i
k + a

0Rnink; (1)

where a0 � @a=@R and ni � qi=R. For a point at a given distance from the
center one can always rotate coordinate system to get n1 = 1; n2 = n3 = 0, so
that the strain tensor becomes diagonal:

J =

0@ (aR)
0
0 0

0 a 0
0 0 a

1A ; (2)

and hence
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0
; tr
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Substituting these expressions into equation (6.89) on the page 281, we obtain

(�aR)
0

(aR)
0 + 2

�a

a
= �4�G%0 (R)

a2 (aR)
0 ; (4)

which can be rewritten as
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2
�0
(�aR) = �4�G%0R2: (5)

Integrating this equation over R resutls to

�a = �4�G�% (R)
3a2

; (6)

where
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is the comoving density averaged over the sphere of radius R: Multiplying equa-
tion above by _a; we easily derive its �rst integral

_a2 (R; t)� 8�G�% (R)
3a (R; t)

= F (R) ; (7)

where F (R) is a constant of integration. Note that for a homogeneous matter
distribution �%; a and F do not depend on R and equation (7) coincides with the
Friedmann equation for a matter-dominated universe.

Problem 6.8. Verify that the solution of equation (7) can be written in
the following parametric form:

a (R; �) =
4�G�%

3 jF j (1� cos �); t (R; �) =
4�G�%

3 jF j3=2
(� � sin �) + t0 (R) for F < 0;

(8)

a (R; �) =
4�G�%

3F
(cosh � � 1); t (R; �) = 4�G�%

3F 3=2
(sinh � � �) + t0 (R) for F > 0;

(9)
where t0 (R) is a further integration constant. Note that the same "conformal
time" � generally corresponds to di¤erent values of physical time t for di¤erent
R: Assuming that the initial singularity (a! 0) occurs at the same moment of
physical time t = 0 everywhere in space, we can set t0 (R) = 0:

Let us consider the evolution of a spherically symmetric overdense region in
a �at, matter-dominated universe. Far away from the center of this region the
matter remains undisturbed and hence �% = %0 (R!1) ! %1 = const: The
condition of �atness requires F ! 0 as R ! 1: Taking the limit jF j ! 0 so
that the ratio �=

p
jF j remains �xed, we immediately obtain from (8)

a (R!1; t) = (6�G%1)
1=3
t2=3: (10)

The energy density is consequently

" (R!1; t) = %0
a2 (aR)

0 =
%1
a3

=
1

6�Gt2
; (11)

in complete agreement with what one would expect for a �at dust-dominated
universe. Inside the overdense region, F is negative and the energy density does
not continually decrease. At the center of the cloud �% = %0 and a

0 = 0: Because
in this case " / a�3; the density takes its minimal value "m when a (R = 0; t)
reaches its maximal value am = 8�G%0=3 jF j at � = � (see (8)). This happens
at the moment of physical time

tm =
4�2G%0

3 jF j3=2
; (12)
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when the energy density is equal to

"m (R = 0) =
%0
a3m

=
27 jF j3

(8�G)
3
%20
=

3�

32Gt2m
: (13)

Comparing this result with the averaged density at t = tm; given by (11), we
�nd that when the energy density in the center of the overdense region exceeds
the averaged density by a factor of

"m
" (R!1) =

9�2

16
' 5: 55; (14)

the matter there detaches from the Hubble �ow and begins to collapse.
Formally the energy density becomes in�nite at t = 2tm; in reality, however,

this does not happen because there always exist deviations from exact spherical
symmetry. As a result a spherical cloud of particles virializes and forms a
stationary spherical object.

Problem 6.9. Consider a homogeneous spherical cloud of particles at rest
and, using the virial theorem, verify that after virialization its size is halved.
Assuming that virialization is completed at t = 2tm; compare the density inside
the cloud with the average density in the universe at this time. (Hint : The
virial theorem states that at equilibrium, U = �2K; where U and K are the
total potential and kinetic energies respectively.)
Problem 6.10. Assuming that � � 1 and expanding the expressions in

(8) in powers of �; derive the following expansion for the energy density in the
center of the spherical region in powers of (t=tm)

2=3 � 1 :

" =
1

6�t2

 
1 +

3

20

�
6�t

tm

�2=3
+O

 �
t

tm

�4=3!!
; (15)

where tm is de�ned in (12). The second term inside the brackets is obviously
the amplitude of the linear perturbation �: Thus, when the actual density ex-
ceeds the averaged density by a factor of 5:5, according to the linearized theory
� (tm) = 3 (6�)

2=3
=20 ' 1: 06: Later on, at t = 2tm; the Tolman solution for-

mally gives " ! 1; while the linear perturbation theory predicts � (2tm) ' 1:
69:
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