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Originally considered in the context of electromagnetism, it also
plays a key role in extended supergravity models, where the
duality group (acting on the vector fields and the scalars) is
enlarged to U(n) or Sp(2n,R).

Gravitational electric-magnetic duality (acting on the graviton) is
also very intriguing.

It is thought to be relevant to the so-called problem of “hidden
symmetries".
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10 9 8 7 6 5 4 3 2 1
which contains electric-magnetic gravitational duality,

might be a “hidden symmetry" of maximal supergravity or of an
appropriate extension of it.

However, in spite of many spectacular but only partial successes,
the hidden symmetry has never been exhibited completely.

This might be due to an insufficient understanding of duality.
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Whenever a (dynamical) p-form gauge field appears, its dual
D - p—2-form gauge field also appears.

Similarly, the graviton and its dual, described by a field with
Young symmetry

D—-3boxes< —
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4/38



Introduction

Ejpand
gravitational
duality

Marc Henneaux

Introduction




Introduction

Ejpand
gravitational
duality

Marc Henneaux

Introduction

Understanding gravitational duality is thus important in trying to
make the “hidden symmetry" manifest.

5/38



Introduction

Ejpand
gravitational
duality

Marc Henneaux

Introduction

Understanding gravitational duality is thus important in trying to
make the “hidden symmetry" manifest.

In particular, one might ask the question : should we search for
manifestly Ejg-invariant actions ?

5/38



Introduction

Ejpand
gravitational
duality

Marc Henneaux

Introduction

Understanding gravitational duality is thus important in trying to
make the “hidden symmetry" manifest.

In particular, one might ask the question : should we search for
manifestly Ejg-invariant actions ?

Or should E;( describe only “on-shell symmetries" 2

5/38



Introduction

Ejpand
gravitational
duality

Marc Henneaux

Introduction

Understanding gravitational duality is thus important in trying to
make the “hidden symmetry" manifest.

In particular, one might ask the question : should we search for
manifestly Ejg-invariant actions ?

Or should E;( describe only “on-shell symmetries" 2

If Ej¢ is a symmetry of the action, what form should we expect
the action to take ?
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o discuss first electric-magnetic duality in its original D =4
electromagnetic context...

o ... and show in particular that duality is in fact a symmetry of the
Maxwell action and not just of the equations of motion;

o explain next gravitational duality at the linearized level again in
D =4 and show that it is also an off-shell symmetry;

o show then that in D > 4, what generalizes duality invariance is
“twisted self-duality", which puts each field and its dual on an
equal footing;

o finally conclude and mention some open questions.
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The duality transformations are usually written in terms of the
field strengths

Electromagnetism

inD=4
F* — cosaF* —sina *F*Y

*F¥Y' — sina F*Y 4+ cosa *F*V,

orin (3+ 1)- fashion,

E — cosaE+sinaB

B — —sinaE+ cosaB.
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Electromagnetism V-E=0 ) V-B=0 9

inD=4
oE VxB=0 oB +VxE=0
_— X =V, — X =0,

ot ot

invariant.

Are duality transformations also a symmetry of the Maxwell
action?

1 1
SE —Zfd“xF,W PV = 5fd‘*x(laz—BZ)

The answer is affirmative.

Old result, Deser-Teitelboim 1976 - For more recent
considerations, Deser-Gomberoff-Henneaux-Teitelboim 1997

8/38



A digression

Ejpand
gravitational
duality

Marc Henneaux

Electromagnetism

inD=4

: the harmonic oscillator




A digression : the harmonic oscillator

Ejpand
gravitational
duality

Is the action of the harmonic oscillator

Marc Henneaux

.
ecronuetn ﬂmmzijﬁdf—f)

inD=4

invariant under rotations in phase space ?

9/38



A digression : the harmonic oscillator

Ejpand
gravitational
duality

Is the action of the harmonic oscillator

Marc Henneaux
f— 1 y
Electromagnetism S[q( Nl = 5 dt (q2 - qz)
inD=4
invariant under rotations in phase space ?

One answer is yes. Indeed it can be directly verified that the
Hamiltonian action S[g(1), p(9)] = [ dt(pg— H) with

H =1 (p? + ¢°) is invariant under phase space rotations
q— q =cosaqg-sinapand p— p/ =sinaqg+cosap.

9/38



A digression : the harmonic oscillator

Ejpand
gravitational
duality

Is the action of the harmonic oscillator
1
Slg(n] = Efdt(qz - )

invariant under rotations in phase space ?

Marc Henneaux

Electromagnetism

inD=4

One answer is yes. Indeed it can be directly verified that the
Hamiltonian action S[g(1), p(9)] = [ dt(pg— H) with

H =1 (p? + ¢°) is invariant under phase space rotations

q— q =cosaqg-sinapand p— p/ =sinaqg+cosap.

Another answer is no, because the action S[g(#)] is not invariant
under g — ¢ = cosaq—sinagand §— ¢ =sinaqg+ cosag.

9/38



A digression : the harmonic oscillator

Ejpand
gravitational
duality

Is the action of the harmonic oscillator
1
Slg(n] = Efdt(qz - )

invariant under rotations in phase space ?

One answer is yes. Indeed it can be directly verified that the
Hamliltonian action S[g(0), p(9)] = [ dt(pg— H) with

O ol et e
Another answer is no, because the action S[g(#)] is not invariant
under g — ¢ = cosaq—sinagand §— ¢ =sinaqg+ cosag.

What is the correct answer and where is the catch?

Marc Henneaux

Electromagnetism

inD=4

9/38



A digression : the harmonic oscillator

Ejpand
gravitational
duality

Is the action of the harmonic oscillator
1
Slg(n] = Efdt(qz - )

invariant under rotations in phase space ?

Marc Henneaux

Electromagnetism

inD=4

One answer is yes. Indeed it can be directly verified that the
Hamliltonian action S[g(0), p(9)] = [ dt(pg— H) with

Al e

Another answer is no, because the action S[g(#)] is not invariant
under g — ¢ = cosaq—sinagand §— ¢ =sinaqg+ cosag.

What is the correct answer and where is the catch ?

The correct answer is the first one. The second answer is not even
incorrect. It is nonsense.
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g— g =cosag-sinag.

It is only on-shell where § = —¢q that the transformation makes
sense.

But to compute the variation of the action, one needs to know the
variations of the dynamical variables off-shell.

So the question is : is there a transformation of the dynamical
variable g(f) such that (i) it coincides on-shell with the given
transformation ; and (ii) it leaves the action invariant.

The answer is affirmative : it is just time translation,
q(0) — ¢ (1) = q(t— a), which is indeed a symmetry
transformation that takes the required form on-shell.
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Both the first-order and the second-order actions are invariant.

The point has nothing to do with first-order versus second order
Doy e actions. In fact both actions always share the same set of
symmetries because one can view the momenta as auxiliary
fields. One advantage of the first-order action is that invariance
under SO(2)-phase space rotations is manifest, but this is only a
practical advantage.

The (non-existent) infinitesimal transformations 6 g = —€¢,

0 g = eq formally leave the action invariant. If taken seriously, this
result would lead to the paradox of having transformations that
leave the action invariant in their infinitesimal version while not
leaving it invariant in their finite version!

There is no invariance of the theory under Lorentz
transformations in the (g — ¢)-plane.
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Electromagnetlsm principle are the components A, of the vector potential, one
needs to express the duality transformations in terms of Ay,
with

Fuy =0,A, —0,A,
(sothat B=V x A).

Furthermore, one must know these transformations off-shell
since one must go off-shell to check invariance of the action.

But one encounters the following problem!

Theorem : There is no variation of A, that yields the above
duality transformations of the field strengths.
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It follows from this theorem that it is meaningless to ask whether
the Maxwell action S[A,] is invariant under the above duality
transformations of the field strengths since there is no
variation of A, that yields these variations.
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Although there is no variation of the vector potential that yields
the standard duality rotations of the field strengths off-shell, one
can find transformations of A, that reproduce them on-shell.

As we just argued, this is the best one can hope for.
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54y =0, A= —en! (e"fkajFOk).

Itimplies 6B’ = —eE' —e A1 (0'0/ Fyj) = —eE' —e AT (0'0" Fyy), e,
0B' = —¢E" on-shell.
Similarly, E; = —5A; = eB;i—eA™! (e,-jkdfdyF”k).
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( f d3xE2) ( f d®xEie* A1 (0 Ek))
( f & BZ) ( f dxBie T A1 (a,Bk))

sothat§S=6 [diL=0 (with L= 1 [ d®x(E* - B%)).
It is therefore a genuine Noether symmetry (with Noether charge
etc).

and
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P Duality invariance of the action is manifest if one goes to the
Marc Henneaux first-order form and introduces a second vector-potential by
solving Gauss’ constraint V-E = 0.

T e If, besides the standard “magnetic" vector potential defined
through,
E = El =V x 1_41 ’

one introduces an additional vector potential A, through,

E Egzﬁng,

one may rewrite the standard Maxwell action in terms of the two
potentials A% as

1 -t s =
SE 5fdx0d3x(eabB“-Ab—éabB“-Bb).

Here, €4 is given by €45 = —€pg, €12 = +1.
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duality The action is invariant under rotations in the (1,2) plane of the
Mare Henneans vector potentials (“electric-magnetic duality rotations") because
€4p and 0 4, are invariant tensors.

Electromagnetism

inD=4 The action is also invariant under the gauge transformations,

AY — A%+ VA“

To conclude : the “proof"” using the standard form of the em
duality transformations that the second order Maxwell action
S[Au] = — i S da* xF,,, F*V is not invariant under duality
transformations - and thus that duality is only an “on-shell
symmetry" — is incorrect because it is based on a form of the
duality transformations that is inconsistent with the existence
of the dynamical variable A,. A consistent set of
transformations leaves the action invariant.
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Hectomagnedom The analysis can be extended to several abelian vector fields

inD=4 (U(n)-duality invariance), as well as to vector fields appropriately
coupled to scalar fields (Sp(n, R)-duality invariance), with the
same conclusions.

The duality transformations of the field strengths are given by the
standard ones plus correction terms that vanish on-shell but are
necessary in order to have § F/ = d5A!. These correction terms are
non-covariant and non-local in space. They are present
whenever the transformations mix electric and magnetic fields.

One can go to a first-order formulation where the non-localities
disappear and duality is manifest. (Bunster-Henneaux 2011)

In this formulation, Poincaré invariance is not manifest, however.
More on this later.
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Duality invariance of the Einstein equations

Eqg and
gra;vli‘m]al(itz;nal It follows that the Einstein equations are invariant under the
duality rotations

Marc Henneaux

R — cosaR-sina *R

* . *
Gravitational R — sinaR+cosa 'R,
dualityin D=4
(linearized
gravity)

orin (3 + 1)- fashion,

&Y — cosa&Y—sina BY

BY - sina&¥ +cosa BY

where &% and 27 are the electric and magnetic components of
the Riemann tensor, respectively.

This transformation rotates the Schwarschild mass into the
Taub-NUT parameter N.
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Is this also a symmetry of the Pauli-Fierz action ?
S[h;w] =

Gravitational 1

oo - f & x[0° Y0 by — 20,19, +20P 13 Iy — 0P 31

(linearized

gravity)

Note that the action is not expressed in terms of the curvature.

The answer to the question turns out to be positive, just as for
Maxwell’s theory.

We exhibit right away the manifestly duality-invariant form of the
action.

It is obtained by starting from the first-order (Hamiltonian)
action and solving the constraints.

22/38



Ejpand
gravitational
duality

Marc Henneaux

Gravitational
dualityin D= 4
(linearized
gravity)

Duality invariance of the Pauli-Fierz action




Duality invariance of the Pauli-Fierz action

Ejpand
gravitational
duality

This step introduces two prepotentials, one for the metric and
one for its conjugate momentum.

Marc Henneaux

Gravitational
dualityin D= 4
(linearized
gravity)

23/38



Duality invariance of the Pauli-Fierz action

Ejpand
gravitational

fually This step introduces two prepotentials, one for the metric and

one for its conjugate momentum.

Marc Henneaux
For instance, the momentum constraint 0;7¥ = 0 is solved by

Gravitational ij _ .ipq.jrs 1
dualityin D= 4 Y =€""€e Gpaqus.
(linearized

gravity)

23/38



Duality invariance of the Pauli-Fierz action

Ejpand
gravitational

fually This step introduces two prepotentials, one for the metric and

one for its conjugate momentum.

Marc Henneaux
For instance, the momentum constraint 0;7¥ = 0 is solved by

Gravitational ij _ .ipq.jrs 1
du:litl;::[;‘: 4 Y =€e"’e Gpaqus.
(linearized

gravity) . . . i

The solution of the Hamiltonian constraint leads to the other

o1 72
prepotential Zl.j.

23/38



Duality invariance of the Pauli-Fierz action

Ej( and
gravitational

duatty This step introduces two prepotentials, one for the metric and

one for its conjugate momentum.

Marc Henneaux
For instance, the momentum constraint 0;7¥ = 0 is solved by

7l = eP6I50,0, 7).
(linearized

gravity) . . ) .

The solution of the Hamiltonian constraint leads to the other

ial 72
prepotential Zl.j.

. @ .
Both prepotentials Zl.j are symmetric tensors (Young symmetry

type[ [ ).

23/38



Duality invariance of the Pauli-Fierz action

Ej( and
gravitational

duatty This step introduces two prepotentials, one for the metric and

one for its conjugate momentum.

Marc Henneaux
For instance, the momentum constraint 0;7¥ = 0 is solved by
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(linearized
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The solution of the Hamiltonian constraint leads to the other

ial 72
prepotential Zl.j.

. @ .
Both prepotentials Zl.j are symmetric tensors (Young symmetry

type[ [ ).

Both are invariant under

62?1- = 0,{[; +ajf[§ +2€a5ij
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(linearized ij_

) where D]/ =D ij[7,) is the co-Cotton tensor constructed out of
the prepotential Z;;,

and where the Hamiltonian is given by

-3
H= f d3x(4Rg.Rb’f - ER“Rb) S ab-

Here, RZ is the Ricci tensor constructed out of the prepotential
z4
ij*
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Gravitational
dualityin D= 4 . . o
(linearized Invariance under the gauge symmetries of the prepotentials is

-avity) . .
i also immediate,
but one loses manifest space-time covariance.

Just as for the Maxwell theory, there is a tension between
manifest duality invariance and manifest space-time covariance.

Henneaux-Teitelboim 2005.
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This is true for either electromagnetism or gravity.

Twisted

self-duality The duality-symmetric formulation is then based on the “twisted
self-duality" reformulation of the theory.

We consider here explicitly the gravitational case.
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by the Young tableau

|

Twisted

self-duality Taﬁy = T’[(Xﬁ]'}” T[a/ﬁy] = 0.
The theory of a massless tensor field of this Young symmetry type
has been constructed by Curtright, who wrote the action.

The gauge symmetries are

6Ta1a2ﬁ = 26[a10a2]ﬁ ar Za[al aaz]ﬁ = Zaﬁaalaz
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@ The equations of motion are

Eqya,p=0

for the “Ricci tensor" Ey, q, .
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The Einstein equations Ry, = 0 for the Riemann tensor R, [hl imply
that the dual Riemann tensor Eg, g, 6,p, p,, defined by

1

_ = a1z
Ep\g:p30102 = 21 €61 f2fsaraz R P1p2
1 B1B203
iy Rayazprpo = = aeal azprfofs B pip:

is of Young symmetry type

Here, h, g is the spin-2 (Pauli-Fierz) field.
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Furthermore, (i) the tensor Eg, 630102 obeys the differential identities
0180 Ep1 82310102 = 0 Epy 23101 p2,p51 = 0 that guarantee the existence of
atensor Ty, such that

Twisted
self-duality

Eg, 6630102 = Ep1 230102 1T

and (ii) the field equations for the dual tensor T,p,, are satisfied.
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o One may therefore reformulate the gravitational field equations
as twisted self-duality equations as follows.

o Let hyy and T,py, be tensor fields of respective Young symmetry

types D:‘ and " and let Rq, a,p,p, (1] and Eg, g, g5, p, [ T be

the corresponding gauge-invariant curvatures.
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or, in matrix notations,
R=S"R,
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Marc Henneaux dual of R (We drOp indices)

or, in matrix notations,

R=F"R,
e with
R 0 -1
(g 7-(2 3)

imply that i, and Ty g, are both solutions of the linearized
Einstein equations and the Curtright equations,

Ruy =0, Eyyg=0.
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o This is because, as we have seen, the cyclic identity for E
(respectively, for R) implies that the Ricci tensor of i, g
(respectively, of Tapy) vanishes.

o The above equations are called twisted self-duality conditions for
linearized gravity because if one views the curvature R as a single
::T?Ee.imy object, then these conditions express that this object is self-dual
up to a twist, given by the matrix .#. The twisted self-duality
equations put the graviton and its dual on an identical footing.

@ One can define electric and magnetic fields for hyp and T,p,. The
twisted self-duality conditions are equivalent to
f%ijrs[T] = gijrs[h], f%ijr[h] = _‘gijr[T].
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MarcHEmEa One can also derive the gravitational twisted self-duality
equations from a variational principle where & and T are on the
same footing.

@ The procedure goes as follows :

(i)Write the action in Hamiltonian form.
(ii) Solve the constraints.

::}':f:f.imy This step introduces “prepotentials”, of respective Young symmetry

type | and , which are again canonically conjugate.

(iii) Insert the solution of the constraints back into the action.

@ The equations of motion from the resulting action are the twisted
self-duality condition in non-manifestly covariant form
%ijrs[T] = gijrs[h]; %ijr[h] = _gijr[T]'

@ The details can be found in Bunster-Henneaux-Hortner 2013.
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@ The commutation relation
[F(x), 76 (x)] = 67 (F(X) + (%)) 6 j(x, X))

is the only possibility for two conjugate transverse vectors E, B,
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o This implies the existence of a conserved (Noether) charge, and
the fact that the symmetry is expected to hold at the quantum
level (modulo anomalies).

@ Manifestly duality invariant formulations do not exhibit manifest
Poincaré invariance.

@ Duality invariance might be more fundamental.

Conclusions

o These results are relevant for the Ejp-conjecture, since Ejg has
duality symmetry built in.

o The search for an Ejp-invariant action is legitimate, but this
action might not be manifestly space-time covariant.
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introduced without problem.

For gravity, however, only the linearized theory has been dealt
with so-far. Can one go beyond the linear level 2

Positive indications : Taub-NUT, Geroch group/ Ehlers group
upon dimensional reduction, cosmological billiards.

The manifestly duality symmetric actions will most likely exhibit
some sort of non-locality.

Other questions : Magnetic sources, asymptotic symmetries.

Much work remains to be done...
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