Arithmetic Quantum Gravity

Axel Kleinschmidt (Université Libre de Bruxelles)
Fundaments of Gravity, München, April 13, 2010

Based on work with:
Michael Koehn and Hermann Nicolai (AEI)
[arXiv:0907.3048][arXiv:0912.0854]

Context and Plan

Minisuperspace models for quantum gravity and quantum Cosmology [Dewitt 1967; Misner 1969]

Hidden symmetries in supergravity ${ }_{\text {[Cremner, Julia 1978; }}$
Damour, Henneaux 2000; Damour, Henneaux, Nicolai 2002; West 2001]
Plan

- Cosmological billiards
- Quantum cosmological billiards
- Arithmetic structure
- Interpretation
- Generalization and outlook

Cosmological billards: BKL

Supergravity dynamics near a space-like singularity simplify.

Spatial points decouple \Rightarrow dynamics becomes ultra-local.
Reduction of degress of freedom to spatial scale factors β^{a}

$$
d s^{2}=-N^{2} d t^{2}+\sum_{a=1}^{d} e^{-2 \beta^{a}} d x_{a}^{2} \quad(t \sim-\log T)
$$

Cosmological billiards: Dynamics

Effective Lagrangian for $\beta^{a}(t)(a=1, \ldots, d)$

$$
\mathcal{L}=\frac{1}{2} \sum_{a, b=1}^{d} n^{-1} G_{a b} \dot{\beta}^{a} \dot{\beta}^{b}+V_{\text {eff }}(\beta)
$$

Close to the singularity $V_{\text {eff }}$ consists of infinite potentials walls, obstructing free null motion of β^{a}.

Cosmological billiards: Geometry

The E_{10} Weyl group $W\left(E_{10}\right)$ is a discrete, arithmetic subgroup of $O(9,1 ; \mathbb{R})$: symmetries of the unique even self-dual lattice $\mathrm{II}_{9,1}=\Lambda_{E_{8}} \oplus \mathrm{II}_{1,1}$.

Norm-preserving \Rightarrow restrict to hyperboloids. Tessellated by action of $W\left(E_{10}\right)$.

Picture for ordinary gravity $W\left(E_{10}\right) \rightarrow W\left(A E_{3}\right) \cong P G L_{2}(\mathbb{Z})$.

Finite (hyperbolic) volume \Rightarrow Chaos!
[Damour, Henneaux 2000; Damour et al.

2002]

Quantum cosmological billiards

Setting $n=1$ one has to quantize

$$
\mathcal{L}=\frac{1}{2} \sum_{a, b=1}^{d} \dot{\beta}^{a} G_{a b} \dot{\beta}^{b}=\frac{1}{2}\left[\sum_{a=1}^{d}\left(\dot{\beta}^{a}\right)^{2}-\left(\sum_{a=1}^{d} \dot{\beta}^{a}\right)^{2}\right]
$$

with null constraint $\dot{\beta}^{a} G_{a b} \dot{\beta}^{b}=0$ on billiard domain.
Canonical momenta: $\pi_{a}=G_{a b} \dot{\beta}^{b} \Rightarrow \mathcal{H}=\frac{1}{2} \pi_{a} G^{a b} \pi_{b}$.
Wheeler-DeWitt (WDW) equation in canonical quantization

$$
\mathcal{H} \Psi(\beta)=-\frac{1}{2} G^{a b} \partial_{a} \partial_{b} \Psi(\beta)=0
$$

Klein-Gordon 'inner product'.

Quantum cosmological billiards (II)

Introduce new coordinates ρ and $\omega^{a}(z)$ from 'radius' and coordinates z on unit hyperboloid

$$
\begin{gathered}
\beta^{a}=\rho \omega^{a}, \quad \omega^{a} G_{a b} \omega^{b}=-1 \\
\rho^{2}=-\beta^{a} G_{a b} \beta^{b}
\end{gathered}
$$

Singularity: $\rho \rightarrow \infty$

Timeless WDW equation in these variables

$$
\left[-\rho^{1-d} \frac{\partial}{\partial \rho}\left(\rho^{d-1} \frac{\partial}{\partial \rho}\right)+\rho_{\uparrow}^{-2} \Delta_{\mathrm{LB}}\right] \Psi(\rho, z)=0
$$

Laplace-Beltrami operator on unit hyperboloid

Solving the WDW equation

$$
\left[-\rho^{1-d} \frac{\partial}{\partial \rho}\left(\rho^{d-1} \frac{\partial}{\partial \rho}\right)+\rho^{-2} \Delta_{\mathrm{LB}}\right] \Psi(\rho, z)=0
$$

Separation of variables: $\Psi(\rho, z)=R(\rho) F(z)$
For

$$
-\Delta_{\mathrm{LB}} F(z)=E F(z)
$$

get

$$
R_{ \pm}(\rho)=\rho^{-\frac{d-2}{2} \pm i \sqrt{E-\left(\frac{d-2}{2}\right)^{2}}}
$$

[Positive frequency coming out of singularity is $R_{-}(\rho)$.]
Left with spectral problem on hyperbolic space.

$\Delta_{\text {LB }}$ and boundary conditions

The classical billiard ball is constrained to Weyl chamber with infinite potentials \Rightarrow Dirichlet boundary conditions

Use upper half plane model

$$
\begin{gathered}
z=(\vec{u}, v), \quad \vec{u} \in \mathbb{R}^{d-2}, v \in \mathbb{R}_{>0} \\
\Rightarrow \quad \Delta_{\mathrm{LB}}=v^{d-1} \partial_{v}\left(v^{3-d} \partial_{v}\right)+v^{2} \partial_{\vec{u}}^{2}
\end{gathered}
$$

With Dirichlet boundary conditions ($d=3$ in [Iwaniec)

$$
-\Delta_{\mathrm{LB}} F(z)=E F(z) \quad \Rightarrow \quad E \geq\left(\frac{d-2}{2}\right)^{2}
$$

Arithmetic structure (I)

Beyond general inequality details of spectrum depend on shape of domain. ('Shape of the drum' problem)

Focus on maximal supergravity ($d=10$). Domain is determined by E_{10} Weyl group.

9-dimensional upper half plane with octonions: $u \equiv \vec{u} \in \mathbb{C}$
On $z=u+\mathrm{i} v$ the ten fundamental Weyl reflections act by

$$
w_{-1}(z)=\frac{1}{\bar{z}}, w_{0}(z)=-\theta \bar{z} \theta+\theta, w_{j}(z)=-\varepsilon_{j} \bar{z} \varepsilon_{j}
$$

θ highest E_{8} root; ε_{j} simple E_{8} rts. [Feingold, AK, Nicolai 2008]

Arithmetic structure (II)

Iterated action of

$$
w_{-1}(z)=\frac{1}{\bar{z}}, w_{0}(z)=-\theta \bar{z} \theta+\theta, w_{j}(z)=-\varepsilon_{j} \bar{z} \varepsilon_{j}
$$

generates whole Weyl group $W\left(E_{10}\right)$. No (very) simple octonionic representation of an arbitrary element known.

Restricting to the even Weyl group $W^{+}\left(E_{10}\right)$ gives 'holomorphic' transformations and one obtains

$$
W^{+}\left(E_{10}\right)=P S L_{2}(0)
$$

that should be interpreted as a modular group over the integer 'Octavians’ O. [Feingold, AK, Nicolai 2008]

Modular wavefunctions (I)

Weyl reflections on wavefunction $\Psi(\rho, z)$

$$
\Psi\left(\rho, w_{I} \cdot z\right)= \begin{cases}+\Psi(\rho, z) & \text { Neumann b.c. } \\ -\Psi(\rho, z) & \text { Dirichlet b.c. }\end{cases}
$$

Use Weyl symmetry to define $\Psi(\rho, z)$ on the whole upper half plane, with Dirichlet boundary conditions $\Rightarrow \Psi(\rho, z)$ is

- Sum of eigenfunctions of Δ_{LB} on UHP
- Invariant under action of $W^{+}\left(E_{10}\right)=P S L_{2}(0)$. Anti-invariant under extension to $W\left(E_{10}\right)$.
\Rightarrow Wavefunction is an odd Maass wave form of $P S L_{2}(\mathrm{O})$
[cf. [Forte 2008] for related ideas for Neumann conditions]

Modular wavefunctions (II)

The spectrum of odd Maass wave forms is discrete but not known. For $P S L_{2}(0)$ the theory is not even developed (but see ${ }_{\text {(Krieg〕] }}$).

For lower dimensional cases like pure (3+1)-dimensional Einstein gravity with $P S L_{2}(\mathbb{Z})$ there are many numerical investigations. [Graham, Szepfalusy 1990; steil 1994; Then 2003]

The result relevant here later is the inequality $E \geq\left(\frac{d-2}{2}\right)^{2}$.
Summary of analysis so far:
Quantum billiard wavefunction $\Psi(\rho, z)$ is an odd Maass wave form (Dirichlet b.c.) for $P S L_{2}(\mathrm{O})$.

Interpretation (I)

'Wavefunction of the universe' in this set-up formally

$$
\left|\Psi_{f u l l}\right\rangle=\prod_{\mathbf{x}}\left|\Psi_{\mathbf{x}}\right\rangle
$$

Product of quantum cosmological billiard wavefunctions, one for each spatial point (ultra-locality). [Also [Kiri11ov 1995]]

Each factor contains a Maass wave form of the type $\Psi_{\mathbf{x}}(\rho, z)=\sum R_{ \pm}(\rho) F(z)$ with

$$
-\Delta_{\mathrm{LB}} F(z)=E F(z), \quad R_{ \pm}(\rho)=\rho^{-\frac{d-2}{2} \pm i \sqrt{E-\left(\frac{d-2}{2}\right)^{2}}}
$$

Since $E \geq\left(\frac{d-2}{2}\right)^{2}$:

$$
\Psi_{\mathbf{x}}(\rho, z) \rightarrow 0 \text { for } \rho \rightarrow \infty
$$

Interpretation (II)

- Absence of potential: \exists a well-defined Hilbert space with positive definite metric.
- Complexity and notion of positive frequency \Rightarrow Arrow of time? [Isham 1991; Barbour 1993]
- The wavefunction vanishes at the singularity!
- But it remains oscillating and complex. It cannot be continued analytically past the singularity.
- Vanishing wavefunctions on singular geometries are one possible boundary condition. [Dewitt 1967]
- No way of going through the singularity. No bounce.
- 'Semi-classical’ states are expected to spread (quantum ergodicity). [Non-relativistic intuition]

Generalization (I)

Classical cosmological billiards led to the E_{10} conjecture.
$D=11$ supergravity can be mapped to a constrained null geodesic motion on infinite-dimensional $E_{10} / K\left(E_{10}\right)$ coset space. [Damour, Henneaux, Nicolai 2002]

Correspondence

Symmetric space $E_{10} / K\left(E_{10}\right)$ has $10+\infty$ many directions. Cartan subalgebra pos. step operators

Generalization (II)

Features of the conjectured E_{10} correspondence

- Billiard corresponds to 10 Cartan subalgebra generators
- ∞ many step operators to remaining fields and spatial dependence. [Verified only at low 'levels' but for many different models]
- Space dependence introduced via dual fields (cf. Geroch group) - everything in terms of kinetic terms
- Space (de-)emergent via an algebraic mechanism
- Extension to E_{10} overcomes ultra-locality

Generalization (III)

$$
\mathcal{H}_{\text {Bill }} \rightarrow \mathcal{H} \equiv \mathcal{H}_{\text {Bill }}+\sum_{\alpha \in \Delta_{+}\left(E_{10}\right)} e^{-2 \alpha(\beta)} \sum_{s=1}^{\operatorname{mult}(\alpha)} \Pi_{\alpha, s}^{2}
$$

is the unique quadratic E_{10} Casimir. Formally like free Klein-Gordon; positive norm could remain consistent?

For the full theory there are more constraints than the Hamiltonian constraint $\mathcal{H} \Psi=0$: diff, Gauss, etc.

- Global E_{10} symmetry provides ∞ conserved charges \mathcal{J}
- Evidence that constraints can be written as bilinears $\mathfrak{L} \sim \mathcal{J} \mathcal{J}$. [Damour, AK, Nicolai 2007; 2009]
- Analogy with affine Sugawara construction. Particularly useful for implementation as quantum constraints?
Aim: Quantize geodesic model. $E_{10}(\mathbb{Z})$ [Ganor 1999]?

Supersymmetric extension (I)

$D=11$ supergravity gravitino ψ_{μ} can be added to billiard analysis via $K\left(E_{10}\right)$ representation. Work in supersymmetry gauge [Damour, AK, Nicolai 2005; de Buyl, Henneaux, Paulot 2005]

$$
\psi_{t}=\Gamma_{t} \sum_{a=1}^{10} \Gamma^{a} \psi_{a}
$$

Classically, separate billiard motion [Damour, Hillmann 2009]. Best in variable ($\Gamma_{*}=\Gamma^{1} \cdots \Gamma^{10}$)

$$
\varphi^{a}=g^{1 / 4} \Gamma_{*} \Gamma^{a} \psi^{a} \quad \text { (no sum on } a \text {) }
$$

Canonical Dirac bracket: $\quad\left\{\varphi_{\alpha}^{a}, \varphi_{\beta}^{b}\right\}=-i G^{a b} \delta_{\alpha \beta}$

Supersymmetric extension (II)

Quantize Clifford algebra using canonical anticommutators over a 2^{160}-dimensional Fock space vacuum $|\Omega\rangle$.

Have to implement supersymmetry constraint in quantum theory

$$
\mathcal{S}_{\alpha}=i \sum_{a=1}^{10} \pi_{a} \varphi_{\alpha}^{a} \quad(\alpha=1, \ldots, 32)
$$

It obeys: $\quad\left\{\mathcal{S}_{\alpha}, \mathcal{S}_{\beta}\right\}=\delta_{\alpha \beta} \mathcal{H}$
For quantum constraint choose 16 annihilation operators \mathcal{S}_{A}.
The state

$$
|\Psi\rangle=\prod_{A=1}^{16} \mathcal{S}_{A}^{\dagger}(\Phi(\rho, z)|\Omega\rangle)
$$

solves the constraint iff $\Phi(\rho, z)$ solves the WDW equation.

Summary and outlook

Done:

- Quantum cosmological billiards wavefunctions involve automorphic forms of $P S L_{2}(\mathrm{o})$
- Extendable to supersymmetric case
- Wavefunctions vanish at singularity (irrespective of susy) \Rightarrow Singularity resolution?
- Non-computabitility (Penrose)?

To do:

- Construct wavefunctions? Behaviour of wavepackets?
- Include more variables $\Rightarrow E_{10}$ coset model? Constraints? Observables?

Thank you for your attention!

