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Context and Plan

Minisuperspace models for quantum gravity and quantum
cosmology [DeWitt 1967; Misner 1969]

Hidden symmetries in supergravity [Cremmer, Julia 1978;

Damour, Henneaux 2000; Damour, Henneaux, Nicolai 2002; Wes t 2001]
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Cosmological billards: BKL

Supergravity dynamics near a space-like singularity simplify.
[Belinskii, Khalatnikov, Lifshitz 1970; Misner 1969; Chit re 1972]

T = T2 < T1

x1

x2

T = 0

T = T1

Spatial points decouple ⇒ dynamics becomes ultra-local.

Reduction of degress of freedom to spatial scale factors βa

ds2 = −N2dt2 +
d
∑

a=1

e−2βa

dx2
a (t ∼ − log T )
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Cosmological billiards: Dynamics

Effective Lagrangian for βa(t) (a = 1, . . . , d)

L =
1

2

d
∑

a,b=1

n−1Gabβ̇
aβ̇b + Veff(β)

Gab: DeWitt metric
(Lorentzian signature)

[ ]

Close to the singularity Veff con-
sists of infinite potentials walls,
obstructing free null motion of βa.

β

Billiard table
=E10 Weyl chamber

M

M
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Cosmological billiards: Geometry

The E10 Weyl group W (E10) is a discrete, arithmetic
subgroup of O(9, 1; R): symmetries of the unique even
self-dual lattice II9,1 = ΛE8

⊕ II1,1.

Norm-preserving ⇒ restrict to hyperboloids. Tessellated by
action of W (E10).

Picture for ordinary gravity
W (E10) → W (AE3) ∼= PGL2(Z).

Finite (hyperbolic) volume
⇒ Chaos!
[Damour, Henneaux 2000; Damour et al.

2002]
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Quantum cosmological billiards

Setting n = 1 one has to quantize

L =
1

2

d
∑

a,b=1

β̇aGabβ̇
b =

1

2





d
∑

a=1

(β̇a)2 −

(

d
∑

a=1

β̇a

)2




with null constraint β̇aGabβ̇
b = 0 on billiard domain.

Canonical momenta: πa = Gabβ̇
b ⇒ H = 1

2πaG
abπb.

Wheeler–DeWitt (WDW) equation in canonical quantization

HΨ(β) = −
1

2
Gab∂a∂bΨ(β) = 0

Klein–Gordon ‘inner product’.
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Quantum cosmological billiards (II)

Introduce new coordinates ρ
and ωa(z) from ‘radius’ and co-
ordinates z on unit hyperboloid

βa = ρωa , ωaGabω
b = −1

ρ2 = −βaGabβ
b

ρ

ωa(z)

Singularity: ρ → ∞

Timeless WDW equation in these variables
[

−ρ1−d ∂

∂ρ

(

ρd−1 ∂

∂ρ

)

+ ρ−2∆LB

]

Ψ(ρ, z) = 0

6

Laplace–Beltrami operator on unit hyperboloid
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Solving the WDW equation
[

−ρ1−d ∂

∂ρ

(

ρd−1 ∂

∂ρ

)

+ ρ−2∆LB

]

Ψ(ρ, z) = 0

Separation of variables: Ψ(ρ, z) = R(ρ)F (z)

For
−∆LBF (z) = EF (z)

get

R±(ρ) = ρ
− d−2

2
±i

q

E−( d−2

2 )
2

[Positive frequency coming out of singularity is R−(ρ).]

Left with spectral problem on hyperbolic space.
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∆LB and boundary conditions

The classical billiard ball is constrained to Weyl chamber
with infinite potentials ⇒ Dirichlet boundary conditions

Use upper half plane model

z = (~u, v) , ~u ∈ R
d−2, v ∈ R>0

⇒ ∆LB = vd−1∂v(v
3−d∂v) + v2∂2

~u ~u

v

With Dirichlet boundary conditions (d = 3 in [Iwaniec] )

−∆LBF (z) = EF (z) ⇒ E ≥

(

d− 2

2

)2
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Arithmetic structure (I)

Beyond general inequality details of spectrum depend on
shape of domain. (‘Shape of the drum’ problem)

Focus on maximal supergravity (d = 10). Domain is
determined by E10 Weyl group.

-1 0 1 2 3 4 5 6 7

8

y y y y y y y y y

y

9-dimensional upper half plane with octonions: u ≡ ~u ∈ O

On z = u+ iv the ten fundamental Weyl reflections act by

w−1(z) =
1

z̄
, w0(z) = −θz̄θ + θ , wj(z) = −εj z̄εj

θ highest E8 root; εj simple E8 rts. [Feingold, AK, Nicolai 2008]
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Arithmetic structure (II)

Iterated action of

w−1(z) =
1

z̄
, w0(z) = −θz̄θ + θ , wj(z) = −εj z̄εj

generates whole Weyl group W (E10). No (very) simple
octonionic representation of an arbitrary element known.

Restricting to the even Weyl group W+(E10) gives
‘holomorphic’ transformations and one obtains

W+(E10) = PSL2(O)

that should be interpreted as a modular group over the
integer ‘octavians’ O. [Feingold, AK, Nicolai 2008]
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Modular wavefunctions (I)

Weyl reflections on wavefunction Ψ(ρ, z)

Ψ(ρ, wI · z) =

{

+Ψ(ρ, z) Neumann b.c.
−Ψ(ρ, z) Dirichlet b.c.

Use Weyl symmetry to define Ψ(ρ, z) on the whole upper
half plane, with Dirichlet boundary conditions ⇒ Ψ(ρ, z) is

Sum of eigenfunctions of ∆LB on UHP

Invariant under action of W+(E10) = PSL2(O).
Anti-invariant under extension to W (E10).

⇒ Wavefunction is an odd Maass wave form of PSL2(O)

[cf. [Forte 2008] for related ideas for Neumann conditions]
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Modular wavefunctions (II)

The spectrum of odd Maass wave forms is discrete but not
known. For PSL2(O) the theory is not even developed (but
see [Krieg] ).

For lower dimensional cases like pure (3 + 1)-dimensional
Einstein gravity with PSL2(Z) there are many numerical
investigations. [Graham, Sz épfalusy 1990; Steil 1994; Then 2003]

The result relevant here later is the inequality E ≥
(

d−2
2

)2
.

Summary of analysis so far:

Quantum billiard wavefunction Ψ(ρ, z) is an odd
Maass wave form (Dirichlet b.c.) for PSL2(O).
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Interpretation (I)

‘Wavefunction of the universe’ in this set-up formally

|Ψfull〉 =
∏

x

|Ψx〉

Product of quantum cosmological billiard wavefunctions,
one for each spatial point (ultra-locality). [Also [Kirillov 1995] ]

Each factor contains a Maass wave form of the type
Ψx(ρ, z) =

∑

R±(ρ)F (z) with

−∆LBF (z) = EF (z) , R±(ρ) = ρ−
d−2

2
±i

q

E−( d−2

2 )
2

Since E ≥
(

d−2
2

)2
: Ψx(ρ, z) → 0 for ρ→ ∞
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Interpretation (II)

Absence of potential: ∃ a well-defined Hilbert space
with positive definite metric.

Complexity and notion of positive frequency
⇒ Arrow of time? [Isham 1991; Barbour 1993]

The wavefunction vanishes at the singularity!

But it remains oscillating and complex. It cannot be
continued analytically past the singularity.

Vanishing wavefunctions on singular geometries are
one possible boundary condition. [DeWitt 1967]

No way of going through the singularity. No bounce.

‘Semi-classical’ states are expected to spread
(quantum ergodicity). [Non-relativistic intuition]
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Generalization (I)

Classical cosmological billiards led to the E10 conjecture.

D = 11 supergravity can be mapped to a constrained null
geodesic motion on infinite-dimensional E10/K(E10) coset
space. [Damour, Henneaux, Nicolai 2002]

E10/K(E10)

V(t)

� -

Correspondence

Symmetric space E10/K(E10) has 10 + ∞ many directions.
��* HHY

Cartan subalgebra pos. step operators

Arithmetic Quantum Gravity – p. 16



Generalization (II)

Features of the conjectured E10 correspondence

Billiard corresponds to 10 Cartan subalgebra generators

∞ many step operators to remaining fields and spatial
dependence. [Verified only at low ‘levels’ but for many
different models]

Space dependence introduced via dual fields (cf.
Geroch group) — everything in terms of kinetic terms

Space (de-)emergent via an algebraic mechanism

Extension to E10 overcomes ultra-locality
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Generalization (III)

HBill → H ≡ HBill +
∑

α∈∆+(E10)

e−2α(β)

mult(α)
∑

s=1

Π2
α,s

is the unique quadratic E10 Casimir. Formally like free
Klein–Gordon; positive norm could remain consistent?

For the full theory there are more constraints than the
Hamiltonian constraint HΨ = 0: diff, Gauss, etc.

Global E10 symmetry provides ∞ conserved charges J

Evidence that constraints can be written as bilinears
L ∼ JJ . [Damour, AK, Nicolai 2007; 2009]

Analogy with affine Sugawara construction. Particularly
useful for implementation as quantum constraints?

Aim: Quantize geodesic model. E10(Z) [Ganor 1999] ?
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Supersymmetric extension (I)

D = 11 supergravity gravitino ψµ can be added to billiard
analysis via K(E10) representation. Work in supersymmetry
gauge [Damour, AK, Nicolai 2005; de Buyl, Henneaux, Paulot 2005]

ψt = Γt

10
∑

a=1

Γaψa

Classically, separate billiard motion [Damour, Hillmann 2009] .
Best in variable (Γ∗ = Γ1 · · ·Γ10)

ϕa = g1/4Γ∗Γ
aψa (no sum on a)

Canonical Dirac bracket:
{

ϕa
α, ϕ

b
β

}

= −iGabδαβ
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Supersymmetric extension (II)

Quantize Clifford algebra using canonical anticommutators
over a 2160-dimensional Fock space vacuum |Ω〉.

Have to implement supersymmetry constraint in quantum
theory

Sα = i

10
∑

a=1

πaϕ
a
α (α = 1, . . . , 32)

It obeys: {Sα,Sβ} = δαβH [Teitelboim 1977]

For quantum constraint choose 16 annihilation operators SA.

The state |Ψ〉 =
∏16

A=1 S
†
A (Φ(ρ, z)|Ω〉)

solves the constraint iff Φ(ρ, z) solves the WDW equation.
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Summary and outlook

Done:

Quantum cosmological billiards wavefunctions involve
automorphic forms of PSL2(O)

Extendable to supersymmetric case

Wavefunctions vanish at singularity (irrespective of
susy) ⇒ Singularity resolution?

Non-computabitility (Penrose)?
To do:

Construct wavefunctions? Behaviour of wavepackets?

Include more variables ⇒ E10 coset model?
Constraints? Observables?

Thank you for your attention!
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