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Basic question: Is it possible for light, 
gravitationally-coupled scalars to exist while 
avoiding detection from local experiments?



1. Cosmic Acceleration

Λ

Zaldarriaga & Tegmark (2002) Komatsu et al. (2010)

   CDM model remarkably predictive

expansion history

growth of structureΛ



The end of cosmology?

“Does   CDM signify completion of the fundamental
physics that will be needed in the analysis of ...
future generations of observational cosmology?
Or might we only have arrived at the simplest
approximation we can get away with at the
present level of evidence?” 

Λ



Acceleration from New Degrees of Freedom

 If new degrees of freedom lead to O(1) deviations 
from GR on cosmological scales, then some screening 
mechanism is necessary to hide these degrees of 
freedom locally.

 Screening mechanisms are inherently non-linear and 
capitalize on 

ρMunich ∼ 1030ρcosmos



|g|

2. Experimental Program
U(r) = −g

M

8πM2
Pl

e−r/λ

r

Screening mechanisms invariably lead to small but potentially 
measurable effects in the solar system and/or in the lab
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MPl
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MPl
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symmetron



Chameleon Mechanism JK & Weltman (2004);  Gubser & JK, (2004)
Mota & Shaw (2007)

L =
√
−g

[
M2

Pl

2
R− 1

2
(∂φ)2 − V (φ)

]
+ Lm[g̃,ψ]

Make the mass of scalar field depend on local matter density

Matter fields ψ
Minimal coupling of ψ to metric g̃µν = A2(φ)gµν

!φ− V,φ + A3(φ)A,φT̃ = 0

T̃ = T̃µν g̃µν , T̃µν = − 2√
−g̃

δLm

δg̃µν
, ∇̃µT̃µ

ν = 0.

Scalar field equation of motion



Veff(φ)

φ
V (φ)

∼ ρφ
Veff(φ) = V (φ) + g

φ

MPl
ρ

Around spherical body: spherical symmetry, static, flat space

d2

dr2
φ +

2
r

d
dr

φ = V,φ + A,φρ

where              is density conserved in Einstein frameρ = A3ρ̃

With                                 , thenA(φ) = 1 + g
φ

MPl
+ . . .

e.g. V (φ) =
M5

φ

Scalar sees effective pot: =⇒ Veff(φ) = V (φ) +A(φ)ρ

M = 10−3 eV



  Thus                 increases with increasing density

i.e. try to achieve                                            ,       
m(ρlocal)
m(ρcosmo)

=
mm−1

H0
∼ 1030

although in practice                                   m(ρcosmo) >∼ Mpc−1

m = m(ρ)

Density-dependent mass
Veff(φ)

φ
V (φ)

∼ ρφ

Nevertheless, 

=⇒ ruled out?

m−1(ρsolar system) <∼ 10− 104 AU
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Thin-shell screening

ρ = ρout ρ = ρin
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Thin-shell screening

ρ = ρout ρ = ρin

d2φ

dr2
+

2
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dφ
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dVeff

dφ

=⇒ φ(r > R) ∼ ∆R

R
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M2
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M
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where ∆R

R
=

φout − φin

6gMPlΦN
" 1 =⇒ thin-shell screening

φout φin
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Thin-shell screening
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where ∆R

R
=

φout − φin

6gMPlΦN
" 1 =⇒ thin-shell screening

φout φin

Note: screening condition depends on       !  ρout



Chameleon Tests
 Eot-Wash 

 GammeV, Fermilab

Adelberger et al., 
Phys. Rev. Lett. (2008)

Chou et al., Phys. Rev. Lett. (2008)

 Astrophysical photon-chameleon mixing
Burrage, Davis & Shaw, Phys. Rev. Lett. (2009)



Vainshtein Mechanism Vainshtein (1972);  Arkani-Hamed, Georgi, Schwartz (2003)
Deffayet, Dvali, Gabadadze & Vainshtein (2002);
Luty, Porrati & Rattazzi (2003); Nicolis & Rattazzi (2004)

4d effective theory in DGP: 

which enjoys Galilean symmetry: ∂µπ → ∂µπ + cµ

Lπ = 3(∂π)2
(

1 +
∇2π

3Λ3
s

)
+

π

MPl
ρ

3∇2π +
1
Λ3

s

[
(∇2π)2 − (∂µ∂νπ)2

]
=

ρ
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Vainshtein Mechanism Vainshtein (1972);  Arkani-Hamed, Georgi, Schwartz (2003)
Deffayet, Dvali, Gabadadze & Vainshtein (2002);
Luty, Porrati & Rattazzi (2003); Nicolis & Rattazzi (2004)

4d effective theory in DGP: 

which enjoys Galilean symmetry: ∂µπ → ∂µπ + cµ
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π(r) =

{
∼ Λ3R3/2

V

√
r + const. r # RV

∼ Λ3R3
V

1
r r $ RV

RV ≡
1
Λ

(
M

MPl

)1/3

Fπ

FNewton
=

π′(r)/MPl

M/(M2
Plr

2)
=





∼

(
r

RV

)3/2
R" RV

∼ 1 R# RV

Solution around point source of mass M: 

5th force on a test particle, relative to gravity:

Vainshtein radius:  



Field generated on a background below Vainshtein radius of 
large object: π = π0 + ϕ , T = T0 + δT

L = −3(∂ϕ)2 +
2

Λ3
(∂µ∂νπ0 − ηµν!π0) ∂

µϕ∂νϕ

− 1

Λ3
(∂ϕ)2!ϕ+

1

MPl
ϕ δT



Field generated on a background below Vainshtein radius of 
large object: π = π0 + ϕ , T = T0 + δT

Kinetic term is enhanced, which means that, after canonical 
normalization, coupling to       is suppressed. The non-linear 
coupling scale is also raised.

δT

∼
(
RV

r

)3/2

" 1

Other examples:  Generalized Galileons

 k-Mouflage
Nicolis, Rattazzi and Trincherini (2009)

Babichev, Deffayet and Ziour (2009)

L = −3(∂ϕ)2 +
2

Λ3
(∂µ∂νπ0 − ηµν!π0) ∂

µϕ∂νϕ

− 1

Λ3
(∂ϕ)2!ϕ+

1

MPl
ϕ δT



Symmetron Fields K. Hinterbichler and JK, hep-th/1001.4525
See also Olive & Pospelov (2008); Pietroni (2005)
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(
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φ2

2M2
+O

(
φ4

M4

))2

gµνwhere
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√
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2
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2
(∂φ)2 − V (φ)

]
+ Lm[g̃,ψ]



Symmetron Fields K. Hinterbichler and JK, hep-th/1001.4525
See also Olive & Pospelov (2008); Pietroni (2005)

g̃µν =
(

1 +
φ2

2M2
+O

(
φ4

M4

))2

gµνwhere

φ

V (φ)

V (φ) = −1
2
µ2φ2 +

1
4
λφ4

Potential is of the spontaneous-symmetry-
breaking form:

Most general renormalizable potential
with                symmetry.φ→ −φ

L =
√
−g

[
M2

Pl

2
R− 1

2
(∂φ)2 − V (φ)

]
+ Lm[g̃,ψ]



Effective Potential

φ

V (φ)

∇2φ = −dV

dφ
− φ

M2
ρ

=⇒ Veff(φ) =
1
2

( ρ
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− µ2

)
φ2 +

1
4
λφ4

Whether symmetry is broken or not depends on local density∴



Effective Potential
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=⇒ Veff(φ) =
1
2

( ρ
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1
4
λφ4

Whether symmetry is broken or not depends on local density∴
 Outside source,          , symmetron acquires VEV and  

symmetry is spontaneously broken.
ρ = 0



Effective Potential

φ

V (φ)

∇2φ = −dV

dφ
− φ

M2
ρ

=⇒ Veff(φ) =
1
2

( ρ

M2
− µ2

)
φ2 +

1
4
λφ4

Whether symmetry is broken or not depends on local density∴

 Inside source, provided                , the symmetry is 
restored.

ρ >µ 2M2

 Outside source,          , symmetron acquires VEV and  
symmetry is spontaneously broken.

ρ = 0



Effective Coupling
Perturbations       around local background value couple as:δφ

Lcoupling ∼
φ̄

M2
δφ ρ

 In voids, where      symmetry is broken, Z2

φ

V (φ)

Lcoupling ∼ µ√
λM2

δφ ρ

∼ δφ

MPl
ρ

µ/
√

λ

gravitational strength 

 Symmetron fluctns decouple in high-density regions



Fixing Ideas Veff(φ) =
1
2

( ρ

M2
− µ2

)
φ2 +

1
4
λφ4

 Gravitational-strength symmetron-mediated force in vacuum

Hence field excursion is within validity of effective theory, i.e. can 
consistently neglect                   corrections to matter coupling.O(φ4/M4)

φ0 ≡
µ√
λ
∼ M2

MPl
$M



Fixing Ideas Veff(φ) =
1
2

( ρ

M2
− µ2

)
φ2 +

1
4
λφ4

 Gravitational-strength symmetron-mediated force in vacuum

Hence field excursion is within validity of effective theory, i.e. can 
consistently neglect                   corrections to matter coupling.O(φ4/M4)

φ0 ≡
µ√
λ
∼ M2

MPl
$M

 Potential becomes tachyonic around current cosmic density

µ2 ∼ H2
0M2

Pl

M2

Will see later that local tests of gravity constrain M <∼ 10−3MPl

=⇒ m0 =
√

2µ ∼ MPl

M
H0 ∼ Mpc−1

Gravitational-strength, Mpc-range 5th force in voids.∴

=⇒ λ ∼ M4
PlH

2
0

M6
" 1



Inspiration...



Symmetron Couch
($9500.00)

“Offers a unique multi-phase wave 
experience.”

“NASA-style gravity reduction.”

Inspiration...



Symmetron Couch
($9500.00)

“Offers a unique multi-phase wave 
experience.”

“NASA-style gravity reduction.”

∼

Inspiration...



Fine Tuning and Quantum Corrections

4

ψ, whose propagator is given by a dotted line. The first vertex comes from the φ4 self-coupling, the second from the
φ2ψ2 coupling, and the third from the φ2∂2ψ2 coupling (in this vertex p refers to the momentum coming in along the
ψ line).

∼ λ ∼ m2

M2
∼ p2

M2

FIG. 1: Vertices

Corrections to the φ mass term: At one loop, there is one correction coming from a φ loop,

∼ λΛ2 ∼
(

MPl

M

)2

µ2. (14)

This contribution is not suppressed relative to the tree-level mass ∼ µ2. It differs by the factor
(

MP l
M

)2 ∼ 106. To
make this contribution small requires a fine tuning. This is the same kind quadratic divergence that leads to the
hierarchy problem in the standard model. The mass of the symmetron must be tuned to this level.

In addition, there are two corrections coming from a ψ loop,

∼ m2

M2
Λ2 ∼ m2, (15)

∼ 1
M2

Λ4 ∼M2. (16)

These contributions are also much larger than the tree level symmetron mass ∼ µ2, and must also be fine tuned.
However, as we will argue below, one nice consequence of the universal coupling of the symmetron to matter is that
whatever mechanism is responsible for solving the tuning problem in the cosmological constant also solves this tuning
problem.

Corrections to the φ4 interaction: There is a correction coming from a φ loop,

∼ λ2 log Λ. (17)

This is much suppressed relative to the tree level contribution λ, since we have λ" 1.
In addition, there are three corrections coming from a ψ loop,

∼
( m

M

)4
log Λ, (18)

∼ m2

M2

1
M2

Λ2 ∼
( m

M

)2
, (19)

Consider scalar field    with mass     as fiducial matter fieldψ m

Lm(g̃µν , ψ) =
√

−g̃

(
−1

2
g̃µν∂µψ∂νψ − 1

2
m2ψ2

)
.

Effective field theory with cutoff     and      symmetry  M Z2

Calculate 1-loop corrections to potential. Vertices are

L = −1

2
(∂φ)2 +

1

2
µ2φ2 − 1

4
λφ4 − 1

2
(∂ψ)2 − 1

2
m2ψ2

− φ2

4M2
(∂ψ)2 +

m2

4M2
φ2ψ2 +O(φ4/M4)
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Corrections to the φ4 interaction: There is a correction coming from a φ loop,

∼ λ2 log Λ. (17)

This is much suppressed relative to the tree level contribution λ, since we have λ" 1.
In addition, there are three corrections coming from a ψ loop,
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5

∼ 1
M4

Λ4 ∼ 1. (20)

These look dangerously larger than the tree level contribution λ, but as with the scalar mass, we will argue that these
contributions are rendered small by a the tuning of the cosmological constant.

Corrections to the φ2ψ2 interaction:

∼ λ
m2

M2
log Λ. (21)

This correction is comparable to the tree level contribution, so any tuning is not quantum mechanically unstable.
Similar diagrams involving the φ2∂2ψ2 vertex vanish at zero external momenta, and so do not contribute to the
effective potential.

We have seen dangerously large corrections in the diagrams (15), (18), (19) and (20), but as we now argue, these
can all be rendered small by a single fine tuning, the same tuning required to make the cosmological constant small.
To see this, consider the action (1) in Jordan frame,

L =
√
−g̃

[
M2

p

2A2
R̃− 1

2

[
1

A2
− 6M2

p
A′2

A4

]
g̃µν∂µφ∂νφ− V

A4

]
+ Lm (g̃µν , ψ) . (22)

Expanding out using (2) and (6), we have, to lowest order in φ/M ,

L =
√
−g̃

[
M2

p

2

(
1− φ2

M2

)
R̃− 1

2

[
1−

(
1 + 6

M2
Pl

M2

)
φ2

]
g̃µν∂µφ∂νφ +

1
2
µ2φ2 −

(
λ

4
− µ2

M2

)
φ4 +

λ

2M2
φ6

]
+Lm (g̃µν , ψ) .

(23)
In Jordan frame, the matter is minimally coupled to the Jordan frame metric g̃µν , and does not couple directly to φ.
Therefore, we can integrate out matter fluctuations, and the result must be a diffeomorphism invariant functional of
the Jordan frame metric,

∫

Λ
D [ψ] ei

R
d4x Lm(g̃µν ,ψ) ∼ ei

R
d4x

√
g̃[∼(Λ4+Λ2m2+m4 log Λ)+(Λ2+m2 log Λ)R̃+··· ]. (24)

The leading correction is a cosmological constant, which, as per the usual cosmological constant problem, has a part
quartically dependent on the cutoff, as well as parts with quadratic and log powers of the cutoff (linear and cubic
powers do not appear, because the path integral above is essentially the matter propagator, which is a function only
of m2). Going back to the Einstein frame, this quantum contribution to the cosmological constant corrects the scalar
potential,

Leff ∼
√
−g̃

(
Λ4 + Λ2m2 + m4 log Λ

)
=
√
−g

(
Λ4 + Λ2m2 + m4 log Λ

)
A(φ)4 (25)

=
√
−g

(
Λ4 + Λ2m2 + m4 log Λ

) (
1 + 2

φ2

M2
+ 3

φ4

M4
+ · · ·

)
. (26)

These are exactly the same dangerous corrections seen in the diagrams (15), (18), (19) and (20), along with their less
divergent parts. As is well known, some not understood physics or fine tuning (or anthropics) makes the contribution
to the cosmological constant much smaller than expected. This fine tuning is just the cosmological constant problem.
As is clear from looking in Jordan frame, whatever mechanism suppresses the cosmological constant also suppresses
the dangerous corrections to the Einstein frame symmetron potential coming from matter loops. This is a direct
consequence of the universal coupling of the symmetron to matter. As for the contributions in (25) proportional to
R̃, they make only a small correction to the Plank mass in (23). Other contributions proportional to higher order
Jordan frame curvature invariants will also generically be present, but will be suppressed by powers of m or Λ, so
around cosmological backgrounds R̃ ∼ H2, these terms are negligible.

Lastly, one might worry about corrections coming from internal graviton lines. It is straightforward to check that
all of these are suppressed by powers of MPl, and are small relative to the tree level contributions. Thus we conclude
that the symmetron model is stable under quantum corrections, except for a tuning of the mass to one part in 103,
and the usual tuning of the cosmological constant.
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µ2φ2 −

(
λ

4
− µ2

M2

)
φ4 +

λ

2M2
φ6

]
+Lm (g̃µν , ψ) .

(23)
In Jordan frame, the matter is minimally coupled to the Jordan frame metric g̃µν , and does not couple directly to φ.
Therefore, we can integrate out matter fluctuations, and the result must be a diffeomorphism invariant functional of
the Jordan frame metric,

∫

Λ
D [ψ] ei

R
d4x Lm(g̃µν ,ψ) ∼ ei

R
d4x

√
g̃[∼(Λ4+Λ2m2+m4 log Λ)+(Λ2+m2 log Λ)R̃+··· ]. (24)

The leading correction is a cosmological constant, which, as per the usual cosmological constant problem, has a part
quartically dependent on the cutoff, as well as parts with quadratic and log powers of the cutoff (linear and cubic
powers do not appear, because the path integral above is essentially the matter propagator, which is a function only
of m2). Going back to the Einstein frame, this quantum contribution to the cosmological constant corrects the scalar
potential,

Leff ∼
√
−g̃

(
Λ4 + Λ2m2 + m4 log Λ

)
=
√
−g

(
Λ4 + Λ2m2 + m4 log Λ

)
A(φ)4 (25)

=
√
−g

(
Λ4 + Λ2m2 + m4 log Λ

) (
1 + 2

φ2

M2
+ 3

φ4

M4
+ · · ·

)
. (26)

These are exactly the same dangerous corrections seen in the diagrams (15), (18), (19) and (20), along with their less
divergent parts. As is well known, some not understood physics or fine tuning (or anthropics) makes the contribution
to the cosmological constant much smaller than expected. This fine tuning is just the cosmological constant problem.
As is clear from looking in Jordan frame, whatever mechanism suppresses the cosmological constant also suppresses
the dangerous corrections to the Einstein frame symmetron potential coming from matter loops. This is a direct
consequence of the universal coupling of the symmetron to matter. As for the contributions in (25) proportional to
R̃, they make only a small correction to the Plank mass in (23). Other contributions proportional to higher order
Jordan frame curvature invariants will also generically be present, but will be suppressed by powers of m or Λ, so
around cosmological backgrounds R̃ ∼ H2, these terms are negligible.

Lastly, one might worry about corrections coming from internal graviton lines. It is straightforward to check that
all of these are suppressed by powers of MPl, and are small relative to the tree level contributions. Thus we conclude
that the symmetron model is stable under quantum corrections, except for a tuning of the mass to one part in 103,
and the usual tuning of the cosmological constant.

4

ψ, whose propagator is given by a dotted line. The first vertex comes from the φ4 self-coupling, the second from the
φ2ψ2 coupling, and the third from the φ2∂2ψ2 coupling (in this vertex p refers to the momentum coming in along the
ψ line).
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Corrections to the φ mass term: At one loop, there is one correction coming from a φ loop,

∼ λΛ2 ∼
(

MPl

M

)2

µ2. (14)

This contribution is not suppressed relative to the tree-level mass ∼ µ2. It differs by the factor
(

MP l
M

)2 ∼ 106. To
make this contribution small requires a fine tuning. This is the same kind quadratic divergence that leads to the
hierarchy problem in the standard model. The mass of the symmetron must be tuned to this level.

In addition, there are two corrections coming from a ψ loop,

∼ m2

M2
Λ2 ∼ m2, (15)

∼ 1
M2

Λ4 ∼M2. (16)

These contributions are also much larger than the tree level symmetron mass ∼ µ2, and must also be fine tuned.
However, as we will argue below, one nice consequence of the universal coupling of the symmetron to matter is that
whatever mechanism is responsible for solving the tuning problem in the cosmological constant also solves this tuning
problem.

Corrections to the φ4 interaction: There is a correction coming from a φ loop,

∼ λ2 log Λ. (17)

This is much suppressed relative to the tree level contribution λ, since we have λ" 1.
In addition, there are three corrections coming from a ψ loop,

∼
( m

M

)4
log Λ, (18)

∼ m2

M2

1
M2

Λ2 ∼
( m

M

)2
, (19)
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ψ, whose propagator is given by a dotted line. The first vertex comes from the φ4 self-coupling, the second from the
φ2ψ2 coupling, and the third from the φ2∂2ψ2 coupling (in this vertex p refers to the momentum coming in along the
ψ line).
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This contribution is not suppressed relative to the tree-level mass ∼ µ2. It differs by the factor
(
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)2 ∼ 106. To
make this contribution small requires a fine tuning. This is the same kind quadratic divergence that leads to the
hierarchy problem in the standard model. The mass of the symmetron must be tuned to this level.

In addition, there are two corrections coming from a ψ loop,

∼ m2

M2
Λ2 ∼ m2, (15)

∼ 1
M2

Λ4 ∼M2. (16)

These contributions are also much larger than the tree level symmetron mass ∼ µ2, and must also be fine tuned.
However, as we will argue below, one nice consequence of the universal coupling of the symmetron to matter is that
whatever mechanism is responsible for solving the tuning problem in the cosmological constant also solves this tuning
problem.

Corrections to the φ4 interaction: There is a correction coming from a φ loop,

∼ λ2 log Λ. (17)

This is much suppressed relative to the tree level contribution λ, since we have λ" 1.
In addition, there are three corrections coming from a ψ loop,

∼
( m

M

)4
log Λ, (18)

∼ m2

M2

1
M2

Λ2 ∼
( m

M

)2
, (19)

5

∼ 1
M4

Λ4 ∼ 1. (20)

These look dangerously larger than the tree level contribution λ, but as with the scalar mass, we will argue that these
contributions are rendered small by a the tuning of the cosmological constant.

Corrections to the φ2ψ2 interaction:

∼ λ
m2

M2
log Λ. (21)

This correction is comparable to the tree level contribution, so any tuning is not quantum mechanically unstable.
Similar diagrams involving the φ2∂2ψ2 vertex vanish at zero external momenta, and so do not contribute to the
effective potential.

We have seen dangerously large corrections in the diagrams (15), (18), (19) and (20), but as we now argue, these
can all be rendered small by a single fine tuning, the same tuning required to make the cosmological constant small.
To see this, consider the action (1) in Jordan frame,

L =
√
−g̃

[
M2

p

2A2
R̃− 1

2

[
1

A2
− 6M2

p
A′2

A4

]
g̃µν∂µφ∂νφ− V

A4

]
+ Lm (g̃µν , ψ) . (22)

Expanding out using (2) and (6), we have, to lowest order in φ/M ,

L =
√
−g̃

[
M2

p

2

(
1− φ2

M2

)
R̃− 1

2

[
1−

(
1 + 6

M2
Pl

M2

)
φ2

]
g̃µν∂µφ∂νφ +

1
2
µ2φ2 −

(
λ

4
− µ2

M2

)
φ4 +

λ

2M2
φ6

]
+Lm (g̃µν , ψ) .

(23)
In Jordan frame, the matter is minimally coupled to the Jordan frame metric g̃µν , and does not couple directly to φ.
Therefore, we can integrate out matter fluctuations, and the result must be a diffeomorphism invariant functional of
the Jordan frame metric,

∫

Λ
D [ψ] ei

R
d4x Lm(g̃µν ,ψ) ∼ ei

R
d4x

√
g̃[∼(Λ4+Λ2m2+m4 log Λ)+(Λ2+m2 log Λ)R̃+··· ]. (24)

The leading correction is a cosmological constant, which, as per the usual cosmological constant problem, has a part
quartically dependent on the cutoff, as well as parts with quadratic and log powers of the cutoff (linear and cubic
powers do not appear, because the path integral above is essentially the matter propagator, which is a function only
of m2). Going back to the Einstein frame, this quantum contribution to the cosmological constant corrects the scalar
potential,

Leff ∼
√
−g̃

(
Λ4 + Λ2m2 + m4 log Λ

)
=
√
−g

(
Λ4 + Λ2m2 + m4 log Λ

)
A(φ)4 (25)

=
√
−g

(
Λ4 + Λ2m2 + m4 log Λ

) (
1 + 2

φ2

M2
+ 3

φ4

M4
+ · · ·

)
. (26)

These are exactly the same dangerous corrections seen in the diagrams (15), (18), (19) and (20), along with their less
divergent parts. As is well known, some not understood physics or fine tuning (or anthropics) makes the contribution
to the cosmological constant much smaller than expected. This fine tuning is just the cosmological constant problem.
As is clear from looking in Jordan frame, whatever mechanism suppresses the cosmological constant also suppresses
the dangerous corrections to the Einstein frame symmetron potential coming from matter loops. This is a direct
consequence of the universal coupling of the symmetron to matter. As for the contributions in (25) proportional to
R̃, they make only a small correction to the Plank mass in (23). Other contributions proportional to higher order
Jordan frame curvature invariants will also generically be present, but will be suppressed by powers of m or Λ, so
around cosmological backgrounds R̃ ∼ H2, these terms are negligible.

Lastly, one might worry about corrections coming from internal graviton lines. It is straightforward to check that
all of these are suppressed by powers of MPl, and are small relative to the tree level contributions. Thus we conclude
that the symmetron model is stable under quantum corrections, except for a tuning of the mass to one part in 103,
and the usual tuning of the cosmological constant.
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(
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make this contribution small requires a fine tuning. This is the same kind quadratic divergence that leads to the
hierarchy problem in the standard model. The mass of the symmetron must be tuned to this level.

In addition, there are two corrections coming from a ψ loop,
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M2
Λ2 ∼ m2, (15)

∼ 1
M2

Λ4 ∼M2. (16)

These contributions are also much larger than the tree level symmetron mass ∼ µ2, and must also be fine tuned.
However, as we will argue below, one nice consequence of the universal coupling of the symmetron to matter is that
whatever mechanism is responsible for solving the tuning problem in the cosmological constant also solves this tuning
problem.

Corrections to the φ4 interaction: There is a correction coming from a φ loop,

∼ λ2 log Λ. (17)

This is much suppressed relative to the tree level contribution λ, since we have λ" 1.
In addition, there are three corrections coming from a ψ loop,
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φ2ψ2 coupling, and the third from the φ2∂2ψ2 coupling (in this vertex p refers to the momentum coming in along the
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This contribution is not suppressed relative to the tree-level mass ∼ µ2. It differs by the factor
(

MP l
M

)2 ∼ 106. To
make this contribution small requires a fine tuning. This is the same kind quadratic divergence that leads to the
hierarchy problem in the standard model. The mass of the symmetron must be tuned to this level.

In addition, there are two corrections coming from a ψ loop,

∼ m2

M2
Λ2 ∼ m2, (15)

∼ 1
M2

Λ4 ∼M2. (16)

These contributions are also much larger than the tree level symmetron mass ∼ µ2, and must also be fine tuned.
However, as we will argue below, one nice consequence of the universal coupling of the symmetron to matter is that
whatever mechanism is responsible for solving the tuning problem in the cosmological constant also solves this tuning
problem.

Corrections to the φ4 interaction: There is a correction coming from a φ loop,

∼ λ2 log Λ. (17)

This is much suppressed relative to the tree level contribution λ, since we have λ" 1.
In addition, there are three corrections coming from a ψ loop,

∼
( m

M

)4
log Λ, (18)

∼ m2

M2

1
M2

Λ2 ∼
( m

M

)2
, (19)

Quantum Corrections

=⇒ No surprise: diagrams with matter loops are dangerous



But suppose work instead in Jordan frame:

By general covariance, integrating out matter only generates diff inv 
functionals of the Jordan frame metric:

∫
Λ Dψei

∫
d4xLm(g̃µν ,ψ) ∼ ei

∫
d4x

√
−g̃[∼(Λ4+Λ2m2+m4 log Λ)+(Λ2+m2 log Λ)R̃+...]

Jordan frame C.C. becomes Einstein frame potential:

5

∼ 1
M4

Λ4 ∼ 1. (20)

These look dangerously larger than the tree level contribution λ, but as with the scalar mass, we will argue that these
contributions are rendered small by a the tuning of the cosmological constant.

Corrections to the φ2ψ2 interaction:

∼ λ
m2

M2
log Λ. (21)

This correction is comparable to the tree level contribution, so any tuning is not quantum mechanically unstable.
Similar diagrams involving the φ2∂2ψ2 vertex vanish at zero external momenta, and so do not contribute to the
effective potential.

We have seen dangerously large corrections in the diagrams (15), (18), (19) and (20), but as we now argue, these
can all be rendered small by a single fine tuning, the same tuning required to make the cosmological constant small.
To see this, consider the action (1) in Jordan frame,

L =
√
−g̃

[
M2

p

2A2
R̃− 1

2

[
1

A2
− 6M2

p
A′2

A4

]
g̃µν∂µφ∂νφ− V

A4

]
+ Lm (g̃µν , ψ) . (22)

Expanding out using (2) and (6), we have, to lowest order in φ/M ,

L =
√
−g̃

[
M2

p

2

(
1− φ2

M2

)
R̃− 1

2

[
1−

(
1 + 6

M2
Pl

M2

)
φ2

]
g̃µν∂µφ∂νφ +

1
2
µ2φ2 −

(
λ

4
− µ2

M2

)
φ4 +

λ

2M2
φ6

]
+Lm (g̃µν , ψ) .

(23)
In Jordan frame, the matter is minimally coupled to the Jordan frame metric g̃µν , and does not couple directly to φ.
Therefore, we can integrate out matter fluctuations, and the result must be a diffeomorphism invariant functional of
the Jordan frame metric,

∫

Λ
D [ψ] ei

R
d4x Lm(g̃µν ,ψ) ∼ ei

R
d4x

√
g̃[∼(Λ4+Λ2m2+m4 log Λ)+(Λ2+m2 log Λ)R̃+··· ]. (24)

The leading correction is a cosmological constant, which, as per the usual cosmological constant problem, has a part
quartically dependent on the cutoff, as well as parts with quadratic and log powers of the cutoff (linear and cubic
powers do not appear, because the path integral above is essentially the matter propagator, which is a function only
of m2). Going back to the Einstein frame, this quantum contribution to the cosmological constant corrects the scalar
potential,

Leff ∼
√
−g̃

(
Λ4 + Λ2m2 + m4 log Λ

)
=
√
−g

(
Λ4 + Λ2m2 + m4 log Λ

)
A(φ)4 (25)

=
√
−g

(
Λ4 + Λ2m2 + m4 log Λ

) (
1 + 2

φ2

M2
+ 3

φ4

M4
+ · · ·

)
. (26)

These are exactly the same dangerous corrections seen in the diagrams (15), (18), (19) and (20), along with their less
divergent parts. As is well known, some not understood physics or fine tuning (or anthropics) makes the contribution
to the cosmological constant much smaller than expected. This fine tuning is just the cosmological constant problem.
As is clear from looking in Jordan frame, whatever mechanism suppresses the cosmological constant also suppresses
the dangerous corrections to the Einstein frame symmetron potential coming from matter loops. This is a direct
consequence of the universal coupling of the symmetron to matter. As for the contributions in (25) proportional to
R̃, they make only a small correction to the Plank mass in (23). Other contributions proportional to higher order
Jordan frame curvature invariants will also generically be present, but will be suppressed by powers of m or Λ, so
around cosmological backgrounds R̃ ∼ H2, these terms are negligible.

Lastly, one might worry about corrections coming from internal graviton lines. It is straightforward to check that
all of these are suppressed by powers of MPl, and are small relative to the tree level contributions. Thus we conclude
that the symmetron model is stable under quantum corrections, except for a tuning of the mass to one part in 103,
and the usual tuning of the cosmological constant.

=⇒ All matter loops are taken care of by tuning of C.C.
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+
1

2
µ2φ2 −

(
λ

4
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)
φ4 +

λ

2M2
φ6

}
+ Lm(g̃µν , ψ)
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Spherical Source

R

ρ! µ2M2

ρ = 0

d2φ

dr2
+

2
r

dφ

dr
=

dVeff

dφ

Describes a particle rolling on the “inverted
potential”              , as a function of “time” −Veff(φ) r

 Boundary conditions: 
d
dr

φ(0) = 0 ; φ(r →∞) = φ0

 Solutions: φinterior(r) = A
R

r
sinh

(
r

√
ρ

M2
− µ2

)

φexterior(r) = B
R

r
e−
√

2µr + φ0

Fix A and B by matching     and            at the surfaceφ dφ/dr
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Thin-Shell Screening Effect
RBehavior of solution depends on 

 For sufficiently massive objects, such that            , 
solution is suppressed by thin-shell effect:

φexterior(r) ∼
1
α

M
M2

Plr
+ φ0

α ≡ ρR2

M2
= 6

M2
Pl

M2
ΦN

Why? Have                                    , but field grows to at 
most φin(R) <∼ φ0

φin(r) = A
R

r
sinh

(√
α

r

R

)

δφ ∼ φ̄

M2

δM
r

α! 1

φ ≈ φ0 For small objects,           , we find            everywhere

Fφ

FN
∼ O(1)

α! 1

=⇒



Necessary (and sufficient) condition is 
that Milky Way has thin shell: 

=⇒ M <∼ 10−3MPl

Constraints from Local Tests

But since                    , to get interesting cosmological effects 
we consider regime where this is barely satisfied, e.g. 

µ ∼MPlH0/M

=⇒ Sun is screened, but Earth is not.

αG = 20

ΦG ∼ 10−6

αG = 6
M2

Pl

M2
ΦG

>∼ 10

φG

M
≈ M

MPl

RG√
αGRus

exp
(
−RG −Rus

RG

√
αG

)
∼ 10−5



|γ − 1| ≈ 10−5 |γ − 1| ≈ 10−5

|ηN| ∼ 10−4 |ηN| ∼ 10−4

|γ − 1| ≈ 4 · 10−4 |γ − 1| ≈ 10−3

ωeff
BD ! 106 ωeff

BD ! 103

Time delay/light deflection

Nordvedt effect

Mercury perihelion shift

Binary pulsars

Test Effective parameter Current bounds

Constraints from Local Tests (continued)



Macroscopic Violations of Equivalence Principle
Hui, Nicolis and Stubbs (2009)

Because of thin-shell screening, macroscopic 
objects fall with different acceleration in g-field

 Unscreened objects (         ) follow geodesics in Jordan frame

 Screened objects (         ) do not.
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Macroscopic Violations of Equivalence Principle
Hui, Nicolis and Stubbs (2009)

Because of thin-shell screening, macroscopic 
objects fall with different acceleration in g-field

 Unscreened objects (         ) follow geodesics in Jordan frame

 Screened objects (         ) do not.

ε = 1
ε = 0

To maximize effect, look for

- large (~ Mpc) void regions, so that symmetry is broken 
and 

- look for unscreened objects (i.e.              )   
in these voids

Φ < 10−7

φ̄/M2 = 1/MPl

!a = −!∇Φ + (1− ε)
φ

M2
!∇φ



Various astrophysical signatures

 Look at dwarf galaxies in voids

 Stars are screened (              ), but hydrogen gas is 
unscreened. (Gas itself has only                .)

 Should find systematic O(1) discrepancy in the mass estimates 
based on these two tracers. 

Φ ∼ 10−11
Φ ∼ 10−6

Hui, Nicolis and Stubbs (2009)

NOTE: Effect also possible in chameleon theory but not generic. 
In the symmetron case, it is generic.



Distinguishable from Other Screening Mechanisms

 Tightest constraint comes from laboratory 
tests of gravity, and this results in tiny signals 
for solar system tests Khoury & Weltman (2003)

Chameleon
 Potential is non-renormalizable, 

e.g.  V (φ) = M4+n/φn

Veff(φ)

φ
V (φ)

∼ ρφ



Distinguishable from Other Screening Mechanisms

Dvali, Gruzinov and Zaldarriaga (2002)

 Tightest constraint comes from laboratory 
tests of gravity, and this results in tiny signals 
for solar system tests Khoury & Weltman (2003)

Chameleon
 Potential is non-renormalizable, 

e.g.  V (φ) = M4+n/φn

Veff(φ)

φ
V (φ)

∼ ρφ

 Predicts LLR signal measurable by APOLLO, but insignificant time-
delay/light deflection signals.

Galileon

 No macroscopic violations of EP Hui, Nicolis and Stubbs (2009)

3∇2π +
1
Λ3

s

[
(∇2π)2 − (∂µ∂νπ)2

]
=

ρ

2MPl



Avenues in progress...



1. Symmetron Defects
In void regions larger than                 , symmetron takes 
values 

µ−1 ≈ Mpc
φ = ±µ/

√
λ

Hinterbichler, JK & Stojkovic

Multiple symmetrons           global strings, monopoles... ?=⇒

+
+

−

−−



2. Cosmology Hinterbichler, Hui & JK 

V (φ) = −1
2
µ2φ2 +

1
4
λφ4

* Hubble mass:

* Self-acceleration?

More general V (φ)

m = µ
m = H0

g̃µν =
(

1 +
φ2

2M2
+O

(
φ4

M4

))2

gµν

If no acceleration in Einstein frame, then can we have acceleration in 
Jordan frame because                 ? ∆φ ∼ M

e.g. V (φ) = H2
0M

2
Pl

(
e−φ2/M2

+
M

MPl
eφ

2/M2
Pl

)
.



3. Tantalizing Evidence?
Large Scale Bulk Flows

 Local bulk flow within                 is 50 h−1Mpc 407± 81 km/s

 LCDM prediction is                ≈ 180 km/s
Watkins, Feldman & Hudson (2008)

Wyman & JK, to appear tomorrow

Bullet Cluster (1E0657-57)

 Requires                           
at 5Mpc separation

vinfall ≈ 3000 km/s

 Probability in LCDM is between                  and3.3× 10−11 3.6× 10−9

Lee & Komatsu (2010)

Mastropietro & Burkett (2008)

Find: 

Find:       enhancement in prob.104

v < 240 km/s



Conclusions
 Symmetron offers a new screening mechanism

 Solar-system deviations from GR just below current 
sensitivity levels, astrophysical signatures 

Other consequences? 

 Topological defects

 Peculiar velocities, void phenomenon

 More natural than other screening mechanisms (normal 
looking effective theory, cutoff at the GUT scale)

 Radiatively stable except for      and        mass tuning 10−3Λ


