Brane Induced Gravity Revisited

Fawad Hassan Stockholm University, Sweden

(S.F. Hassan, Stefan Hofmann and Mikael von Strauss, to appear)

April 12, 2010

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivation

- The Brane Induced Gravity (BIG) Model
- Workings and Problems
- Setup for the Analysis
- Solutions for the Basic Model
- **Extrinsic Curvature Contributions**
- Graviton Decay and Mass
- Screening of Brane A and Consequences
- On the Origin of Tachyonic Ghost
- Further Issue: 4d Effective Action and Dilaton Couplings

A D F A 同 F A E F A E F A Q A

Motivation

- The Brane Induced Gravity (BIG) Model
- Workings and Problems
- Setup for the Analysis
- Solutions for the Basic Model
- **Extrinsic Curvature Contributions**
- Graviton Decay and Mass
- Screening of Brane A and Consequences
- On the Origin of Tachyonic Ghost
- Further Issue: 4d Effective Action and Dilaton Couplings

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation

The cosmological constant problem: Why is the observed value much smaller than that generically expected from QFT? Resolutions:

- Modify QFT (not so easy)
- Modify gravity: make it less sensitive to A through IR modifications

Degravitation

(ロ) (同) (三) (三) (三) (三) (○) (○)

An explicit realization: Brane Induced Gravity (BIG)

Motivation

The Brane Induced Gravity (BIG) Model

- Workings and Problems
- Setup for the Analysis
- Solutions for the Basic Model
- **Extrinsic Curvature Contributions**
- Graviton Decay and Mass
- Screening of Brane A and Consequences
- On the Origin of Tachyonic Ghost
- Further Issue: 4d Effective Action and Dilaton Couplings

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Model: 3-brane in d = 4 + n dim bulk, n > 2**Coordinates:** x^{M} (d = 4 + n), σ^{μ} (4), $x^{M}(\sigma)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Model: 3-brane in d = 4 + n dim bulk, n > 2**Coordinates:** x^{M} (d = 4 + n), σ^{μ} (4), $x^{M}(\sigma)$ **Metrics:** $g_{\mu\nu} = \partial_{\mu}x^{M}\partial_{\nu}x^{N}G_{MN}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Model: 3-brane in d = 4 + n dim bulk, n > 2 **Coordinates:** x^{M} (d = 4 + n), σ^{μ} (4), $x^{M}(\sigma)$ **Metrics:** $g_{\mu\nu} = \partial_{\mu}x^{M}\partial_{\nu}x^{N}G_{MN}$ **Action:** basic (*DGP*, *Dvali-Gabadadze*)

$$S = -A \int d^d x \sqrt{G} R^{(d)} - B \int d^4 \sigma \sqrt{g} R^{(4)} + S_m^{brane}$$

(日) (日) (日) (日) (日) (日) (日)

Model: 3-brane in d = 4 + n dim bulk, n > 2 **Coordinates:** x^{M} (d = 4 + n), σ^{μ} (4), $x^{M}(\sigma)$ **Metrics:** $g_{\mu\nu} = \partial_{\mu}x^{M}\partial_{\nu}x^{N}G_{MN}$ **Action:** basic (*DGP*, *Dvali-Gabadadze*) + extra terms

$$S = -A \int d^d x \sqrt{G} R^{(d)} - B \int d^4 \sigma \sqrt{g} R^{(4)} + S_m^{brane} + S_\Omega^{brane} + S_\Lambda^{brane}$$

(日) (日) (日) (日) (日) (日) (日)

Model: 3-brane in d = 4 + n dim bulk, n > 2 **Coordinates:** x^{M} (d = 4 + n), σ^{μ} (4), $x^{M}(\sigma)$ **Metrics:** $g_{\mu\nu} = \partial_{\mu}x^{M}\partial_{\nu}x^{N}G_{MN}$ **Action:** basic (*DGP*, *Dvali-Gabadadze*) + extra terms

$$S = -A \int d^d x \sqrt{G} R^{(d)} - B \int d^4 \sigma \sqrt{g} R^{(4)} + S_m^{brane} + S_\Omega^{brane} + S_\Lambda^{brane}$$

Origins: String theory: *Corley, Lowe and Ramgoolam Ardalan, Arfaei, Garousi and Ghodsi Antoniadis, Minasian and Vanhove Kiritsis, Tetradis and Tomaras*

Effective field theory: DGP; Dvali, Gabadadze, Hou Sefusatti

Model: 3-brane in d = 4 + n dim bulk, n > 2 **Coordinates:** x^{M} (d = 4 + n), σ^{μ} (4), $x^{M}(\sigma)$ **Metrics:** $g_{\mu\nu} = \partial_{\mu}x^{M}\partial_{\nu}x^{N}G_{MN}$ **Action:** basic (*DGP*, *Dvali-Gabadadze*) + extra terms

$$S = -A \int d^d x \sqrt{G} R^{(d)} - B \int d^4 \sigma \sqrt{g} R^{(4)} + S_m^{brane} + S_\Omega^{brane} + S_\Lambda^{brane}$$

Origins: String theory: *Corley, Lowe and Ramgoolam Ardalan, Arfaei, Garousi and Ghodsi Antoniadis, Minasian and Vanhove Kiritsis, Tetradis and Tomaras*

Effective field theory: DGP; Dvali, Gabadadze, Hou Sefusatti Other variants: other terms, cascading setup (not considered)

Motivation

The Brane Induced Gravity (BIG) Model

Workings and Problems

Setup for the Analysis

Solutions for the Basic Model

Extrinsic Curvature Contributions

Graviton Decay and Mass

Screening of Brane A and Consequences

On the Origin of Tachyonic Ghost

Further Issue: 4d Effective Action and Dilaton Couplings

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

► $A \int d^d x \sqrt{G} R^{(d)} + \Lambda \int d^4 \sigma \sqrt{g}$: Λ curves bulk \Rightarrow flat brane classical soln. (*R. Gregory* ···)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

► $A \int d^d x \sqrt{G} R^{(d)} + \Lambda \int d^4 \sigma \sqrt{g}$: Λ curves bulk \Rightarrow flat brane classical soln. (*R. Gregory* ···) Problem: no 4-dim gravity

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 A∫ d^dx√GR^(d) + Λ∫ d⁴σ√g: Λ curves bulk ⇒ flat brane classical soln. (*R. Gregory*...) Problem: no 4-dim gravity
 A∫ d^dx√GR^(d) + B∫ d⁴σ√gR⁽⁴⁾: Flat background: 4-dim gravity, massive-unstable graviton ⇒ IR modification (*Dvali,Gabadadze, Shifman*)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 A∫ d^dx√GR^(d) + Λ∫ d⁴σ√g: Λ curves bulk ⇒ flat brane classical soln. (*R. Gregory*...) Problem: no 4-dim gravity
 A∫ d^dx√GR^(d) + B∫ d⁴σ√gR⁽⁴⁾: Flat background: 4-dim gravity, massive-unstable graviton ⇒ IR modification (*Dvali,Gabadadze, Shifman*) Problem: tachyon, ghost

• $A \int d^d x \sqrt{G} R^{(d)} + \Lambda \int d^4 \sigma \sqrt{g}$: Λ curves bulk \Rightarrow flat brane classical soln. (*R. Gregory* ···) Problem: no 4-dim gravity • $A \int d^d x \sqrt{G} R^{(d)} + B \int d^4 \sigma \sqrt{g} R^{(4)}$: Flat background: 4-dim gravity, massive-unstable graviton \Rightarrow IR modification (Dvali,Gabadadze, Shifman) Problem: tachyon, ghost • A $\int d^d x \sqrt{G} R^{(d)} + B \int d^4 \sigma \sqrt{g} R^{(4)} + \Lambda \int d^4 \sigma \sqrt{g}$: Hint: Flat background + tachyon ~ curved background (More later \cdots)

• $A \int d^d x \sqrt{G} R^{(d)} + \Lambda \int d^4 \sigma \sqrt{g}$: Λ curves bulk \Rightarrow flat brane classical soln. (*R. Gregory* ···) Problem: no 4-dim gravity • $A \int d^d x \sqrt{G} R^{(d)} + B \int d^4 \sigma \sqrt{g} R^{(4)}$: Flat background: 4-dim gravity, massive-unstable graviton \Rightarrow IR modification (Dvali,Gabadadze, Shifman) Problem: tachyon, ghost • A $\int d^d x \sqrt{G} R^{(d)} + B \int d^4 \sigma \sqrt{g} R^{(4)} + \Lambda \int d^4 \sigma \sqrt{g}$: Hint: Flat background + tachyon ~ curved background (More later \cdots) Implication: wrong background \Rightarrow tachyon, ghost

Motivation

- The Brane Induced Gravity (BIG) Model
- Workings and Problems
- Setup for the Analysis
- Solutions for the Basic Model
- **Extrinsic Curvature Contributions**
- Graviton Decay and Mass
- Screening of Brane A and Consequences
- On the Origin of Tachyonic Ghost
- Further Issue: 4d Effective Action and Dilaton Couplings

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Flat brane in flat background (easiest)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Flat brane in flat background (easiest) + fluctuations:

$$\begin{split} x^{\mu}_{||}(\sigma) &= \sigma^{\mu} + f^{\mu}(\sigma) \,, \qquad x^{i}(\sigma) = y^{i}_{0} + y^{i}(\sigma) \\ G_{MN} &= \eta_{MN} + H_{MN}(x) \,, \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}(\sigma) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Flat brane in flat background (easiest) + fluctuations:

$$\begin{split} x^{\mu}_{||}(\sigma) &= \sigma^{\mu} + f^{\mu}(\sigma) \,, \qquad x^{i}(\sigma) = y^{i}_{0} + y^{i}(\sigma) \\ G_{MN} &= \eta_{MN} + H_{MN}(x) \,, \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}(\sigma) \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Gauge invariant variables:

$$H_{MN} = H_{MN}^{\perp} + \frac{1}{d} \eta_{MN} S$$

 $(\partial^M H_{MN}^{\perp} = 0, H_M^{\perp M} = 0,$

Flat brane in flat background (easiest) + fluctuations:

$$\begin{aligned} x_{||}^{\mu}(\sigma) &= \sigma^{\mu} + f^{\mu}(\sigma) , \qquad x^{i}(\sigma) = y_{0}^{i} + y^{i}(\sigma) \\ G_{MN} &= \eta_{MN} + H_{MN}(x) , \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}(\sigma) \end{aligned}$$

Gauge invariant variables:

$$H_{MN} = H_{MN}^{\perp} + \frac{1}{d} \eta_{MN} S + \partial_M A_N + \partial_N A_M + \partial_M \partial_N \Phi$$
$$(\partial^M H_{MN}^{\perp} = 0, \ H_M^{\perp M} = 0, \ \partial^M A_M = 0)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Flat brane in flat background (easiest) + fluctuations:

$$\begin{split} x^{\mu}_{||}(\sigma) &= \sigma^{\mu} + f^{\mu}(\sigma) \,, \qquad x^{i}(\sigma) = y^{i}_{0} + y^{i}(\sigma) \\ G_{MN} &= \eta_{MN} + H_{MN}(x) \,, \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}(\sigma) \end{split}$$

Gauge invariant variables:

$$H_{MN} = H_{MN}^{\perp} + \frac{1}{d} \eta_{MN} S + \partial_M A_N + \partial_N A_M + \partial_M \partial_N \Phi$$
$$(\partial^M H_{MN}^{\perp} = 0, H_M^{\perp M} = 0, \ \partial^M A_M = 0)$$
$$h_{\mu\nu} = h_{\mu\nu}^{\perp} + \frac{1}{4} \eta_{\mu\nu} s + \partial_\mu a_\nu + \partial_\nu a_\mu + \partial_\mu \partial_\nu \phi$$
$$(\partial^\mu h_{\mu\nu}^{\perp} = 0, h_{\mu}^{\perp \mu} = 0, \ \partial^\mu a_\mu = 0)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Flat brane in flat background (easiest) + fluctuations:

$$\begin{aligned} x_{||}^{\mu}(\sigma) &= \sigma^{\mu} + f^{\mu}(\sigma) , \qquad x^{i}(\sigma) = y_{0}^{i} + y^{i}(\sigma) \\ G_{MN} &= \eta_{MN} + H_{MN}(x) , \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}(\sigma) \end{aligned}$$

Gauge invariant variables:

$$H_{MN} = H_{MN}^{\perp} + \frac{1}{d} \eta_{MN} S + \partial_M A_N + \partial_N A_M + \partial_M \partial_N \Phi$$
$$(\partial^M H_{MN}^{\perp} = 0, H_M^{\perp M} = 0, \ \partial^M A_M = 0)$$
$$h_{\mu\nu} = h_{\mu\nu}^{\perp} + \frac{1}{4} \eta_{\mu\nu} S + \partial_\mu a_\nu + \partial_\nu a_\mu + \partial_\mu \partial_\nu \phi$$

 $(\partial^{\mu}h_{\mu\nu}^{\perp} = 0, h_{\mu}^{\perp\mu} = 0, \partial^{\mu}a_{\mu} = 0)$ But the gauge dependent ones do not drop out! New gauge invariant variables:

$$F_{\mu} = f_{\mu} + \langle A_{\mu} \rangle - a_{\mu} + \frac{1}{2} \partial_{\mu} (\langle \Phi \rangle - \phi),$$

 \sim Stückelberg fields . Spontaneously broken realization of gauge symmetry ?

$$F^{i} = y^{i} + \langle A^{i} \rangle + \frac{1}{2} \langle \partial^{i} \Phi \rangle.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Setup: Thick Branes and "blurred" Quantities

$$G(x_{||} - x_{||}', x_{\perp} - x_{\perp}') = -\int d^4k \int d^n q \frac{e^{ik(x_{||} - x_{||}') + iq(x_{\perp} - x_{\perp}')}}{k^2 + q^2 - i\epsilon}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Thin brane: $G(x_{||} - x'_{||}, 0) \rightarrow \infty$ for n > 1

Setup: Thick Branes and "blurred" Quantities

$$G(x_{||} - x_{||}', x_{\perp} - x_{\perp}') = -\int d^4k \int d^n q rac{e^{ik(x_{||} - x_{||}') + iq(x_{\perp} - x_{\perp}')}}{k^2 + q^2 - i\epsilon}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Thin brane: $G(x_{||} - x'_{||}, 0) \rightarrow \infty$ for n > 1

Thick brane: $\delta(x_{\perp} - y_0) \rightarrow P(x_{\perp} - y_0)$

Setup: Thick Branes and "blurred" Quantities

$$G(x_{||} - x_{||}', x_{\perp} - x_{\perp}') = -\int d^4k \int d^n q rac{e^{ik(x_{||} - x_{||}') + iq(x_{\perp} - x_{\perp}')}}{k^2 + q^2 - i\epsilon}$$

Thin brane: $G(x_{||} - x'_{||}, 0) \rightarrow \infty$ for n > 1

Thick brane: $\delta(x_{\perp} - y_0) \rightarrow P(x_{\perp} - y_0)$

Then, restriction to brane gives

$$\langle S \rangle(x_{||}) = \int d^n x_{\perp} P(x_{\perp} - y_0) S(x_{||}, x_{\perp} - y_0)$$

and

$$\langle G \rangle(x_{||}-x_{||}') = \int d^n x_{\perp} d^n x_{\perp}' P(x_{\perp}-y_0) G(x_{||}-x_{||}', x_{\perp}-x_{\perp}') P(x_{\perp}'-y_0)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bulk propagator restricted to brane

A very useful quantity:

$$\langle \widetilde{G}
angle(k) = -\int d^n q \; rac{[\widetilde{P}(q)]^2}{k^2 + q^2 - i\epsilon}$$

Brane width $\omega \Rightarrow$

$$\langle \widetilde{G} \rangle(k) = \frac{1}{\omega^{n-2}} \Sigma_n^{-1}(\omega^2 k^2),$$

Example: Gaussian

$$P(x_{\perp}) = rac{1}{(\omega\sqrt{2\pi})^n} e^{-(x_{\perp}/2\omega)^2}, \qquad \widetilde{P}(q) = rac{1}{(2\pi)^n} e^{-q^2\omega^2/2}$$

(Antoniadis, Minasian, Vanhove)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bulk-brane relations

$$h_{\mu
u} = \langle H_{\mu
u} \rangle + \partial_{\mu} f_{
u} + \partial_{
u} f_{\mu}$$

gives,

$$\langle H^{\perp}
angle_{\mu
u} = h^{\perp}_{\mu
u} - \partial_{\mu}F_{
u} - \partial_{
u}F_{\mu} - \eta_{\mu
u}\left(rac{1}{d}\langle S
angle - rac{1}{4}s
ight)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Motivation

- The Brane Induced Gravity (BIG) Model
- Workings and Problems
- Setup for the Analysis
- Solutions for the Basic Model
- **Extrinsic Curvature Contributions**
- Graviton Decay and Mass
- Screening of Brane A and Consequences
- On the Origin of Tachyonic Ghost
- Further Issue: 4d Effective Action and Dilaton Couplings

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Solutions for the Basic Model

For a brane source $T_{\mu\nu}$,

$$\widetilde{s}(k) = -\frac{2}{3B} \frac{1}{k^2 + \frac{A}{B} \frac{d-2}{2(d-5)}} \widetilde{G}^{-1} \widetilde{T}$$
$$\widetilde{h}_{\mu\nu}^{\perp} = \frac{1}{B} \frac{1}{k^2 - \frac{A}{B}} \widetilde{G}^{-1} \left(\widetilde{T}_{\mu\nu} - \frac{1}{3} (\eta_{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^2}) \widetilde{T} \right)$$

Main features at a glance:

- (1) 4-dim limit: $\omega \rightarrow 0$, no vDVZ discontinuity.
- (2) s is tachyonic
- (3) s is a ghost
- (4) massive, unstable 4-dim gravitons h^{\perp}

Will come back to these later

(ロ) (同) (三) (三) (三) (三) (○) (○)

Motivation

- The Brane Induced Gravity (BIG) Model
- Workings and Problems
- Setup for the Analysis
- Solutions for the Basic Model
- Extrinsic Curvature Contributions
- Graviton Decay and Mass
- Screening of Brane A and Consequences
- On the Origin of Tachyonic Ghost
- Further Issue: 4d Effective Action and Dilaton Couplings

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Extrinsic Curvature Contributions

Could the neglected terms in the action resolve the ghost/tachyon problem?

$$S_{\Omega} = C \int d^4 \sigma \sqrt{-g} \left(\Omega^{\mathcal{M}}_{lphaeta} \ \Omega^{\ lphaeta}_{\mathcal{M}} - \Omega^{\mathcal{M}lpha}_{lpha} \ \Omega^{\ \ eta}_{\mathcal{M}eta}
ight)$$

where

$$\Omega^{M}_{\alpha\beta} = \partial_{\alpha}\partial_{\beta}x^{M} - \gamma^{\lambda}_{\alpha\beta}\partial_{\lambda}x^{M} + \Gamma^{M}_{NK}\partial_{\alpha}x^{N}\partial_{\beta}x^{K}$$

It involves, $\partial_i H|_{brane}$

For a thick brane, use $\langle \partial_i H \rangle \equiv \langle \frac{\partial}{\partial x_{\perp}^{\prime}} H \rangle (x_{||})$. **Outcome:** No change in \tilde{s} and \tilde{h}^{\perp} (negative and positive aspects).

・ロト・四ト・モート ヨー うへの

Motivation

- The Brane Induced Gravity (BIG) Model
- Workings and Problems
- Setup for the Analysis
- Solutions for the Basic Model
- **Extrinsic Curvature Contributions**
- Graviton Decay and Mass
- Screening of Brane A and Consequences
- On the Origin of Tachyonic Ghost
- Further Issue: 4d Effective Action and Dilaton Couplings

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●
G(x - x'): All propagations; $\langle G \rangle (x_{||} - x'_{||})$: Brane restricted

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

G(x - x'): All propagations; $\langle G \rangle (x_{||} - x'_{||})$: Brane restricted

Prob. of escape into bulk: $\sigma_{(brane \rightarrow Bulk)} \neq 0$

G(x - x'): All propagations; $\langle G \rangle (x_{||} - x'_{||})$: Brane restricted Prob. of escape into bulk: $\sigma_{(brane \rightarrow Bulk)} \neq 0$ Optical Theorem:

$$2 \operatorname{Im} \langle \widetilde{G} \rangle^{-1} = \sigma_{(\operatorname{brane} \to \operatorname{Bulk})} \neq 0$$

(no physical brane involved)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

G(x - x'): All propagations; $\langle G \rangle (x_{||} - x'_{||})$: Brane restricted Prob. of escape into bulk: $\sigma_{(brane \rightarrow Bulk)} \neq 0$ Optical Theorem:

$$2 \operatorname{Im} \langle \widetilde{G} \rangle^{-1} = \sigma_{(\mathit{brane}
ightarrow \mathit{Bulk})}
eq 0$$

(no physical brane involved)

brane-to-brane propagator with a physical brane:

$$\widetilde{G}^c_{bb} = (k^2 - rac{A}{B} \langle \widetilde{G}
angle^{-1})^{-1}$$

 \Rightarrow unstable 4-dim gravitons since,

$$\operatorname{Im}\,\langle\widetilde{G}_{bb}\rangle^{-1}=\frac{A}{B}\operatorname{Im}\,\langle\widetilde{G}\rangle^{-1}$$

・ロト・日本・日本・日本・日本・日本

Optical Theorm in the Complete Theory

brane-to-Bulk propagator:

$$\widetilde{G}_{Bb}(k,q) = rac{-\widetilde{P}(q)\,\langle \widetilde{G}^{-1}
angle}{k^2+q^2}\,\left[rac{1}{B}rac{1}{k^2+(A/B)\langle \widetilde{G}
angle^{-1}}
ight]$$

varifies optical theorem with physical brane,

2*Im*
$$\widetilde{G}_{bb}^{-1} = \sigma^{B
eq 0}_{brane
ightarrow bulk}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\sigma^{B\neq 0}_{\textit{brane}\rightarrow\textit{bulk}}$ given by $\widetilde{G}_{\textit{bB}}$ with proper amputations

Brane theory alone is not unitary

$$G_{bb} = \frac{1}{B} \frac{1}{k^2 - \frac{A}{B} \langle \widetilde{G} \rangle^{-1}} = \frac{\omega^2}{B} \frac{1}{\omega^2 k^2 - \frac{A\omega^n}{B} \Sigma(\omega^2 k^2 - i\epsilon)}$$

(ロ)、

$$G_{bb} = \frac{1}{B} \frac{1}{k^2 - \frac{A}{B} \langle \widetilde{G} \rangle^{-1}} = \frac{\omega^2}{B} \frac{1}{\omega^2 k^2 - \frac{A\omega^n}{B} \Sigma(\omega^2 k^2 - i\epsilon)}$$

Example, for even $n, m = \frac{n}{2} - 1$,

$$\Sigma^{-1}(u-i\epsilon) = N[u^{m}e^{u} E_{1}(u-i\epsilon) + \sum_{r=0}^{m} (-1)^{r}(r-1)! u^{m-r}]$$

(ロ)、

$$G_{bb} = \frac{1}{B} \frac{1}{k^2 - \frac{A}{B} \langle \widetilde{G} \rangle^{-1}} = \frac{\omega^2}{B} \frac{1}{\omega^2 k^2 - \frac{A\omega^n}{B} \Sigma(\omega^2 k^2 - i\epsilon)}$$

Example, for even $n, m = \frac{n}{2} - 1$,

$$\Sigma^{-1}(u-i\epsilon) = N[u^{m}e^{u} E_{1}(u-i\epsilon) + \sum_{r=0}^{m} (-1)^{r}(r-1)! u^{m-r}]$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

and $\lim_{\epsilon \to 0} E_1(u - i\epsilon) = -Ei(-u) + i\pi$

$$G_{bb} = \frac{1}{B} \frac{1}{k^2 - \frac{A}{B} \langle \widetilde{G} \rangle^{-1}} = \frac{\omega^2}{B} \frac{1}{\omega^2 k^2 - \frac{A\omega^n}{B} \Sigma(\omega^2 k^2 - i\epsilon)}$$

Example, for even $n, m = \frac{n}{2} - 1$,

$$\Sigma^{-1}(u-i\epsilon) = N[u^{m}e^{u} E_{1}(u-i\epsilon) + \sum_{r=0}^{m} (-1)^{r}(r-1)! u^{m-r}]$$

and $\lim_{\epsilon \to 0} E_1(u - i\epsilon) = -Ei(-u) + i\pi$

 $i\epsilon$ prescription \Rightarrow sign of imaginary part

 $\Sigma(u) = \Sigma_1(u) + i\Sigma_2(u)$

Standard QFT form for unstable particles

A D F A 同 F A E F A E F A Q A

$$G_{bb} = \frac{\omega^2}{B} \frac{1}{\omega^2 k^2 - \frac{A\omega^n}{B} [\Sigma_1(u) + i\Sigma_2(u)]}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$G_{bb} = \frac{\omega^2}{B} \frac{1}{\omega^2 k^2 - \frac{A\omega^n}{B} [\Sigma_1(u) + i\Sigma_2(u)]}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Complex mass pole: decay \Rightarrow Mass not sharply defined Exact complex pole: difficult even in QFT

$$G_{bb} = \frac{\omega^2}{B} \frac{1}{\omega^2 k^2 - \frac{A\omega^n}{B} [\Sigma_1(u) + i\Sigma_2(u)]}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Complex mass pole: decay \Rightarrow Mass not sharply defined Exact complex pole: difficult even in QFT

But, for small $\Sigma_2|_{pole}$, standard approximation valid:

$$G_{bb} = \frac{\omega^2}{B} \frac{1}{\omega^2 k^2 - \frac{A\omega^n}{B} [\Sigma_1(u) + i\Sigma_2(u)]}$$

Complex mass pole: decay \Rightarrow Mass not sharply defined Exact complex pole: difficult even in QFT

But, for small $\Sigma_2|_{pole}$, standard approximation valid: Mass defined by

$$\omega^2 k^2 - \frac{A\omega^n}{B} \Sigma_1(\omega^2 k^2) = 0$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\Sigma_2|_{pole}$: Decay width

From plots: good approximation for small mass

$$(\omega^2 k^2)/(rac{A\omega^n}{B})+\Sigma_1(\omega^2 k^2)=0, \qquad \qquad \Sigma_2(\omega^2 k^2)$$

A Sample Spectral Density Function

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline of the talk

Motivation

- The Brane Induced Gravity (BIG) Model
- Workings and Problems
- Setup for the Analysis
- Solutions for the Basic Model
- **Extrinsic Curvature Contributions**
- Graviton Decay and Mass
- Screening of Brane A and Consequences
- On the Origin of Tachyonic Ghost
- Further Issue: 4d Effective Action and Dilaton Couplings

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Screening of Λ

$$\Lambda \Rightarrow \widetilde{T}_{\mu\nu} = \widetilde{T}^{(m)}_{\mu\nu} + \Lambda \eta_{\mu\nu} \,\delta^{(4)}(k)$$

In any theory, $\widetilde{h}^{\perp}_{\Lambda\mu\nu} = 0$. But ...

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Screening of Λ

$$\Lambda \Rightarrow \widetilde{T}_{\mu\nu} = \widetilde{T}^{(m)}_{\mu\nu} + \Lambda \eta_{\mu\nu} \,\delta^{(4)}(k)$$

In any theory, $\widetilde{h}^{\perp}_{\Lambda\mu\nu} = 0$. But ...
EH gravity:

$$\widetilde{s}_{\Lambda} \sim \Lambda \, \delta^{(4)}(k)/k^2$$
 or $\Box_4 s_{\Lambda} \sim \Lambda$

 \Rightarrow Instability of flat space (dS)

Screening of Λ

$$\Lambda \Rightarrow \widetilde{T}_{\mu\nu} = \widetilde{T}_{\mu\nu}^{(m)} + \Lambda \eta_{\mu\nu} \,\delta^{(4)}(k)$$

In any theory, $\widetilde{h}_{\Lambda\mu\nu}^{\perp} = 0$. But ...
EH gravity:

$$\widetilde{s}_{\Lambda} \sim \Lambda \, \delta^{(4)}(k)/k^2$$
 or $\Box_4 s_{\Lambda} \sim \Lambda$

 \Rightarrow Instability of flat space (dS)

In BIG:

$$\widetilde{s}_{\Lambda}(k) = c \, \delta^{(4)}(k)$$
 or $s_{\Lambda}(k) = c$

$$c=-rac{16}{3}rac{d-5}{d-2}rac{\Lambda}{A}\langle\widetilde{G}
angle(0)>0,$$
 finite for $n>2$

Flat background is stable

Screening of A: Discussion

• Relevant: $\langle \widetilde{G} \rangle(0) = finite$, Irrelevant $Im \langle \widetilde{G} \rangle$, $\langle \widetilde{G} \rangle(k)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Screening of A: Discussion

- Relevant: $\langle \widetilde{G} \rangle(0) = finite$, Irrelevant $Im \langle \widetilde{G} \rangle$, $\langle \widetilde{G} \rangle(k)$
- ▶ No d = 4 + n dim behaviour as $k^2 \rightarrow 0$ (not needed)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Screening of A: Discussion

- Relevant: $\langle \widetilde{G} \rangle(0) = finite$, Irrelevant $Im \langle \widetilde{G} \rangle$, $\langle \widetilde{G} \rangle(k)$
- ▶ No d = 4 + n dim behaviour as $k^2 \rightarrow 0$ (not needed)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► Graviton decay ⇒ Accelerated expansion (??)

Screening of Λ: Discussion

- Relevant: $\langle \widetilde{G} \rangle(0) = finite$, Irrelevant $Im \langle \widetilde{G} \rangle$, $\langle \widetilde{G} \rangle(k)$
- ▶ No d = 4 + n dim behaviour as $k^2 \rightarrow 0$ (not needed)
- ► Graviton decay ⇒ Accelerated expansion (??)
- Contrast with massive Fierz-Pauli gravity:

$$m_{\rm s}=\infty \, \Rightarrow s=0 \, \, \, \, \, \, {
m except for} \, \, \, \, \, s_{\Lambda}\sim \Lambda/m_2 \; !$$

(日) (日) (日) (日) (日) (日) (日)

$$g_{\mu\nu}(x) = (1+c) \eta_{\mu\nu} + G_N h^{(m)}_{\mu\nu}(x)$$
 $(G_N = 1/B)$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$$g_{\mu
u}(x) = (1+c) \eta_{\mu
u} + G_N h^{(m)}_{\mu
u}(x)$$
 $(G_N = 1/B)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

For canonical flat metric η_{MN} ,

$$g'_{\mu
u} = rac{g_{\mu
u}}{(1+c)} = \eta_{\mu
u} + rac{G_N}{1+c} h^{(m)}_{\mu
u}(x)$$

$$g_{\mu\nu}(x) = (1+c) \eta_{\mu\nu} + G_N h^{(m)}_{\mu\nu}(x)$$
 $(G_N = 1/B)$

For canonical flat metric η_{MN} ,

$$g'_{\mu\nu} = \frac{g_{\mu\nu}}{(1+c)} = \eta_{\mu\nu} + \frac{G_N}{1+c} h^{(m)}_{\mu\nu}(x)$$
$$G'_N = G_N / (1+c) < G_N$$
(Similarly in $B \int \sqrt{g}R = (1+c)B \int \sqrt{g'}R'$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$g_{\mu
u}(x) = (1+c) \eta_{\mu
u} + G_N h^{(m)}_{\mu
u}(x)$$
 $(G_N = 1/B)$

For canonical flat metric η_{MN} ,

$$g'_{\mu
u} = rac{g_{\mu
u}}{(1+c)} = \eta_{\mu
u} + rac{G_N}{1+c} h^{(m)}_{\mu
u}(x)$$

 $G_N' = G_N/(1+c) < G_N$

(Similarly in $B \int \sqrt{g}R = (1 + c)B \int \sqrt{g}'R'$)

Here, c < 1. But is the observed smallness of G_N related to the unobserved largeness of $\Lambda(??)$

Outline of the talk

Motivation

- The Brane Induced Gravity (BIG) Model
- Workings and Problems
- Setup for the Analysis
- Solutions for the Basic Model
- **Extrinsic Curvature Contributions**
- Graviton Decay and Mass
- Screening of Brane A and Consequences
- On the Origin of Tachyonic Ghost
- Further Issue: 4d Effective Action and Dilaton Couplings

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Healthy h^{\perp} of no relevance

- Healthy h^{\perp} of no relevance
- A screened only by the tachyonic ghost s

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Healthy h^{\perp} of no relevance
- Λ screened only by the tachyonic ghost s

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• s_{Λ} independent of *B*

- Healthy h^{\perp} of no relevance
- Λ screened only by the tachyonic ghost s
- s_{Λ} independent of *B*
- ► But if A allowed to curve background, there exist classical solutions (with B = 0) with flat brane metric

(日) (日) (日) (日) (日) (日) (日)

- Healthy h^{\perp} of no relevance
- Λ screened only by the tachyonic ghost s
- s_{Λ} independent of *B*
- ► But if A allowed to curve background, there exist classical solutions (with B = 0) with flat brane metric

(日) (日) (日) (日) (日) (日) (日)

 Flat bulk approximation forces s to become massive to keep the brane flat

- Healthy h^{\perp} of no relevance
- A screened only by the tachyonic ghost s
- s_{Λ} independent of *B*
- ► But if A allowed to curve background, there exist classical solutions (with B = 0) with flat brane metric
- Flat bulk approximation forces s to become massive to keep the brane flat
- In other words, the tachyonic mass of s has the same function as a bulk curvature sourced by the brane

(日) (日) (日) (日) (日) (日) (日)

- Healthy h^{\perp} of no relevance
- A screened only by the tachyonic ghost s
- s_{Λ} independent of *B*
- ▶ But if A allowed to curve background, there exist classical solutions (with B = 0) with flat brane metric
- Flat bulk approximation forces s to become massive to keep the brane flat
- In other words, the tachyonic mass of s has the same function as a bulk curvature sourced by the brane
- Suggests that the tachyon/ghost problem is, at least partly, an artifact of the flat background approximation.

Outline of the talk

Motivation

- The Brane Induced Gravity (BIG) Model
- Workings and Problems
- Setup for the Analysis
- Solutions for the Basic Model
- **Extrinsic Curvature Contributions**
- Graviton Decay and Mass
- Screening of Brane A and Consequences
- On the Origin of Tachyonic Ghost

Further Issue: 4d Effective Action and Dilaton Couplings
Further Issue: 4d Effective Action

4 dim Effective action $S_{eff}[h, F]$

Tensor, vector form

Stückelberg form even with general covariance (broken phase realization (?))

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Further Issue: Dilaton Couplings

Bulk and Brane dilatonic couplings exist

Can be tuned to kill the ghost or make it very heavy

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ