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The Vainshtein mechanism is widely used in various
attempts to modify gravity in the IR

e D(€.9.In DGP:

e M;
e D¢
o Ci
e G{ Including

e G| * some exact cosmological solutions

« k-| C.D., Dvali, Gabadadze, Vainshtein ‘02

» Sphericall symmetric solution on the brane
Gabadadze, Iglesias ‘04

G¢ * Approximate solutions
Gruzinov ‘01, Tanaka ‘04

Various arguments in favour of a working
Vainshtein mechanism,

. FIOWEVET 110 ueTnie proor grir ute rormr of an exact
solution) that this is indeed the case in particular for
the phenomenlogically interesting case of static
spherically symmetric solutions !



1. Quadratic massive gravity: the Pauli-Fierz theory
and the vDVZ discontinuity

Pauli-Fierz action: second order action
for a massive spin two h,uy
fd4a:\/§Rg + m? fd4a:hu,,ha5 (77“’0‘77”5 — 77“’”770‘5)
S

second orderinh, =g, 1,,

@ Only Ghost-free (quadratic) action for a
Lorentz invariant massive spin two  Pauli, Fierz

The propagators read

propagator for - m=0 Dg‘”aﬁ(p) - nﬂ%vﬁmﬂ%m_ngjﬁ +O(p)

2p2

nuanyﬁ Fphoqpre n,uunozﬁ
7+ O(p)

popagator for mA) D) (p) = LG -



Coupling the graviton with a conserved energy-momentum tensor

Sint = [d*x \/gh,,,T"

@ W = [DH (g — 2T, 5(x")d '

The amplitude between two conserved sources T and S
IS given b
IVENDY A = [ate s (@), ()

For a massless graviton: A, = ( » —%mWAT> v
In Fourier
space

For a massive graviton: A, = (TW — %nWAT) quv



e.g. amplitude between two non relativistic sources:

sz OCdiag(ml,0,0,0) 2 . A 1~ .
\ A ~ sM1m2  Instead of A ~ 51N

S" o diag(ms, 0,0, 0)

7

@ Rescaling of Newton constant Gnewton = §G<4>

appearing in
the action

defined from Cavendish

experiment

but amplitude between an electromagnetic probe
and a non-relativistic source Is the same as In the
massless case (the only difference between massive and massless
case is in the trace part) = Wrong light bending! (factor %4)



2. Non linear Pauli-Fierz theory and the Vainshtein Mechanism

Can be defined by an action of the form
S = fd4513\/ —g (%Rg + Lg) + Sint[f7 g]a

aadsitoHibet ectmim.
for the g metric

Matter energy-momentu

e metric g andthe non
dyn&ffeciveetrardy-momentum
tensor ( ,g dependent

;g], Is chosen such that

Matter action
(coupled to metric Q)

The Inte

e |t IS Invariant under diffeomorphisms
* It has flat space-time as a vacuum
* When expanded around a flat metric

Quv =yt hyn 1y =m0
It gives the Pauli-Fierz mass term




Some working examples

1 T p UT UV £OT
S0 = gmtME [ da /S HoHor (77 £~ 1747
(Boulware Deser)

1 VT v oOT

Sim = —§m2M12a/d4w V=9 HuwHor (67977 — 9" g7")

(Arkani-Hamed, Georgi, Schwartz)

Wlth H,u,y — gluz/ T f/ﬂ/

(infinite number of models with similar properties)

NB: similar theory were investigated in various contexts in

particular also e « Strong gravity » Salam et al. 71

* « bigravity » Damour, Kogan 03
 « Higgs for gravity » Chamseddine, Mukhanov 10

— > Look for static spherically symmetric solutions



Interest: in this form the g metric can easily be
compared to standard Schwarzschild forn

> Gauge transformation
>
Gdrtds’ = —e’@ a2 4 MBGR2 | R2402
/ 2
{ fudztde” = —dt* + (1 - R”Q(R)) e MR gR? 4 e~ H(R) R240)2

Then look for an expansion In
Gy (orin Rg oc Gy M) of the would be solution



(For R <m%)

R
with € =—=
R R
MR) =+1 Z(Fea.. vainshtein 72

In some kind of
non linear PF

Wrong light bending!

This coefficient equals +1
Intreduges ez Hewi lengtii scale R blem
below which the perturbation theory dive: s'

For the sun: bigger than solar system! ¢—gwith R, = (Rgm ™" )1/o



So, what is going on at smaller distances?

@ Vainshtein'72

There exists an other perturbative expansion at smaller distances,
defined around (ordinary) Schwarzschild and reading:

V(R) = -8 {1 + O (R5/2/R2/2> }\ with R—5/2 2R 1/2
AR) =+ {1+ 0 (/R [

 This goes smoothly toward Schwarzschild as m goes to zero

» This leads to corrections to Schwarzschild which are non
analytic in the Newton constant



To summarize: 2 regimes

R 7 . R
v(R) = — ;; <l+5s+ )Wlth e:mTf%5

]_x
Valid for R > Ry with Ry = (Rem ™)
Standard ) A
perturbation theory

\around flat space

Crucial question: can one join the two
regimes in a single existing non singular
(asymptotically flat) solution? (Bouiware Deser 72)

—~

/Expansion around Py — R o (52 R
Schwarzschild v(ft) = - n ( T ( /1y ))

. Solution Valid for R < Ry




This was investigated (by numerical integration) by
Damour, Kogan and Papazoglou '03

@ No non-singular solution found
matching the two behaviours (always
singularities appearing at finite radius)
and hence failure of the « Vainshtein
mechanism »

(see also Jun, Kang '86)
In the rest of this talk:

A new look on this problem (using in
particular the « Goldstone picture » of
massive gravity in the « Decoupling
limit. »)

(in collaboration with E. Babichev and R.Ziour)



3. The problem we solved !

Framework: non linear Pauli-Fierz theory

S = [d'zy=g (R +Ly) + Siulf.g

ﬂ%&

Leads to the e.o.m. TW +T9,( ))

Matter energy-momentum tensor _ K
Effective energy-momentum

_ .. _ tensor (f,g) dependent
Bianchi indentity = V“TEV — ()

_ | , _ _
SE(S; _ 8”22:\[;‘}/{/4*{, ﬁ_g H,{.I-I/HCTT (,{J’{'mgm o gﬁ.i.vgga)

(Arkani-Hamed, Georgi, Schwartz)



Ansatz (« A, 1, v » gauge)

gudritde’ = —e’Bat? 4 AMBGR? + R2d0?
/ 2
fuvdxtdz” = —dt?® + (1 — R'LL2(R)> e B JR? + ¢ HE) R240)?

With this ansatz the e.o.m (+ Bianchi) read

29 29 V— / 1 74
Gy = eV ? <E+ﬁ(e>\_1)) = 8nGp (TF + pe”)
2 2 V, 1
Grrp’ = E—i_ ﬁ(l_(z)\) = 8nGn (T%R—I—Pe)‘)
” Bianchi” =» VT /p = 0

9 2272 . g _ 2712 o UG 2372
Iy =m"Mp fi, Trr=m"Mp fr, V' p=—m"Mpf,,



[
fo="—

‘ +v v R:u'f ’ A v 9 A+ +v v
< (BT 4 et —2eV) (11— 5 + et (2eM — V) = BeNTH (2eMTY et — 2eY)
E—U—Zﬂ

fr="—

lr 2
X |i(3€“+” — et — 2¢e”) (1 - R; ) 1 e (2e# +e¥) — 3eMtH (—2e*TY + e + 2¢”)

f B . R,"_.-‘,'r E—).—Zp,—v
7 2 8R

< [8(eM—1) (3erT —et —e”) + 2R ((3e! T —2e") (N +4p' —v') — e (N +4p" + 1))

_R? ((3e“+” — 26”) ()\fp:’ —2u" — "+ (Pif)g) — et (/\Ip:f — "+ v+ (p:’]g) — 2e" (,u’]g)]



To obtain our solutions, we used the Decoupling Limit, we
first...

« shooted »

Then « relaxed »




We used a combination of shooting and relaxation
methods

+ some analytic insight relying on (asymptotic)
expansions,

with appropriate Boundary conditions
(asymptotic flatness, no singularity in R=0)

For setting boundary (or initial) conditions for the
numerical integration, and better understand the result,
we used crucially the Decoupling Limit.



4. The « Decoupling Limit »

4.1. How to get this Decoupling limit (DL)
and why is it interesting ?

4.2. Solving the DL at large distance and
lessons for the full non linear case

4.3. The DL at smaller distances



4.1. How to get the Decoupling limit (DL) ?

Originally proposed in the analysis of Arkani-Hamed,
Georgi and Schwartz using « Stuckelberg » fields ...

and leads to the cubic action in the scalar sector
(helicity 0) of the model

DO |—

(Vo) = 50T + £ { (V2 + .. |

Other cubic terms omitted
With A = (m* M,,)5

A\

« Strong coupling scale »
(hidden cutoff of the model ?)




The Goldstone picture and Stlckelberg trick

The theory considered has the usual diffeo invariance
{ g (@) = 0,3 (x)0,a" (x)g,, (z'(z))
fu(z) = 0,2 ()02 (z)f5r (2 (2))

This can be used to go from a « unitary gauge » where

faB =naB

To a « non unitary gauge » where some of the
d.o.f. of the g metric are put into f thanks to a
gauge transformation of the form

] @ = XX W ()
(@ X

g AP gu(@) = 0,X%(2)0,X5(x)gap (X(z))




One (trivial) example: our spherically symmetric ansatz

gapdridr? = —J(r)dt* + K(r)dr® + L(r)r?dQ?
fapdz?de® = —dt® + dr? 4+ r?dQ?

Gauge transformation

gudrrtde” = —e/Bdt? 4 ABGR? + R2d0?
{ _ Ry/(R)
2

2
fudztdz” = —dt* + (1 ) e MR gR2 1 e~ #(R) R240)2



Expand the theory around the unitary gauge as
[ XA(x) = 5;‘:6“ + 7 ()

7 ™

{ Unitary gauge « pion » fields
coordinates

() = 6 (A" (2) + 0 0,0).

\

The interaction term S;:|f, g| expanded
at quadratic order in the new fields A# and ¢ reads

M1238m2/d433 [h2—hw/h/w

~4(hOA — hyy 0" A”) —[4(h0" 0yd — by 00" §)]

A4 gets a kinetic term via the mass term
¢ only gets one via a mixing term



One can demix ¢ from h by defining

Py = hyy — mzanb

And the interaction term reads then at quadratic order

~

The canonically normalized ¢ is given by ¢ = Mpm2¢

Taking then the
« Decoupling Limit »

( Mp — OO
m — 0 One is left with ...
A= (m*Mp)® ~  const
N Tyw/Mp ~ const,




SY

lﬂ"vaﬂ*ﬂ’d _L'TT_ { ,LU/}
2¢ QD?‘L A[qu A5 ) —|_ 5 ( gb gb,lﬂ/ QS )

With A = (m* Mp)Y>  and o and 8 model dependent coefficients

In the decoupling limit, the Vainshtein radius is kept fixed, and
one can understand the Vainshtein mechanism as

E.g. around a heavy source: €) of mass M

Interaction M/M ; of
the external source
with &

The cubic interaction above generates
O(1) coorrectionat R=R, = (Rsm4l)1/5




The cubic interaction is the strongest among all the others

, . - A\ k9 N\ k3 -
r ANA—k1—2ka—3k3—kap k1 [ o, ) 1 kg
At 2k —3hahaj (04—1) (00@) p

< Akq +3ko+2kg+4k, —6

J[P 5(k1+2ko+3ka+kqg—4)
N *":Xfcl.ff.g_kg_k;l — A

m

NB:

e Those interactions will all each have their own
« Vainshtein Radius », which is much smaller
than THE Vainshtein radius

e Can be seen to be negligible all the way to the
Schwarzschild radius Rq



Here we take a different route, doing first the rescaling

e

N
|

A
S
Il

(
=
Il

MPV
MPA . . . .
m2Mp And taking the « decoupling » limit
( MP — OO
m — 0
Y

A= m*Mp)t/5 ~ const

L Ty/Mp ~ const,

The full (non linear) system of e.o.m collapses to

N
R R
74D
R R2
)
RQ

L. . .
—5 B+ Ri') +p

~

[
v Q)
R T A5

System of
equations to be
solved in the DL




PUNEED 1. o-n ., ~ | System of
TRy = —Ba+RA)+p yStel
v equations to be
oA solved in the DL
R R?

A 7 QM

R2 2R ' AS

Which can be integrated once to yield the first integral

HQR)+ 3 p=—15



This firstintegral —3 i — = Q(f1) = &5

fapdr de’ g L drt | 0
Recall that p is encoding @
upon the substitution the gauge transformation :
/
N _zqgr fudzide? = —di® + (1-— 3“2(R)> e~ H(R) gR?
+e HE RO

Yields exactly one which is obtained using the -
Stluckelberg field in the scalar sector gb

&/ 9 ¢/ ¢/q3// &772 ¢/q§(3) ¢77¢(3)
— —4— 4+ 2 2 2
SR T oA R R TR TR T

R
712 1 112 (3) 1" (3)
+5< 6¢—+2¢¢ 142 +4§b¢ ¢ >} —

R4 R3 R?



To summarize, in the decoupling limit the full non linear

system reduces to

Lo
—5 B+ Ri) +p

_I_
T[> B[ >

ii

syl NI =g

K

U= —Fps

(\S] (V0]

f) +

/N

2
A5 @

Which can be shown to give the leading behaviour of the
solutionintherange Ry <« R < mt
k J
Y

The Vainshtein radius is in this range




4.2 Solving the DL (one only needs to solve the non linear ODE)

3 ~ 2 ~\y _ K
S+ Q) = — %3
Depends on the interaction term S;,¢[f, ¢]
E.g. in the Case of the two interaction terms (a+3=0)

1 T r VT 174 oT

S2 = —gmtM [ dte EF HuHor (7757 — 157
(Boulware Deser)
1 vT vV OT

Sz(fri)t — _ngM.F%/délx vV —4g HMVHGT (glwg —g""g )

(Arkani-Hamed, Georgi, Schwarz)

This equation boils down to the simple form

Sw—s(w2—|—2ww—|—8%) = 25%
With s = + 1 and the (w = (R,m) ?u
dimensionless quantities ! & = R/Ry

K

R% A°

\CO_




Sw—s(w 4+ 2w - Sww)

With s = & 1 and the ([ w
dimensionless quantities | ¢

(R m) =7
R/Ry
K
R2, A5

L4

How to read the Vainshtein mechanism and scalings ?

Keep the
linear part

e a power
law scaling




Indeed ... 3 — S (U]Q + 2w 4 Swgb) _ 25%

At large € (expect w o 1/ £3)

A power law expansion of the would-be solution to this
problem can be found (here with ¢, =1 and s = +1)
2 4 1024 712960 104910848 225030664192

w(l) = —5 + 5s——= _ S - .
&) 3¢3 " "3¢8 - 27¢13 HRDYE ¢18 BYE £23 2187 £28

@ Unique « solution » of perturbation theory

However... this series is divergent....

+ s + ...



... but seems to give a good asymptotic expansion of the
numerical solution at large &

 This can easily been checked numerically for

s= -1 (Boulware Deser)

(where the Vainshtein solution does not exist at small &,
becoming complex !)

* For s=+1 (Arkani-Hamed et al.) solution is
numerically highly unstable, singularities are
seemingly arising at finite €...

However by using a combination of relaxation
method / Runge-Kutta/ Asymptotic expansion ,

one can see that solutions (infinitely many !) with
Vainshtein asymptotics at large £ do exist.



In our case, using the « resurgence theory » o~
(J. Ecalle) extending Borel resummation g, Wk (§)

Borel transform ~
Formal Z P ag k—1
. . k [ >
(divergent) serie k § Zk (k—l)!€

Laplace transform or rather
« convolution average»
extension

Solution of the ODE

s=-1 (proof provided to \S:A 1
us by J. Ecalle)
Unigque solution The difference ~ Infinitely many

with w oc 1/ &3 ggmiﬂ;l”émﬁ ) solutions with
decay at infinity (asymptotically) by w o 1/ &3 decay

§3/2 exp (—k 3/5 €5/2) _ at infinity
(with integer k )



So, in the s=+1, the perturbation theory
does not uniquely fix the solution of the
DL at infinity !



A toy example with similar properties

1
Consider the two y'(z) +y(z) = — (1)
(linear) ODE J’l
T

—y(@) tyle) == @

And the Cauchy problem  ¥1.2(7) — ~ when r — oo

This problem can be solved explicitely

yi1(xr) = %cua{ ) + Ci(x) sin(x) — Si(x) cos(x)
- 1, . P
Yo(z) = Che ™™ — 5 (E':"l Ei(—z) — e " Ea( ;1:))
j .

In the second case, one can add freely an
homogeous solution



Both solutions have the following (divergent)
power serie expansion

1 2 24 720 1
Lyl(‘f):;_;‘|‘j—7—l—0 (I )

12 24 720 1
p(r) = —+—=+—=+—+0(

Where the homogeous mode is not seen !

G

Typical from asymptotic expansions



Back to the full non linear case

Flat space perturbation theory,
Starting with
(z=Rmtand € cG,)

(AN = Mo+ N+
N Vo= Vgp+ 1+ ...
. — L0 -+ 1 + ...

-~

=0

where A;, v, j1; are assumed to be proportional to €

One finds the
unique expansion
At large z (large R)

<

( Hn

An

Un

i=0

En—i—le—(n—kl)z E :

+1



However, this misses a subdominant (non

perturbative) correction of the form

C Op = Fa(z)exp (
.2
< 0N = —F(2) & eXp
i V€
" v = —F(z)—=—exp

With  Fo(2) ~ O (62/42:_3/2)

@ Hence, the solution at large z is not unique !




At small § (expect w < 1/ EV2: when the solution is real)

Let us first discuss the s= -1 case (Boulware Deser)
In this case: no real Vainshtein solution with w oc 1/ £1/2

Numerical woc 1/ &3
solution
W scales as
2 :
wo 1/ & ol
0.4 — |
03f
§2w(g)
0.1 — \ : :
: w o< 1/ EV2 at small € (Vainshtein)

D'Du-”' 1 2 3 4 5&



Another way to see the same

w w o 1/ &2
100} “

104

X~
S
L ~
S
e
L ~
~
~
S
~
- Se
. E ~
E Se
F ~
[ ~
e
B ~
L ~s
L )
e

0.01- Crossover at the
: Vainshtein radius: & =1

~
~
~
~
~
~
~
~
~
S
~

0.001L

0.1 0.2 0.5 1.0 2.0 5.0 10.0 &



How to obtain such

a scaling from 5 B . o
Sw—s(w + 2ww 8w§w) = 7

Which reduces at small distances to

—S (u}z—l—Zw@'D | 81‘?’) — 25%

Plug w = A &Pinto this equation and get
—35A%(p — 2)p £720HP) = 2¢0€ 3

~ v ——
HOWERBPHWY is a zE@iatiogitesetirensh. s
exists only If this leads to p = % (Vainshtein)

factor is positive
(requires s=+1)



Let us now discuss the s=+1 case (Arkani-Hamed et al.)

: : . 2
In this case the large distance behaviour w(&) ~ —

3£3
Does not lead to a unique small distance (§ < 1)
behaviour (and solution)

W

10°F “~_
g XK
10°& o
£ s
g .~
104F R
E S
F ‘*\
!“\\‘ \x\

100k =~ ~

1 1
0.005 0.01 0.05 0.1 05 L

g



W / w o 1/ &3 (large distance)

108
f w o 1/ &2 (new scaling)

106

100}

w o 1/ EY2 (Vainshtein)

. R R . . A R . . .
0.005 0.01 0.05 0.1 05 L



Most general case (general o, )

(. 3
2Q0(w)+ -w =—=
We have Jw) + > &3
4 with

to solve |

1
1
I
: -
T
I 0
1 /
' N i
. &

AGS potential MR

BD potential

, ... 3 . ., bww
3a | =ww + —ww + 2w* +
.) :2 E

i

3
2

o=—FP/2

N o=—13B/25

o=-=0

= S

(36 .. 5 ., 10ww
+ 5 =ww + —ww + bw* + -

Vainshtein scailing

Q-scaling

both scalings

Small =¢ scalings



scalings :
e p>0 B<0

Only Q-scaling has the Bof[h Q s_callng _and
. Vainshtein scaling have
correct large R behaviour
the correct large R

behaviour



To summarize our DL findings

e One can find non singular solutions in the DL (but this
can be hard because of numerical instabilities).

» The ghost does not prevent the existence of those
solutions.

* The perturbative expansion (at large R) can be
(depending on the potential) not enough to fix uniquely
the solution.

e There is a new possible scaling at small R
 Solution with the correct large R asymptotics cannot

always be extended all the way to small R (depending
on parameters « and J).



5. Numerical solutions of the full non linear system

10°°

1077

107°

Yukawa decay -~

v

10

100
R/Ry



The vDVZ discontinuity gets erased for
distances smaller than R, as expected

—V/A

—V/h ,DL == = =

0.001 0.01 0.1 1



Corrections to GR in the R < R,, regime

10°® .
AR

0 YT (first « Vainshtein »
- r correction to GR)
101 |
10t b
10 |
10" -

0.001 0.01 0.1

R/Ry;




Pressure inside the source, and a comparison with GR

3e-07 _— -

2e—07r W i

Pf"lp _— |
1.5e-07- PGR/F} A —

le-07f L

5e-08 N —— S W
0.0001 0.001 0.01

R/Ry




Capturing GR non linearities and
Comparing with the Decoupling Limit

]

10

10

10

-6

10

ra—

2000

1000
0.001)1

=01 — — -

320.05 LB
a=0.005

0.0001 0.001

0.01 0.1



@ Solutions were obtained for very low density
objects. We do not know what is happening
for dense objects (and BHS).

The « Q-scaling » does not lead to a
physical solution (singularities in R=0)



Conclusion (Vainshtein mechanism in massive gravity)

e |t works |

e What is going on for dense object ?

» Black Holes ? (C.D. T. Jacobson to appear)

e |In other models ?

 Gravitational collapse ?




5. k-Mouflage (Babichev, ¢.D., Ziour)

ldea: keep the qualitative structure of DL e.o.m.

% 1 % — %m.z(S;t + Ru') + 12%
7 A 9
T = M
];\_._)_ - ;? = Q(p),
= : {30 (6;1;5 + 2Ry + BRHNH + RQ/"'/“H>
C9R 2 2

' 3
+0 (lO,u,u +5Ru” + 21_1’}1}1” + 232;1’;5”)}



Obtained from the (DL) action o AV

172
S = % dd:f;{zhwaﬁayh — 20 8,,0,h7 + W Oh,,, — hOh

+ 2 (4R @3 6 — W) + 4 (06)* + 48 (O b )] }

1/d4.rT "

@ N.L. completion (and extension)
S

— U}% /d*l:.:, /—, ( §m 26R +m H(cj)) + 5.,

| v , 3 A
Home = 5 (B¢°) +5 B buué™),

H(¢)pep = m’0¢d,¢*,
H(é)x = K(X), with X = m% o
H()oa = m* (o ) 2 (0¢)* — b &)

(
? (‘i‘k ) '(D'?'J) — 2 ('?’j’:w ‘?f":w) B % (U# "j’#) R}

=

H(';’j’)CGUGaI —



10*

A" (dashed blue curve) and v/ (red solid curve)
¢" (thin black curve)

1000

100

10

0.1

0.01

R/Ry g -7
0.05 0.10 0.50 1.00 5.0010.00 00 .

0.01

Hy(X) x X? (dashed blue curve)
H = Hpap (red solid line) _

R /Ry gy



k-Mouflage

Nice (toy model) arena to explore
to modify gravity in the IR

(Nicolis, Rattazzi and Trincherini; Chow, Khoury; Silva,
Koyama... for Galileon)



