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In the 60’s this was regarded as a major disaster:

Left Brain:   G = 0

Precision quantum 
world in which gravity 
does not exist.

Right Brain:   h = 0

Precision gravity 
world in which 
quantum mechanics 
does not exist.

If true, uncontrolled theoretical errors…
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particle content and symmetries, to any given order 
in 1/M

Only a finite number of these appear in observables 
to any fixed order in E/M: but which ones?
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eg: N-point amplitude

N: external lines              
L: loops     
Vik: vertices with i fields, k derivs 
E: external energy
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High-dimension operators are suppressed by the 
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N-point amplitude

Leading contribution: L = 0 and Vik = 0 for all k > 
2 ie: classical GR

Next-to-leading: L = 1 and Vik = 0 for all k > 2 
  or     L = 0 and Vi4 = 1 and Vik = 0 for k 
> 4

Divergences in these are 
renormalized by these
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Quantifying Quantum Effects

• Gravity as an effective 
field theory

• How does matter 
change things?

For scalar fields 

General dimensional arguments go through if no 
new scales are introduced by the matter (such as 
non-relativistic sources) 

Scalar potential involves no derivatives so can 
dominate at low energies, making terms like M2ϕ2 
or M ϕ3 potentially dangerous
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Old idea: inflation requires a scalar, and the 
Standard Model has one (the Higgs). Can one scalar 
do both jobs?

Old Answer: No, even 
though a slow roll is possible 
for  V ~ λH φ4  if  φ » Mp

Problem: one parameter, 
λH, must satisfy 
contradictory requirements
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Bezrukov, Gormunov, 
& Shaposhnikov

New idea: Higgs inflation might yet work if we 
take LSM + LGR  →  LSM + LGR + ξ R φ2  term 
added to the SM lagrangian.

In the spirit of effective lagrangian to add all 
possible terms: this is only one missing to dim 4.

New parameter, ξ, can set δρ/ρ without ruining mH

Can potentially obtain predictions for other 
observables – ns etc – in terms of λH , and so mH.
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Potential can still produce a slow roll at large φ. 
After Weyl rescaling the action to Einstein frame 
(Mp

2 + ξ φ2) R  →  Mp
2 R, get a scalar potential:

Spokoiny; Salopek, Bond & 
Bardeen; Steinhardt

which approaches a constant for  φ » Mp/√ξ.
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To use standard inflationary formulae should also 
redefine the inflaton to canonical kinetic energy:

so

and
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Amplitude of primordial perturbations requires 
ξ ~ 104  since

Everything else predictable in terms of 
parameters linked to Higgs physics!

Bezrukov, Gormunov, 
& Shaposhnikov
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Question: is this large a dimensionless coupling 
a problem?

At first blush, no: the relative size of higher 
curvature terms is small, even if these are 
systematically proportional to ξ:
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BUT: there are two kinds of problems:

1. Parameters are on the very edge of the 
domain of validity of the classical 
approximation, which is controlled only at 
energies low compared with Λ = Mp/ξ.

2. V and f(φ) R are usually understood only for 
small fields: for φ  smaller than Λ.

CB, Lee & Trott; 
Espinosa & Barbon
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CB, Lee & Trott; 
Herzberg 

To see one symptom of the first problem 
consider higgs scattering in Einstein frame:

 for  E  >  Λ ~ Mp / ξ  ∼  Η/ √λ.

Quantum corrections can be dangerous since H 
is not systematically small compared with Λ.
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To see the second problem, suppose that before 
going to Einstein frame we consider:

for some M. 

But: for small φ, we have φ=χ(1+ξ χ2/Mp
2+..) 

so λ φ4 = λ χ4(1 + ξ χ2/Mp
2+..) 

so in the Einstein frame M < Λ = Mp/ξ. 

Espinosa & Barbon
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Interacting scalar field in de Sitter space is 
notoriously IR sensitive once m << H.

Field profiles become dominated by large 
fluctuations from one Hubble patch to the next
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This situation is reminiscent of IR sensitivity of 
thermal fluctuations near a critical point

for which Bose-Einstein distribution functions,    
n(k) ~1/(eβk-1) ~ T/k enhance the IR singularities
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Can power count how amplitudes diverge in the IR

so if 

but if 

then 

then mean-field methods 
completely break down 
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Similarly scalar fields in de Sitter have IR behaviour

so might also expect mean-field (ie semiclassical) 
methods to completely break down for m2 < g H2

CB, Holman, Leblond & Shandera
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Power counting reinforces the problems with light 
scalars: since scalar masses are UV sensitive, light 
scalars generically require some explanation.

For instance, inferences about microscopic properties 
(like supersymmetry or extra dimensions) through 
classical reasoning applied to astrophysical 
observables (like dark energy) is generically suspect.

Since small masses are required, classical 
conclusions are likely dominated by quantum effects.

M

m

Searches for light scalars are nonetheless interesting 
provided the relevant quantum effects are included

Power UV divergences are proxies for 
sensitivity to heavy physical masses
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Type IIB vacua
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Balasubramanian, Bergland, Conlon & Quevedo
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Relevance to gravity

• Inflation

• de Sitter space

• Naturalness issues

Searches for light scalars is nonetheless interesting 
provided the relevant quantum effects are included

They also predict a rich hierarchy of 4D scalar masses 

Example: Large-Volume string compactifications of 
Type IIB vacua

4D Planck scale

String scale

Kaluza Klein scale

Moduli and gravitino mass scales

Volume modulus mass scale

10D sugra description

4D sugra 
description
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How stable are these against quantum corrections?

Example: moduli masses

String loops: generate α’ corrections to 10D sugra
10D sugra loops: generate ΚΚ scale corrections

Ms is the cutoff, so 
is already included 
in string loop part. 
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How stable are these against quantum corrections?

Example: moduli masses

String loops: generate α’ corrections to 10D sugra
4D loops: cutoff is MKK, largest mass is Mmod

These are deadly for any M bigger than Mmod, but in 
LV models they are forbidden by 4D susy

M ~ M3/2 ~ Mmod
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• Inflation
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• Naturalness issues

How stable are these against quantum corrections?

Example: moduli masses

Upshot: loops are generically dangerous but can be 
adequately suppressed by susy. No new miracles

For volume modulus, classical prediction is likely 
too low, with radiative corrections lifting its mass
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Conclusions

• Quantum effects including gravity are well understood 
at sufficiently low energies

• For most inflationary models, these quantum effects 
are controllably small, but for some inflation occurs at 
the edges of the semiclassical regime

• Large fluctuations for massless scalars in de Sitter 
space might invalidate semiclassical methods in some 
circumstances.

• Light scalars are notoriously difficult to achieve, but 
unusual combinations of supersymmetry and extra 
dimensions may yet surprise us 


