### Non-linear supersymmetry and brane dynamics

### I. Antoniadis

#### CERN

#### Fundaments of Gravity, Munich, 12-16 April 2010

- Introduction and motivations
- **2** N = 1: goldstino couplings to matter

I.A.-Tuckmantel '04; Komargodski-Seiberg '09

Non-linear MSSM I.A.-Dudas-Ghile

I.A.-Dudas-Ghilencea-Tziveloglou to appear

Extended supersymmetry and brane dynamics

Bagger-Galperin '97; I.A.-Derendinger-Maillard '08

Ambrosetti-I.A.-Derendinger-Tziveloglou '09 + to appear

# Non-linear supersymmetry $\Rightarrow$ goldstino mode $\chi$ Volkov-Akulov '73

Why study goldstino interactions:

- Effective field theory of SUSY breaking at low energies m<sub>χ</sub> << m<sub>susy</sub>
   e.g. gauge mediation dominant vs gravity mediation
   χ: longitudinal gravitino with m<sub>χ</sub> << m<sub>soft</sub> << m<sub>susy</sub>
- Brane dynamics: half SUSY of the bulk broken but NL realized
   ⇒ e.g. strongly constrain coupling of brane to bulk fields
   exact NL susy in the large volume limit
   broken by the orientifold projection at finite volume
   ⇒ important for large volume compactifications, e.g. low scale strings

Non-linear SUSY transformations: [5]

$$\delta\chi_{\alpha} = \frac{\xi_{\alpha}}{\kappa} + \kappa \Lambda_{\xi}^{\mu} \partial_{\mu}\chi_{\alpha} \qquad \Lambda_{\xi}^{\mu} = -i\left(\chi\sigma^{\mu}\bar{\xi} - \xi\sigma^{\mu}\bar{\chi}\right)$$

 $\kappa$ : goldstino decay constant (SUSY breaking scale)  $\kappa = (\sqrt{2}m_{susy})^{-2}$ 

Goldstino interactions: 3 formulations

Standard realization

Volkov-Akulov '73, Clark-Love '96, Clark-Lee-Love-Wu '98

- Superfield formalism Ivanov-Kapustnikov '78, Samuel-Wess '83 Brignole-Feruglio-Zwirner '97, Luty-Ponton '98, I.A.-Tuckmantel '04
- Constrained superfields

Rocek-Tseytlin '78, Lindstrom-Rocek '79, Komargodski-Seiberg '09

### **Standard realization**

Define the 'metric':  $G^{\nu}_{\mu} = \delta^{\nu}_{\mu} + \kappa^2 t^{\nu}_{\mu}$   $t^{\nu}_{\mu} = i \chi \overleftrightarrow{\partial}_{\mu} \sigma^{\nu} \bar{\chi}$ 

 $\delta(\det G) = \kappa \,\partial_{\mu} \left( \Lambda_{\xi}^{\mu} \det G \right) \Rightarrow \text{invariant action:}$ 

$$S_{V\!A} = -\frac{1}{2\kappa^2} \int d^4x \det G = -\frac{1}{2\kappa^2} - \frac{i}{2} \chi \sigma^\mu \overleftrightarrow{\partial}_\mu \bar{\chi} + \dots$$

Generalization to matter and gauge fields:

$$S_{eff} = \int d^4 x \det G \mathcal{L}_{SM}(\phi)$$
 invariant if  $\delta \phi = \kappa \Lambda^{\mu}_{\xi} \partial_{\mu} \phi$  and so  $\mathcal{L}_{SM}$ 

However problem with derivatives  $\Rightarrow$  define SUSY covariant ones:

 $\mathcal{D}_{\mu}\phi \equiv \left(G^{-1}\right)^{\nu}_{\mu}D_{\nu}\phi \qquad \mathcal{F}_{\mu\nu} \equiv \left(G^{-1}\right)^{\lambda}_{\mu}\left(G^{-1}\right)^{\rho}_{\mu}F_{\lambda\rho}$  $\mathcal{L}_{eff} = \det G \mathcal{L}_{SM}(\phi, \mathcal{D}_{\mu}\phi) = \mathcal{L}_{SM}(\phi, \mathcal{D}_{\mu}\phi) + \kappa^{2} t^{\mu\nu} T_{\mu\nu} + \dots$ 

universal coupling to stress-tensor but NOT the most general inv action

### **Superfield formalism**

Recipe: 
$$\phi(x) \to \Phi(x, \theta, \overline{\theta}) \equiv \phi(\tilde{x})$$
  $\tilde{x}^{\mu} = x^{\mu} + \Lambda^{\mu}_{\theta}(\tilde{x})$  [3] [8]  
=  $\phi(x) + \kappa \Lambda^{\mu}_{\theta} \partial_{\mu} \phi + \dots \Rightarrow$ 

Goldstino (spinor) superfield:  $\mathcal{G}_{\alpha} = \frac{\theta_{\alpha}}{\kappa} + \chi_{\alpha}(\tilde{x})$ 

space-time derivatives: use the 'metric'  $G(\tilde{x})$ 

e.g. 
$$\mathcal{F}_{\mu\nu}(x,\theta,\bar{\theta}) \equiv \left[ \left( G^{-1} \right)^{\lambda}_{\mu} \left( G^{-1} \right)^{\rho}_{\mu} F_{\lambda\rho} \right] (\tilde{x})$$

 $O = \int d^2\theta d^2\bar{\theta} \mathcal{O} = \sum_{n \ge 0} \kappa^n O^{(n)} \quad \text{even/odd } n \leftrightarrow \text{even/odd number of } \chi\text{'s}$ 

dims:  $[\mathcal{O}] = d \ge 0 \Rightarrow [\mathcal{O}] = d + 2, \ [\mathcal{O}^{(n)}] = d + 2 + 2n$ 

Effective operators of dimension  $\leq 8 \Rightarrow d \leq 2, n \leq 2$ 

### List of lowest dim operators

2 operators of dim 6 linear in  $\chi$   $_{\rm [12]}$ 

 $S_1 = C_1 \int d^4 x \ \kappa \ F_{\mu\nu} \psi \sigma^\mu \partial^\nu \bar{\chi} + h.c.$   $S_2 = C_2 \int d^4 x \ \kappa (\psi \partial_\alpha \chi) D^\alpha \phi + h.c.$ 

Quadratic in  $\chi$ : 1 operator of dim 7

 $S_{7} = C_{7} \int d^{4}x \ \kappa^{3/2} \phi_{1} \phi_{2} \ \partial_{\mu} \chi J^{\mu\nu}_{(\frac{1}{2},0)} \partial_{\nu} \chi + h.c.$  $J^{\mu\nu}_{(\frac{1}{2},0)} = \frac{1}{4}\sigma^{[\mu}\bar{\sigma}^{\nu]}$ + 5 operators of dim 8  $S_3 = C_3 \int d^4 x \, \kappa^2 (\psi_1 \partial^\mu \chi) (\bar{\psi}_2 \partial_\mu \bar{\chi}) + h.c. \quad S_4 = C_4 \int d^4 x \, \kappa^2 (\psi_1 \psi_2) (\partial_\mu \chi \partial^\mu \chi) + h.c.$  $S_5 = C_5 \int d^4 x \, \kappa^2 \phi_1 \overleftrightarrow{D}_{\mu} \phi_2 i \partial_{\alpha} \chi \sigma^{\mu} \partial^{\alpha} \bar{\chi} + h.c.$  $S_6 = C_6 \int d^4 x \, \kappa^2 \partial^\alpha \chi \sigma^\mu \partial^\nu \bar{\chi} \partial_\alpha F_{\mu\nu} + h.c.$  $S_8 = C_8 \int d^4x \, \kappa^2 \phi_1 \phi_2 \phi_3 (\partial_\mu \chi J^{\mu\nu}_{(\frac{1}{2},0)} \partial_\nu \chi) + h.c.$ 

spontaneous global SUSY: no supercharge but still conserved supercurrent
⇒ superpartners exist in operator space (not as 1-particle states)
⇒ constrained superfields: 'eliminate' superpartners

Goldstino: chiral superfield  $X_{NL}$  satisfying  $X_{NL}^2 = 0 \Rightarrow [19]$ 

2

$$X_{NL}(y) = \frac{\chi^2}{2F} + \sqrt{2}\theta\chi + \theta^2 F \qquad y^\mu = x^\mu + i\theta\sigma^\mu\bar{\theta}$$
$$= F\Theta^2 \qquad \Theta = \theta + \frac{\chi}{\sqrt{2}F}$$
$$\mathcal{L}_{NL} = \int d^4\theta X_{NL} \bar{X}_{NL} - \frac{1}{\sqrt{2}\kappa} \left\{ \int d^2\theta X_{NL} + h.c. \right\} = \mathcal{L}_{VA}$$
$$F = \frac{1}{\sqrt{2}\kappa} + \dots$$

### Goldstino couplings to matter

Coupling to superfields:  $m_{soft} << E << m_{susy} \sim 1/\sqrt{\kappa}$ replace auxiliary superfield spyrion  $S = m_{soft}\theta^2$  by  $\sqrt{2\kappa}m_{soft}X_{NL}$ 

Coupling to (non-SUSY) matter:  $E << m_{soft}, m_{susy}$ 

 $\rightarrow$  constrained matter superfelds

• Fermions:  $Q_{NL}$  satisfying  $Q_{NL}X_{NL} = 0$  (eliminate sfermions)  $\Rightarrow$ 

$$Q_{NL} = \sqrt{2} \left( \psi - \frac{F_Q \chi}{F} \right) \Theta + F_Q \Theta^2$$

• Complex scalars:  $H_{NL}$  with  $X_{NL}\bar{H}_{NL}$  = chiral (eliminate 'higgsinos') [5]

 $\Rightarrow H_{NL} = H(\hat{y}) \qquad \hat{y} = y^{\mu} + i\sqrt{2}\theta\sigma^{\mu}\bar{\chi}(\hat{y})/\bar{F}(\hat{y})$ 

• Real scalars:  $A_{NL}$  with  $X_{NL}\bar{A}_{NL} = X_{NL}A_{NL}$ 

 $\Rightarrow$  Im $A = \frac{1}{2FF} (\chi \sigma^{\mu} \bar{\chi}) \partial_{\mu} \text{Re}A + \dots$ 

• Gauge fields: V<sub>NL</sub>

gauge transformations:  $\delta V = \Omega + \bar{\Omega}$  with  $X_{NL}(\Omega_{NL} + \bar{\Omega}_{NL}) = 0$ e.g. charged matter  $H_{NL} = e^{iR_{NL}}$ ;  $X_{NL}(R_{NL} - \bar{R}_{NL}) = 0$ :  $\delta R_{NL} = i\Omega_{NL}$  $\Rightarrow$  convenient gauge choice  $X_{NL}V_{NL} = 0$ eliminate gaugino:  $X_{NL}W_{NL} = 0$  field strength  $W = -\frac{1}{4}\bar{D}^2DV$  [19]  $\Rightarrow V_{NL} = -\Theta \left(\sigma^m V_m + \frac{D}{|F|^2}\chi\bar{\chi}\right)\bar{\Theta} + \frac{1}{2}\Theta^2\bar{\Theta}^2D + \text{derivatives}$  Type II (closed) strings on 4*d* Minkowski  $M_4 \times X_6$  internal 6*d* manifold  $X_6$  flat  $\Rightarrow N = 8$  SUSY ;  $X_6$  Calabi-Yau  $\Rightarrow N = 2$  SUSY

Single stack of N Dp-branes  $\Rightarrow$  half SUSY is spontaneously broken  $p \ge 3$ 

(p-3) dims wrapped around cycles in  $X_6 \Rightarrow 4d$  effective field theory

- Gauge group: G = U(N) (generically)
- SUSY: half remains unbroken Q<sub>e</sub>; other half NL realized Q<sub>o</sub>
   broken SUSY commutes with G ⇒ goldstino = U(1) gaugino of Q<sub>e</sub>

Intersecting branes: useful framework for model building

Standard Model embedding

Two D-brane stacks:  $N_1 Dp_1$  and  $N_2 Dp_2$ 

#### $\Rightarrow$ bifundamental matter on their intersections: chiral fermions

L-SUSY: generally broken but preserved for special intersection angles

e.g. for  $X_6 = T^2 \times T^2 \times T^2$  when  $\theta_1 + \theta_2 + \theta_3 = 0$ 

NL-SUSY: generally all (both  $U(1)_1 \times U(1)_2$  gauginos = goldstinos) special angles  $\Rightarrow$  only a linear combination

Remark: string consistency (e.g. tadpole cancellation) ⇒ need orientifolds non-dynamical planes ⇒ break half-SUSY explicitly

 $\Rightarrow$  goldstino gets a volume suppressed mass

NL-SUSY only locally  $\rightarrow$  restored in the large volume limit

### **Intersecting D-brane models**

1) Goldstino decay constant: sum of brane tensions

$$\frac{1}{2\kappa^2} = T_1 + T_2 \qquad T_i = \frac{M_s^4}{4\pi^2 g_i^2} N_i$$

2) Goldstino couplings: only 3 non-vanishing up to order  $\kappa^2$  [6]

 $C_1 = \sqrt{2}$  ;  $C_2 = 2$  ;  $C_3 = 2$ 

- universal coefficients independent of brane-angles
- $C_3$ : fixes the field theory ambiguity of 4-fermion operator

Brignole-Feruglio-Zwirner '97, I.A.-Benakli-Laugier '01

•  $C_{1,2}$ : dim 6 operators linear in  $\chi$  can be written as

 $\mathcal{L}_{\text{linear}} = \frac{\kappa}{\sqrt{2}} J^{\mu} \partial_{\mu} \chi + h.c. \quad J^{\mu} : N = 1 \text{ supercurrent of linear SUSY}$ present in the intersection if massless scalars

### Phenomenological analysis in the Standard Model

$$\mathcal{L}_{\chi} = -\frac{i}{2}\chi\sigma^{\mu}\overleftrightarrow{\partial}_{\mu}\bar{\chi} + i\kappa^{2}(\chi\overleftrightarrow{\partial}^{\mu}\sigma^{\nu}\bar{\chi})T_{\mu\nu} + \delta\mathcal{L}_{\chi}$$

$$\delta \mathcal{L}_{\chi} = i \sqrt{2} \kappa F_{\mu\nu} \psi \sigma^{\mu} \partial^{\nu} \bar{\chi} + 2 \kappa D_{\mu} \phi(\psi \partial^{\mu} \chi) + h.c.$$

 $+2\kappa^2(\partial_\mu\chi\psi_1)(\partial^\mu\bar\chi\bar\psi_2)+\mathcal{O}(\kappa^3)$ 

- 1st term: hypercharge + fermion singlet
- 2nd term: higgs + lepton doublets I.A.-Tuckmantel-Zwirner '04 preserves lepton number if  $L(\chi) = -1$ 
  - $Z, H \to \nu \chi$   $W^{\pm} \to I^{\pm} \chi \Rightarrow M = m_{susy} |\sqrt{2}/C_2|^{1/2} \simeq M_s/2$
  - bounds:  $M \gtrsim 270 \text{ GeV} \Rightarrow M_s \gtrsim 500 \text{ GeV}$  (e.g. invisible Z width)
  - signal: invisible Higgs decay

dominant or non-negligible in a large range of  $(M, m_H)$ 



Phenomenological analysis in the MSSM $E \sim m_{soft} >> m_{\chi}$ I.A.-Dudas-Ghilencea-Tziveloglou to appear

Higgs potential is modified:

 $V = V_{MSSM} + 2\kappa^2 \left| m_1^2 |h_1|^2 + m_2^2 |h_2|^2 + B\mu h_1 h_2 \right|^2 + \mathcal{O}(\kappa^4) \quad \Rightarrow$ 

 $m_{1,2}, B\mu$ : soft mass parameters,  $\mu$ : higgsino mass

classical value of light higgs mass can be increased above the LEP bound

large tan 
$$\beta$$
 limit:  $m_h^2 = m_Z^2 + \frac{v^2}{2m_{susy}^2}(2\mu^2 + m_Z^2)^2 + \cdots$ 

ightarrow e.g.  $\mu = 900$  GeV,  $m_{susy} = 2$  TeV  $\Rightarrow$   $m_h = 114.4$  GeV

Quartic higgs coupling increases for large soft masses  $\Rightarrow$ 

MSSM 'little' fine tuning is alleviated

**New couplings**  $\Rightarrow$   $Z, h \rightarrow \chi \chi$   $\Rightarrow$  invisible higgs decay



msusy

# NL extended supersymmetry

Goldstino in multiplet of N = 1 SUSY: vector or chiral?

brane dynamics  $\Rightarrow$  Maxwell goldstino multiplet

gauge chiral multiplet  $|_{N=2} \mathcal{W} = (\text{vector } \mathcal{W} + \text{chiral } X)_{N=1}$ 

 $\mathcal{W}(y,\theta,\tilde{\theta}) = X(y,\theta) + i\sqrt{2}\tilde{\theta}W(y,\theta) - \tilde{\theta}^2 \left[\frac{1}{4}\overline{DDX}(y,\theta) + \frac{1}{2\kappa}\right]$ allow partial SUSY breaking  $N = 2 \rightarrow N = 1$ 

$$\delta^* X = i\sqrt{2}\eta^{lpha} W_{lpha} \qquad \delta^* W_{lpha} = rac{i}{\sqrt{2\kappa}}\eta_{lpha} + \ldots \leftarrow \text{linear SUSY}$$

$$\mathcal{L}_{Maxwell}^{N=2} = -\frac{1}{8} \int d^2\theta \, d^2\tilde{\theta} \, \mathcal{W}^2 + h.c. = \int d^2\theta \left[ \frac{1}{2} \mathcal{W}^2 - \frac{1}{4} \mathcal{X} \overline{DDX} - \frac{1}{2\kappa} \mathcal{X} \right] + h.c.$$

Partial SUSY breaking: non trivial prepotential f(W) [19]

I.A.-Partouche-Taylor '96

 $N = 1_I + 1_{NI}$ 

### Partial SUSY breaking

$$\mathcal{L}_{partial} = -\frac{1}{8} \int d^2\theta \ d^2\tilde{\theta} \ f(\mathcal{W}) - \frac{1}{8} \xi_1 \int d^2\theta \ X + h.c.$$
  
$$= \frac{1}{4} \int d^2\theta \left[ f''(X) \mathcal{W}^2 - \frac{1}{2} f'(X) \overline{DDX} - \frac{1}{\kappa} f'(X) - \frac{1}{2} \xi_1 X \right] + h.c.$$
  
*magnetic FI* term  
$$\Rightarrow \text{ scalar potential:} \quad V_{scalar} = \frac{1}{16 \operatorname{Re} f''} \left| \frac{1}{2} \xi_1 + \frac{1}{\kappa} f'' \right|^2$$

non-trivial prepotential  $f \Rightarrow$  partial SUSY breaking for  $f''(X) = -\kappa \xi_1/2$ 

Non-linear N = 2 constraint:  $W_{NL}^2 = 0$ 

$$\Rightarrow X^{2} = 0 , \quad XW_{\alpha} = 0 , \quad WW - \frac{1}{2}X\overline{DDX} = \frac{1}{\kappa}X \quad [7]$$

$$X = \kappa W^{2} - \kappa^{3}\overline{D}^{2}\frac{W^{2}\overline{W}^{2}}{1+A_{+}+\sqrt{1+2A_{+}+A_{-}^{2}}} \qquad A_{\pm} = \frac{\kappa^{2}}{2}\left(D^{2}W^{2} \pm \overline{D}^{2}\overline{W}^{2}\right) = \pm A_{\pm}^{*}$$

$$\Rightarrow \mathcal{L}_{NL}^{N=2} = \frac{1}{4\kappa}\int d^{2}\theta X + h.c.$$

$$= \frac{1}{8\kappa^{2}}\left(1 - \sqrt{-\det(\eta_{\mu\nu} + 2\sqrt{2}\kappa F_{\mu\nu})}\right) + \ldots = \mathcal{L}_{DBI} \leftarrow \text{ D-brane}$$

The FI-term is also invariant under NL SUSY

$$\mathcal{L}_{FI} = \xi \int d^4 \theta V; \quad W = -\frac{1}{4} \bar{D}^2 D V; \quad \delta^* V = \frac{i}{2\kappa} \left( \eta D + \bar{\eta} \bar{D} \right) \theta^2 \bar{\theta}^2 + \dots$$

$$\Rightarrow \mathcal{L}_{Max}^{NL} = \mathcal{L}_{NL}^{N=2} + \mathcal{L}_{FI}$$
 [21]

## Coupling to bulk hypermultiplets e.g. the universal dilaton

at least one isometry  $\rightarrow$  single-tensor multiplet (RR 2-forms)

N = 2 tensor  $\mathcal{Y} = (\text{tensor } L + \text{chiral } \Phi)_{N=1}$   $D^2L = \overline{D}^2L = 0$ 

general action: 
$$\mathcal{L}_{ST} = \int d^4 \theta \mathcal{H}(L, \Phi, \bar{\Phi})$$
 with  $\left(\partial_L^2 + 2 \partial_{\Phi} \partial_{\bar{\Phi}}\right) \mathcal{H} = 0$  [24]

 $L = D^{\alpha} \ell_{\alpha} + h.c.$   $\ell_{\alpha}$ : chiral spinor superfield

off-shell  $N = 2 \Rightarrow$  add auxiliary chiral superfield  $Y \sim \theta^2 \epsilon \cdot C_4 \leftarrow$  4-form

$$\mathcal{Y}(y,\theta,\tilde{\theta}) = Y(y,\theta) + i\sqrt{2}\,\tilde{\theta}\,\ell(y,\theta) - \frac{i}{2}\tilde{\theta}^2\,\Phi(y,\theta)$$

coupling to N = 2 vector W: Chern-Simons interaction:

$$\mathcal{L}_{CS} \sim g \int d^2 \theta d^2 \tilde{\theta} \mathcal{Y} \mathcal{W} = g \int d^2 \theta \left( \ell^{\alpha} W_{\alpha} + \frac{1}{2} \Phi X - \frac{i}{2\kappa} Y \right) + h.c.$$

 $\Rightarrow$  global SUSY limit of D-brane coupling to bulk hypermultiplets

### N = 2 NL QED and novel super-higgs mechanism

General action: 
$$\mathcal{L}_{tot}^{NL} = \mathcal{L}_{CS} + \mathcal{L}_{Max}^{NL}(W) + \mathcal{L}_{ST}(L, \Phi) \Rightarrow {}_{[19]}$$

superhiggs mechanism without gravity:

Maxwell goldstino  $\mathcal{W}_{NL}(W)$  is 'absorbed' by N = 2 tensor  $\mathcal{Y}(L, \Phi)$ 

 $\rightarrow N = 1$  massive vector (W, L) + massless chiral  $\Phi$ :

- tensor of L + vector of  $W \rightarrow$  massive vector
- scalar of  $L \in$  same massive vector multiplet
- goldstino + fermion of  $L \rightarrow$  Dirac spinor

System identical to Higgs phase of N = 2 NL QED (up to  $\mathcal{L}_{ST}$ )

 $\Phi \sim Q_1 Q_2$   $L \sim |Q_1|^2 - |Q_2|^2$   $(Q_1, Q_2)$ : charged hypermultiplet

adding mass-term  $m \int d^2 \theta \Phi \Rightarrow$  also Coulomb phase for  $\xi = 0$ 

- 3 parameters:  $\kappa, \xi, m$ 
  - m = 0: Higgs phase and super-higgs without gravity  $\langle Q_1 \rangle = v$  (real) arbitrary  $\langle Q_2 \rangle = \sqrt{\xi + v^2}$
  - $m \neq 0, \xi = 0$ : Coulomb phase with N = 2 NL SUSY unbroken
  - $m \neq 0, \xi \neq 0$ : N = 1 (linear) SUSY is also broken

Ambrosetti-I.A.-Derendinger-Tziveloglou '09

# global limit of the universal hypermultiplet

Ambrosetti-I.A.-Derendinger-Tziveloglou '10

type IIB string basis:

- NS-NS sector: dilaton  $\varphi$  + (2-form  $B_{\mu\nu} \leftrightarrow$  4d axion a)
- R-R sector: scalar  $C^{(0)}$  + 2-form  $C_{\mu\nu} \leftrightarrow$  complex scalar C

perturbation theory: 3 isometries (a, C shifts) forming the Heiseberg group

 $[T_1, T_2] = T_a \qquad [T_{1,2}, T_a] = 0$ 

extended by a 4th generator R rotating  $(T_1, T_2)$ : phase transform of C

 $[R, T_i] = \varepsilon_{ij} T_j \qquad [R, T_a] = 0 \qquad \Rightarrow \qquad$ 

 $T_a$  = central extension of the 2-dim Euclidean group  $E_2$ :  $(T_1, T_2, R)$ 

N = 2 **local SUSY**: 4d guaternionic manifold  $\equiv$ 

(Weyl) self-dual Einstein space of non-zero curvature

Heiseberg isometry  $\Rightarrow$  potential  $F(\rho)$  of one variable  $\rho \leftrightarrow$  dilaton:

 $F = \rho^{3/2} + \chi \rho^{-1/2}$ 8 isometries  $SU(2,1)/U(2) \leftarrow$  tree-level 1-loop correction

Caldebank-Pedersen '01, I.A.-Minasian-Theisen-Vanhove '03

N = 2 global SUSY: 4d hyperkähler manifold  $\equiv$ 

(Riemann) self-dual Einstein space of zero curvature

Heiseberg isometry  $\Rightarrow$  one variable: [20]

$$\mathcal{V} = L + \frac{i}{\sqrt{2}} (\Phi + \overline{\Phi})$$
  $\mathcal{H}(\mathcal{V}) = -\frac{A}{6} \mathcal{V}^3 - B \mathcal{V}^2 + h.c.$ 

Zero-curvature limit  $\kappa_N \rightarrow 0$ : rescale appropriately all scalar fields C, a and the dilaton around a fixed constant value

$$\kappa_N^2 ds_{CPH}^2 = \frac{\rho^2 - \chi}{(\rho^2 + \chi)^2} (d\rho^2 + dC_1^2 + dC_2^2) + \frac{4\rho^2}{(\rho^2 + \chi)^2(\rho^2 - \chi)} (da + C_1 dC_2)^2$$

 $\rho^2 = e_4^{-2\phi} - \chi \qquad \chi = \chi_E/12\pi$ 

$$ds_{global}^{2} = \frac{A\ell + B}{2} \left[ d\ell^{2} + 2 \left( d\Phi_{1}^{2} + d\Phi_{2}^{2} \right) \right] + \frac{1}{2(A\ell + B)} (db + 2A\Phi_{1} d\Phi_{2})^{2}$$

Limit CPH  $\rightarrow$  global:

 $a = \chi \kappa_N^{4/3} \mu^{1/3} b$   $C_{1,2} = \sqrt{2\chi} \kappa_N^{2/3} \mu^{-1/3} \Phi_{1,2}$ 

 $e^{-2\phi_4} = 2\chi \left(1 + \kappa_N^{2/3} \mu^{-1/3} \ell\right) \implies \text{4d string coupling: } e^{\langle \phi_4 \rangle} = \frac{1}{\sqrt{2\chi}}$ requires  $\chi_E > 0$ 

### Conclusions

Non-linear supersymmetry: powerful tool for studying:

- low energy SUSY breaking E << m<sub>SUSY</sub> ~ 1/√κ
   Volkov-Akulov action and goldstino χ couplings to matter standard coupling to stress-tensor *not* the most general
   → detailed analysis ⇒ dim 6 operators linear in χ
  - $E >> m_{soft} \Rightarrow$  goldstino  $\equiv$  spurion coupled to supermultiplets

 $E << m_{soft} \Rightarrow$  goldstino coupling to Standard Model fields

• brane effective actions  $\Rightarrow$  brane dynamics

N = 1 string computation: 3 independent couplings up to dim 8 N = 2 NL SUSY  $\Rightarrow$  DBI action and couplings to bulk fields

vacuum structure of NL QED and superhiggs without gravity