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Outline

• Heterotic M-Theory in 5D and its 3-brane solution

• Oxidation up to an intersection of 3 M5 branes

• Elliptically fibered CY3 and oxidation to 6D

• T-duality and the F-Theory limit

• The 3-brane from an F-Theory perspective
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Heterotic M-Theory in 5D
• Dimensional reduction of 11D supergravity on a Calabi-Yau 3-fold with
4-form flux turned on produces a 5D 8-supercharge (minimal 5D)
supergravity coupled to a matter sector determined by the cohomology of
the CY3. Overall, there are h1,1 vector fields in 5D, one of which must
belong to the minimal 5D supergravity multiplet. So there are (h1,1 − 1)
vectors belonging to 5D vector supermultiplets. All h1,1 of the 5D vectors
emerge from the 11D 3-form gauge field upon compactification in which
two indices of the 3-form correspond to (1, 1) CY3 indices.
Cadavid, Ceresole, D’Auria & Ferrara 1995; Lukas, Ovrut, K.S.S & Waldram 1998

• Each of the (h1,1 − 1) 5D vector multiplets also contains a single real
scalar field, emerging from the 11D metric as a Kaluza-Klein scalar. In
addition, there is a set of 4 scalar degrees of freedom belonging to a 5D
“universal hypermultiplet” containing the last of the h1,1 KK scalars
arising from the 11D metric, plus a complex scalar arising from the 11D
3-form gauge field upon expansion on the complex (3, 0) form of the CY3,
plus one more axionic scalar arising upon dualizing the 5D 3-form
components of the 11D 3-form gauge field.
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Truncation to the 5D effective theory

• Dimensional reduction on a Calabi-Yau manifold does not, in general,
produce a consistent truncation to a lower-dimensional Kaluza-Klein
theory. Nonetheless, CY manifolds can produce a kind of “intermediate
consistency” upon dimensional reduction in the sense that integration over
the KK massive modes does produce corrections to the lower-dimensional
theory, but these corrections can be purely of higher-derivative character.
CY3 reductions of M-theory fall into this class.
Duff, Ferrara, Pope & K.S.S 1990

• Of the (1, 1) type 5D KK scalar fields, (h1,1 − 1) correspond to “shape

moduli” bΛ = V−
1
3 aΛ of the CY3 manifold, while the remaining scalar of

this type corresponds to the overall volume V of the CY3. One may
consider a 5D bosonic-field effective action for just the 5D metric plus the
CY3 shape and volume moduli. Fluxes turned on for the 4-form field
strength in the CY directions are characterized by h2,2 = h1,1 moduli,
GABCD = αΛν

Λ
ABCD .
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3-brane solutions in 5D

• The h2,2 fluxes contribute a potential for the 5D modulus fields, with
the consequence that the 5D effective theory does not admit a maximally
symmetric solution. Instead it favors 3-brane solutions, which in 5D are of
codimension one. Such solutions are characterized by linear harmonic
functions, and in order to prevent the harmonic function from reaching
zero, one puts in kinks corresponding to positive and negative tension
Hǒrava-Witten end-branes. Including sources at the end-brane locations

M
(1)
4 and M

(2)
4 , the resulting 5D effective action is

−
∫
M5

√
−g
[
R + GΛΣ∂αb

Λ∂αbΣ +
1

2
V−2∂αV∂αV +

1

2
V−2GΛΣαΛαΣ

]
+2
√

2

∫
M

(1)
4

√
−g V−1αΛb

Λ − 2
√

2

∫
M

(2)
4

√
−g V−1αΛb

Λ

where the bΛ shape modulus fields need further to be constrained by the
volume-fixing condition dΛΣΘb

ΛbΣbΘ = 6; Λ = 1, . . . , h1,1.
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• The 5D effective action has a class of 3-brane solutions given by

ds2
5 = a(y)2dxµdxνηµν + b(y)2dy2

a = k̃V1/6 , b = kV2/3

bΛ = V−1/6f Λ , V =

(
1

6
dΛΣΘf

Λf Σf Θ

)2

dΛΣΘf
Σf Θ = HΛ , HΛ = 2

√
2kαΛ|y |+ kΛ

determined by a set of linear harmonic functions HΛ, as is natural for a
codimension-one brane solution.

• The general 5D 3-brane solution above involves all the CY3 shape and
volume modulus scalar fields. A specialization of this general solution
involves only the CY3 volume modulus, or “breathing mode”. Let

dΛΣΘᾱ
ΣᾱΘ =

2

3
αΛ , α = 9

(
1

6
dΛΣΘᾱ

ΛᾱΣᾱΘ

)2/3

, kΛ = 6kc0
αΛ

α
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Universal brane solution
• Then one has the “universal solution”

a = a0H
1/2 , b = b0H

2 , bΛ = 3α−1/2ᾱΛ

V = b0H
3 , H =

√
2

3
α|y |+ c0

depending only on the CY3 breathing mode V(y).

• The ‘kinks’ in the harmonic function correspond to the end-brane source

actions on M
(1)
4 and M

(2)
4 . They are needed to keep the harmonic function

H(y) from hitting zero and giving rise to a singularity:

+1−1S y

H(y)
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• Such 3-brane solutions, including also extra branes in the middle of the
5D bulk, have played a key rôle in the development of cyclic cosmological
models. Provided the overall volume of the CY3 remains small, the lack of
a completely consistent truncation from 11D to 5D can be ignored, owing
to the mass gap between the zero modes and the first non-zero
Kaluza-Klein level.

• One question that has been raised is whether such 3-branes can avoid
falling into the singularity when the static solution is promoted to a
time-dependent one. Time dependence can be introduced into the
solution simply by changing the transverse-space harmonic function to

H =
√

2
3 α|y |+ kt. Then there is a time at which H = 0 regardless of

where the end-brane sources are put in the static solution.
Chen, Chong, Gibbons, Lu & Pope 2005
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• A detailed analysis of the brane solution evolution shows, however, that
the inclusion of simple matter on the end-branes (such as scalar-field
kinetic energy) causes the encounter with the singularity to separate into a
sequence of bounces. Lehners, McFadden & Turok 2007

Figure 1: A Kruskal plot of the entire solution, in the spirit of Chen et al. [11]. The exact

trajectories of the positive- and negative-tension branes are plotted in red and green respectively,

while the naked singularity is indicated by a thick black line. Representative orbits of the bulk

Killing vector field are shown with dashed lines, while the solid straight lines indicate the Boyer

axes. The bounces of the negative-tension brane off the naked singularity, as well as the collision

of the branes themselves, are shown at a magnified scale in the inset. In this plot, we have chosen

the relative rapidity of the brane collision to be 2y0 = 1. Analogous plots for greater collision

rapidities may be found in Figure 4 of Appendix C.

5
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Exact oxidation to 3 intersecting M5 branes in 11D
• For the universal brane solution, a special situation obtains: this solution
can be exactly oxidized to a solution of 11D supergravity.
Chen, Chong, Gibbons, Lu & Pope 2005; Lehners, Liu, Lu & K.S.S., work in progress

• The bosonic equations of motion of 11D supergravity are given by

dF(4) = 0 , d∗F4 = 1
2F(4) ∧ F(4)

RMN = 1
12 (F 2

MN − 1
12F

2gMN)

• These equations have a solution for 3 intersecting M5 branes

ds2
11 = (H1H2H3)−

1
3 dxµdxµ

+H
− 1

3
1 (H2H3)

2
3 (dz2

1 + dz2
2 ) + H

− 1
3

2 (H1H3)
2
3 (dz2

3 + dz2
4 )

+H
− 1

3
3 (H1H2)

2
3 (dz2

5 + dz2
6 ) + (H1H2H3)

2
3 dy2 ,

∗F(4) = d4x ∧ (dz1 ∧ dz2dH−1
1 + dz3 ∧ dz4dH−1

2 + dz5 ∧ dz6dH−1
3 )

where the Hi harmonic functions depend only on the overall-transverse
coordinate y but not on the 6 relative-transverse coordinates z1, . . . , z6.
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• Taking the case of three coincident M5 branes,
H1 = H2 = H3 ≡ H = 1 + ky , one can generalize the
three-intersecting-M5 brane solution to a solution describing three M5
branes wrapping three different 2-cycles of a CY3:

ds2
11 = H−1dxµdxµ + Hds2

CY + H2dy2

F(4) = kI(4) , ∗F (4) = dx4 ∧ I(2) ∧ dH−1

where I(4) = ∗6I(2). The Bianchi identity and equation of motion for the
4-form field strength are satisfied provided I(2) and I(4) are harmonic.

• The difficult point in establishing consistency of this solution without
turning on an infinite number of CY3 KK modes arises from the Einstein
equation. One must make sure that the quadratic terms in F(4) in the
stress tensor on the RHS of the Einstein equation do not generate sources
for higher KK modes. For this, one requires that (I(4))

2
ab = 12δab and that

the harmonic 4-form I(4) be symmetric in the six a directions in some
vielbein basis. This gives a unique solution I(4) = e1234 + e3456 + e1256.

• The dual of I(4) in the CY space is then the Kähler 2-form,

∗6I (4) = J(2) = e12 + e34 + e56
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Can one separate the 5-branes?

In the above construction of the heterotic M-theory 3-brane ground state
in terms of M-theory 5-branes, the 3 harmonic functions Hn are taken to
be identical, corresponding to coincident 5-brane centers in the orbifold
direction. For 5-branes wrapped on toroidal cycles, the centers could
equally well be separated, but in the case of 5-branes wrapping CY3
cycles, any attempt at separation leads directly to a loss of the consistent
embedding in D = 11 M-theory.

• However, one can certainly embed 5-branes at differing orbifold locations
while also taking into account the resulting Kaluza-Klein corrections to
the CY metric and 3-form background. The techniques for doing this were
developed for non-standard 5-brane embeddings in heterotic M-theory.
Lukas, Ovrut & Waldram 1998 This leads to a calculable expansion in terms of
εS = ( κ

4π )2/3 2πρ
v2/3 where v is the CY volume and πρ is the orbifold size.
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Elliptically fibered CY3

F. Bonetti & T. Grimm 2011; T. Grimm, T. Pugh & K.S.S, work in progress

• The exact intersecting 11D M5-brane solution ↔ 3-brane in 5D
discussed above was obtained for an arbitrary CY3 compactification
manifold.

• Now we will specialize the CY3 to an elliptically fibered space and will
perform a T-duality transformation on the T 2 fiber in order to reinterpret
the above 3-brane solution as 6D F-theory solution. For this purpose, we
will need to consider again the full 5D effective theory, but now specialized
to the case of an elliptically fibered CY3.

• Let the 2-form divisor ω0 be associated to the elliptic fiber, let ωα be
associated to the 4-dimensional base and let ωi be associated to singularity
resolution blowups. Then 5D vector multiplets naturally can be labeled in
a similar way, with vectors AΛ = (A0,Aα,Ai ) and scalars LΛ = (L0, Lα, Li ).
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• The CY3 intersection numbers dΛΣΘ then become constrained:

d000 = ηαβK
αKβ , d00α = ηαβK

β , d0αβ = ηαβ ,

dαβγ = 0 , d0iΛ = 0 , dαβi = 0 ,

dαij = −CijηαβC
β , dijk = unconstrained

• The fields then arrange themselves into multiplets of 5D supersymmetry.
For example, the 5D metric gmn together with the vector A0

m form the
bosonic part of the 5D supergravity multiplet. The remaining h1,1(Ŷ )− 1
vectors combine with the constrained scalars bΛ to form n5

V = h1,1(Ŷ )− 1
vector multiplets. Note also that the 4(h1,2(Ŷ ) + 1) scalars given by

qu = (V,Φ, zk , z̄ k̄ , ξK , ξ̃K ) belong to n5
H = h1,2(Ŷ ) + 1 hypermultiplets.
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• The resulting 5D action is then given by

S
(5)
(M) =

∫
M5

[
1

2
R ∗ 1− 1

2
GΛΣ(M)dMΛ ∧ ∗dMΣ − 1

2
huvdq

u ∧ ∗dqv

− 1

2
GΛΣ(M)FΛ ∧ ∗FΣ − 1

12
NΛΣΘA

Λ ∧ FΣ ∧ FΘ

]
where

GΛΣ(M) = −1

2
NΛΣ +

1

2
NλNΣ , NΛ = ∂MΛN(M)|N(M)=1 ,

NΛΣ = ∂MΛ∂MΣN(M)|N(M)=1 , NΛΣΘ = ∂MΛ∂MΣ∂MΘN(M)|N(M)=1

and

N(M) = ηαβM
0MαMβ − 4ηαβC

αCijM
βM iM j +

1

192
ηαβK

αKβM0M0M0

+
1

2
ηαβC

αCijM
0KβM iM j +

4

3
dijkM

iM jMk

is a function of the scalar fields M which is constrained to take the value 1.
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Oxidizing to 6D

• The T 2 fiber of the elliptically fibered CY3 allows for a reinterpretation
of the above 5D theory in D = 6, by comparison with a general (1,0) 6D
supergravity with gauged matter upon making a standard Kaluza-Klein
reduction to 5D on a circle. The 6D theory will be described by a
“pseudo-action” whose equations of motion need to be complemented by
a 3-form self-duality condition imposed by hand after variation of the
pseudo-action.

• The 6D theory is taken to contain n6
T (1,0) 6D tensor multiplets, n6

H

hypermultiplets and to have a group G gauged by the vectors of the 6D
vector multiplets. The reduction from the 6D to the 5D theory will work
in the Coulomb branch of the 6D nonabelian theory, in which adjoint
representation scalar fields take VeVs that trigger a breakdown of the
gauge group G to its Cartan subalgebra. F. Bonetti & T. Grimm 2011
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• 6D (1,0) supergravity contains fields (eAM , ψM ,B
+
MN), where the 2-form

gauge field B+
MN is required to have a 6D self-dual 3-form field strength

and the gravitino ψM is chiral.

• 6D (1,0) tensor multiplets contain fields (B−MN , χ, σ), where B−MN has an
anti-self-dual field strength, while the spinor χ is antichiral; 6D (1,0)
vector multiplets contain fields (AM , λ), where λ is a chiral spinor.

• Self-duality or anti-self-duality constraints can either be handled by a
non-Lorentz-covariant procedure Schwarz; Henneaux & Teitelboim or by
covariant methods including additional gauge symmetry Pasti, Sorokin & Tonin

or simply by imposing the self-duality/anti-self-duality constraint by hand
on solutions of the field equations derived from a pseudo-action.

• 6D (1,0) theories are generically anomalous; construction of
anomaly-free models imposes various constraints on the matter content.
For suitable matter content, the anomaly polynomial factorizes and the
remaining anomalies can be removed by a generalization of the
Green-Schwarz mechanism. Green & Schwarz 1984; Sagnotti 1992; Schwarz 1996
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T-duality transition to F-Theory

• In order to pass over to the F-Theory realization of the above system,
consider M-Theory on a product manifold

M11 = T 2 × B2 × R1,4 ,

where B2 is a Kähler manifold of complex dimension 2.

• One can write the T 2 fiber metric as

ds2
T 2 =

v0

Im τ

[
(dxA + Re τdxB)2 + (Im τ)2dx2

B

]
where v0 is the volume of the torus and τ is the complex structure
parameter. The period 1 coordinates xA and xB parametrize the A and B
cycles of the torus. Compactification along the A-cycle reduces M-theory
to type 10D Type IIA theory.
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• Application of T-duality on the B cycle in this 11D → 10D reduction
instead yields Type IIB theory on

M10 = S1 × B2 × R1,4 ,

where the circle S1 corresponds to the B ′ cycle, i.e. the T-dual of the B
cycle.

• The F-Theory limit is one in which the volume of the T 2 fiber and the
resolution blowups vanish, but in which the overall CY3 volume remains
finite. In the limit of vanishing T 2 volume v0, the size of the T-dualized
compact B ′-cycle S1 becomes infinite, thus leading effectively to Type IIB
on M′10 = B2 × R1,5, since the B ′ cycle has become decompactified.

• On an elliptically-fibered CY3, the same T-duality can be carried out
fiberwise, with the T 2 moduli depending holomorphically on the complex
coordinates of the base manifold B2. Since the complex structure modulus
τ yields the dilaton-axion system of Type IIB theory, one will end up with
a non-trivial dilaton-axion profile varying along the base B2.
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Recovering the 3-brane solution in F-Theory
• The bosonic sector of the 6D theory has a pseudo-action of the form

S (6) =∫
M6

[
1

2
R̂ ∗̂1− 1

4
gαβĜ

α
(3) ∧ ∗̂Ĝ

β
(3) −

1

2
gαβdj

α ∧ ∗̂djβ − 1

2
hUV D̂qU ∧ ∗̂D̂qV

− 2Ωαβ j
αbβCIJ F̂

I
(2) ∧ ∗̂F̂ J

(2) − Ωαβb
αCIJ B̂

β
(2) ∧ F̂ I

(2) ∧ F̂ J
(2) − V (6)∗̂1̂

]
including a potential V (6) = −1

4
1

Ωαβ jαbβ
C−1IJAU

A
BAV

B
Ak

U
I kVJ , where

kUI and AU
A
B are functions of the hypermultiplet scalars. A = 1, 2 is an

SU(2) R-symmetry index of the 6D theory; α = 0, . . . n6
T is an index in the

fundamental representation of SO(n6
T , 1) for the tensor multiplets;

I = 1, . . . , dim(G ) and U = 1, . . . , 4n6
H counts the n6

H hypermultiplets.

• It is natural that the 6D theory involve a potential of scalar fields,
because the 5D theory from which it is lifted has such a potential, as a
consequence of the 4-form fluxes that were turned on in the CY3
directions.
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• As in 5D, the presence of the scalar potential has the consequence that
the theory does not admit a 6D maximally symmetric solution. Instead, as
in 5D, it has a preference for brane solutions.

• Accordingly, one tries a 3-brane ansatz of codimension two:

dŝ2 = e2W (y c )ηµνdx
µdxν + gab(y c)dyadyb .

• Of the 6D hypermultiplet scalars qU , all but two can consistently be set
equal to constants; the remaining two, V and Φ, are affected by the
runaway potential V (6); one then finds that the Einstein equation in the T 2

directions requires DaΦ = 2εab∂
bV, leaving just the scalar V to determine

the solution. Using the Killing spinor equation to ensure an unbroken
supersymmetry then leads to a 6D solution with quadratic structure

ds2 = ηµνdx
µdxν + r2(dz2 + dφ2)

V = −2AV0z
2 + Bz + C , r2 = −2A2V0z

2 + ABz + AC

for some integration constants A, B, C .
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• The 6D brane solution may now be compared to the 3-brane of 5D
heterotic M-Theory. For this, one must recall the structure of the CY3
divisors and the associated restrictions on intersection numbers dΛΣΘ. It is
also necessary to take into account certain scalings of the 5D scalar fields

needed in the F-theory limit: M0 → εM0 , Mα → ε−
1
2Mα , M i → ε

1
4M i .

• One then finds agreement between the quadratic-structure 6D solution
and the general 5D 3-brane solution provided

k0f
0 = ±k0

(
kαb

αΩβγkβkγ
8k0kαbα − C−1ijHiHj

) 1
2

Hi f
i = ∓C−1ijHiHj

(
Ωαβkαkβ

16kαbα(8k0kβbβ − C−1ijHiHj)

) 1
2

kαf
α = ±(16k0kαb

α − C−1ijHiHj)

(
Ωαβkαkβ

64kαbα(8k0kβbβ − C−1ijHiHj)

) 1
2

V =
Ωβγkβkγ
256kαbα

(−C−1ijk2θiθjz
2 − 2C−1ijkkiθjz + 8k0kαb

α − C−1ijkikj)
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• The 6D solution has singularities where V = 0. Choosing the constant
C , one can place one of these at z = 0 and write V = 2AV0z(p − z). The
geodesic distance between the singularities is then 1

8p
2
√

2AV0π.

• In order to visualize the 6D solution and its singularity structure better,
one can make a change of the 2D coordinates to give

ds2 = 2A2V0z(p − z)(dz2 + dφ2) = dθ2 + Ω2(θ)dφ2

where

Ω2 = 2A2V0z(p − z)

θ =
A
√
V 0

2
√

2

(
(2z − p)

√
z(p − z) + p2 tan−1

( √
z√

p − z

))

23 / 28



• Then one may sketch Ω(θ) for A = (2V0)−
1
2 and p =

√
8 :



Ω()

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
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• One may also sketch the corresponding 2D Ricci scalar:

0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

10

12

14
R()
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• To understand better the nature of the 6D solution’s singularities,
include a 4D brane source term in the 6D action:

Sbrane = Q

∫
Mb

(
1

V
∗̃41 + s̃∗C4)

This should be located slightly away from z = 0 in order to move the
resulting delta function term into the interior of the z ∈ [0, p] interval.

• One then finds V(z) = −2V0Az
2 + 2Qz , which yields the charge

identification Q = AV0p .
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Codimension-one lifts to codimension-two

• A natural question arises: how did a 5D codimension-one brane solution
lift to a codimension-two solution in 6D?

• Normally, one would think that a 5D codimension-one solution would
oxidize to a 6D solution that was evenly smeared along the A cycle of the
CY3 T 2. The return to 5D would then be an instance of “vertical
dimensional reduction” in the transverse space to the 3-brane’s
worldvolume. H. Lu, C.N. Pope & K.S.S. 1996

• However, in the present case, the lifted F-theory solution appears to be a
genuinely codimension-two solution. What happens is that in the F-theory
limit, the A and B cycles of the T 2 torus shrink to zero size while the
T-dualized B ′ cycle opens up. The source remains a 3-brane, however,
because although the B ′ cycle generically blows up, the fibration pinches
at the singular point corresponding to the brane source.
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Some open questions

• The 6D solution, with its nontrivial dilaton-axion sector, might seem to
be associated to Type IIB 7-branes. However, this does not seem to be
right because the Φ and V scalars of the 3-brane system do not derive
from the IIB dilaton-axion system. So the proper F-theory origin of this
3-brane solution remains obscure.

• Is there a direct relation between the 6D F-theory brane solution and the
interpretation of the 5D 3-brane as an intersection of three M5 branes?

• Is there added freedom in the 6D realization of these 3-brane solutions
that could be of use in cosmological applications?
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