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Introduction/Overview
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Hyperconifold Singularities

The conifold, C, is the simplest singularity of a Calabi—Yau threefold:
C = {y1y2—ysya =0 | (y1,92,y3,92) €C" }

We can take quotients C/G, G a finite group of symmetries of C.
When only 0 is fixed, we get new isolated singularities — hyperconifolds.
Interesting features:

— Hyperconifolds occur naturally in compact CY3’s.
— Can be either deformed or resolved — hyperconifold transitions

— Mirror to ordinary conifolds
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Multiply-Connected Calabi-Yau Threefolds

e CY3’s X with m1(X) # 1 are of particular interest:

— Wilson line gauge symmetry breaking in heterotic models
— Most manifolds with small Hodge numbers are in this class

— One of two independent torsion subgroups of CY3 (co)homology
e Typically, X = X /G, where

— X is a complete intersection in a toric variety T, 71(X) = 1

— G acts on T'; generic invariant X misses the fixed points

e X can often be deformed to intersect a unique G-fixed point

= G-hyperconifold singularity on X.

Note: Focus only on cyclic groups Zn,.
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Example

P?|3

Consider X = |: :| . Let {Yi} and {Z,,} be coordinates on the two P2,

P? (3
Define a Z3 action:

}/i N CZ}/Z , Zm N <mZm C _ 6271'1/3
Let X be defined by an invariant polynomial. Then:
e X is generically smooth.
e X avoids the fixed points, so X = X/Zg is smooth.

° 7T1(X) >~ 73
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Example (Continued)

Local coordinates: y1 = Y1/Yo,y2 = Ya/Yo,21 = Z1/Z0, 20 = Z2/Zo
(y1, 92,21, 22) = (Cyn, CPy2, €21, (% 22)
Expand invariant polynomial:
P =0+ uy1ye + qayr1ze + asy2z1 + auzize + ...

The origin is the unique Zs-fixed point in this patch, p(ﬁ) = ap.

With ag = 0, we get a conifold singularity at 0.

X=X /Z3 develops a Zs-hyperconifold singularity.
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Resolution

Obvious question: can we resolve the singularity?

Toric geometry makes the analysis easy:

Conifold Zs-hyperconifold Resolution
This is manifestly crepant; one can check that it is projective.

Zs-hyperconifold transition X2 — X428

The exceptional set is simply-connected = 1 (X) 2 1
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Toric Geometry and Mirror Symmetry
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Classification

Context:

e Complete intersection CY3 X in a toric variety

® 7, acts linearly on homogeneous coordinates of ambient space

e Invariant X is smooth and misses fixed points; X = )Z'/Zn is smooth
Near a fixed point, choose coordinates on which Z,, acts diagonally.

Conjecture: Locally, the system can be reduced to a single invariant

polynomial p on a 4D slice, with non-degenerate quadratic piece.

The coordinates (y1,y2, Y3, y4) must each transform with a primitive n*™®

root of unity, and therefore pair up to make invariants

p=a+yi1ys — Y2y + ...
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Classification — Toric Diagrams

a—0 = p=y1ys —Y2y3 +...

The covering space thus develops a conifold singularity.

Toric coordinates

Let (t1,t2,t3) parametrise the torus (C*)s. Embedding:
t t

S ga=te, ys =, ya=ts
t3 to

Work out the fan; a single cone generated by vertices

Y1 =

(1,0,0), (1,1,0), (1,0,1), (1,1,1)

Toric diagram:
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Classification — Toric Diagrams

P=Yi1ys —Yy2ys + ...

WLOG, assume (y1, 42, ¥3,ya) = (Cy1, ¢*y2, ¢ Fys, (T hya) 5 o= 270,

k relatively prime to n.' These actions are all subgroups of the torus:

27rik/nt 727'ri/nt3

t1 —t1, ta — e 2, t3 —e

The quotient corresponds to refining the lattice; choosing a basis for the

new lattice, the cone now has vertices at
(1,0,0), (1,1,0), (1, k,n), (1,k+1,n)

(n, k)-hyperconifold: C &

1k ~ kT by y2 > y3, (y1,94) < (Y2,93)
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Toric Diagrams — Examples

(Note: These all look nicer in coordinates where the diagram is ‘nearly square’.)
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Mirror Symmetry

Given a toric Calabi-Yau, its mirror is given by (Gross, math/0012002) :
%\ 2
{Flu,0,9,2) i=w — f(y,2) =0 | (u,0) € €, (y,2) € (C°)?},
where f is a Laurent polynomial, with Newton polygon the toric diagram.

Claim: The mirror of any Z.-hyperconifold has n nodes (conifolds).

Proof: Recalling the vertices, the mirror of Cy, i is given by
0=F=uv—(1+y+y"2" +y"2") =uww - 1 +y)(1+¢"2")
Singularities occur when
F=dF =0 < u=v=0, y=-1, 2" = (-1,

hence there are n singular points. Easy to check Hessian is non-zero.
O
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Mirror Symmetry

mirror

Counter-example(s) to naive expectation that conifold <— conifold.

e Compact X with Z,-hyperconifold Pty compact Y with n nodes
e Deformation of one is mirror to resolution of the other.

e Explicitly checked for some examples in (RD, 1102.1428)
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Topology and resolutions
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Topology

The conifold C is a cone over S*xS?%. Evslin & Kuperstein (hep-th/0702041)

give parametrisation:

W::(y1 W),c:mwzo
Y2 Ya

Base S%x5% is |y1]® + |y2| + |ys|® + [ya]® = Te(WTW) = 1. Whrite
W = Xovo' R

where

X € SU(2), veP" (||v]] = 1; phase irrelevant) .
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Topology

Base S®xS? is Tr(WTW) = 1. Write
W=Xw', XeSUu®2), veC|p||=1.
Action for C, i is
(1, y2,y3,94) = (Cy1,¢Fy2, ¢ ys, () , ¢ =¥/
which is realised by
S (IR R G B G
Vanishing 3-cycle is S®/Z,,; check that this action gives lens space L(n, k).

(Lens spaces: k rel prime to n, and k ~ +k*1)
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Resolutions

Xo has a hyperconifold singularity; is there a smooth Calabi-Yau X = Xo?

e Blowing up the Zs-hyperconifold resolves it:

Blow—up
—

e Actually, blow-up commutes with quotient:

— BIg(C) = Opiypr(—1,-1) ; Opypr (1D Opt p1 (=2, —2)

Lo
e Similarly, blowing up any Zso.,-hyperconifold gives an orbifold CY.

e These all have CY resolutions.
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Example

Resolving Ce,1:

Blow—up
—
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Example

Resolving Cg 3:

Blow—up
—
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Resolving ‘Odd’ Hyperconifolds

What about Zaom+1-hyperconifolds? Need a more general approach.
Assume:

e Xy has a single Z,-hyperconifold singularity at a point p.

e Cl(Xo) has a basis of divisors which do not intersect p.

o 7:X — Xo is some (analytic) resolution map, with exceptional set E.

Let wp be a Kahler form on Xo. Then 7*wq integrates to zero on all
sub-varieties of F. So if we can find a ‘local Kéahler form’ wr,, built out of

divisors contained in E, m*wo + ewr, will be a Kahler form for small € > 0.

So a Kéhler resolution depends on the existence of a ‘local Kahler form’.
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Example: Resolving Cs

Two resolutions of Cs 1; let t1D1 + t2 D2 be putative local Kéhler class

D1-C1=-3,D2-C1=0 t1 <0

Case 1: D1-Co=0, Dy-Cog=-3 ta <0
D;-C3=Dy-C3=1 t1 >0, t2 >0
|\ Dy-Ci=-2,Dy-C1 =1 —2t1 +t2 >0
Case 2: D1-Co=1, Da-Co=-2 t1 —2t2 >0
N . D1-C3=D2-C3=-1 —t1 —t2 >0

So case 2 gives a Kéhler resolution (e.g. t1 = t2 < 0); case 1 does not.
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Hodge Numbers

Resolving a Z,-hyperconifold introduces n — 1 new divisors
=0h't=n—-1
Asking that the CY hits a fixed point is one complex structure condition?

= sh¥t = —1

These imply dx = 2n, which agrees with the toric calculation.

Zn-hyperconifold transition: §(h*', h?!) = (n —1,—1)

It is easy to calculate new intersection numbers from the toric diagrams.

2Not clear that this is always true, but true in examples.
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Fundamental Group

Let X = X/Zn, and consider a Z,-hyperconifold transition:

def. res.

X5 X & X

Topologically, this is a surgery:
o (X)X Zn
e Delete a lens space L(n, k); m1(L(n, k)) = Zn
e Replace L(n, k) with a simply-connected space

o —> Wl(X)%l

Formally, this is a simple application of van Kampen’s theorem.
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Fundamental Group

More generally, suppose X = X /G for some group G.

161

o 7., = H < G develops a fixed point — ]

fixed points by symmetry
e X develops a single Z,-hyperconifold singularity

e Resolution X, 71 (X) = G/H®, where HY is normal closure of H in G
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Applications
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Constructing New Calabi—Yau Threefolds

Hundreds of known spaces with 71 # 1

Most admit multiple hyperconifold transitions, e.g. (RD, 1102.1428)

3

Pz |:3:| o X2,11 @ X4,10 ?3) X6,9 ?,3 Xs,s
/Z3XZ3

The last three spaces have m; = Zs3; X*1° and X®® were unknown.

Previously unknown fundamental groups:

(Braun, 1003.3235) : S3 does not act freely on any known CY3...
...but Dics 2 Z3 x Z4 does: X'* = X /Dics.

Dics has Zs as a normal subgroup; Dics/Z2

ES?,

X142 X238 with m (X>%) = S5 (RD, 1103.3156)

Simple way to get ‘local cycles’ (for swiss cheese models, etc.)
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Connectivity of Moduli Spaces

e There is speculation that all CY3’s are connected by transitions.
e Conifold transitions do not change 71 (nor do flops).

e Perhaps all connected by conifold 4+ hyperconifold (+ flop) transitions?
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Hyperconifold Transitions in String Theory
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A Reminder: Conifold Transitions

Type IIB on a CY3 (Strominger, hep-th/9504090;
Greene, Morrison, Strominger, hep-th/9504145) :

e Vanishing S® = massless 4D hypermultiplet from wrapped D3-branes.

e Charged under U(1) associated to dual cycle; D-term prevents a VEV

Multiple cycles in same homology class = D-flat directions

Matches mathematical criterion for CY resolution of nodal variety

e Higgs branch VEV(s) are the new Kéahler parameters
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Hyperconifold transitions

X=X/Z,
e X moduli are a subspace of X moduli
e Z,-hyperconifold on X < single conifold on X
e Upstairs, D-term, one hypermultiplet = no resolution
e Downstairs:

e D3-worldvolume is L(n, k) = Wilson lines = n ground states
e So theory on X has n massless hypermultiplets.®
e Same D-term = n — 1 Higgs branch hypermultiplets <+ new

Kéhler parameters

Again, there is a nice match between mathematics and physics.

3Quotienting renormalises the charge by 1/4/n, so one-loop corrections are the

same downstairs as upstairs.
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Summary
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Summary

Zn-Hyperconifold Singularities

e Isolated singularities; cyclic quotients of the conifold C
e One-to-one correspondence with vanishing lens spaces L(n, k)

e Arise naturally in compact Calabi-Yau threefolds, when a free group

action develops a fixed point

e Can always be resolved, unlike conifold singularities
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Summary

Zn-Hyperconifold Transitions

e Potential to yield hundreds of new Calabi—Yau threefolds.
o Are mirror to familiar conifold transitions

e Have a nice Type IIB description similar to conifold transitions
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