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Although much work remains to be done, there seem to be no
insuperable obstacles to deriving all of known physics from the
E8 × E8 heterotic string. – David Gross et. all (1985)

I don’t know the key to success, but the key to failure is trying to
please everybody. – Bill Cosby

Success consists of going from failure to failure without loss of
enthusiasm. – Winston Churchill
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Heterotic Model Building

The message I would like to deliver:

• There is a new way of doing string phenomenology, relying on
powerful computer-based methods.

• In particular, the line bundle construction provides a simple
algorithm which allows for a large number of vacua which
reproduce the states of the (extended) Standard Model.

• Such models appear (almost) everywhere.

• There are great advantages of the line bundle construction,
leading to constraints on operators.

I shall discuss one example:

the tetraquadric hypersurface
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Line Bundles on Smooth Calabi-Yau 3-folds

The line bundle construction of E8 × E8 heterotic string models
follows three stages:

1. N = 1, 4d GUT models with gauge group G , from E8 → G × H;

2. break G to GSM and check for the right spectrum

3. constrain the 4d supergravity operators

N.B. All this is possible in a systematic way by scanning over a huge
set of models and filtering out the unsuitable ones. No geometric
engineering.
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Line Bundle Models

The line bundle programme has (so far) led to:

• about 44,000 N = 1, 4d GUT models with:

− gauge group SU(5)× U(1)4 (the extra U(1)s are generically
anomalous and have massive gauge bosons);

− matter spectrum in 10 and 5̄; correct number of families;
− one or several 5− 5̄ pairs;
− no exotic fields
− other features which make the doublet-triplet splitting problem

easy to overcome

• a lot more models after breaking the GUT group to GSM ×U(1)4



GUT Models from Line Bundles

The line bundle construction of heterotic string models follows three
stages:

1. N = 1, 4d GUT models with gauge group H, from E8 → G × H.
Ingredients:

− a smooth Calabi-Yau three-fold X ;

− a holomorphic vector bundle V → X with structure group G ⊂ E8.
Traditionally: G = SU(n) for n = 3, 4, 5.

Here V is a sum of 5 line bundles V =
5⊕

a=1

La. G = U(1)5.

− certain requirements on X and V .



GUT Models from Line Bundles

Requirements on X and V :

• c1(V ) =
5⊕

a=1

c1(La) = 0. Hence G = S(U(1)5) ∼= U(1)4 and then

the GUT group is H = SU(5)× S(U(1)5) ∼= SU(5)× U(1)4.

• anomaly cancellation: c2(TX )− c2(V ) = [Eff.Curve]. Hence
c2(TX ) ≥ c2(V )

• N = 1 supersymmetry implies that the gauge connection on V
satisfies the hermitian YM equations.

By the Donaldon-Uhlenbeck-Yau theorem this is possible if and
only if V has vanishing slope and is polystable.



GUT Models from Line Bundles

Slope-stability of vector bundles:

• slope of a vector bundle V defined as:

µ(V ) =
1

rkV

∫

X

c1(V ) ∧ J ∧ J =
1

rkV

h1,1(X )∑

r ,s,t=1

drst c
r
1(V )tstt

where J = trJr is the Kähler form on X ; tr are Kähler moduli

• a bundle is stable if µ(F) < µ(V ) for any coherent sub-sheaf F ⊂ V
with 0 < rk(F) < rk(V ); a bundle is poly-stable if it can be written as
a direct sum of stable bundles V =

⊕
a Va with µ(V ) = µ(Va), for all a

• slope-stability is a moduli-dependent question

• for a line bundle rk(L) = 1, stability criterion is trivially true

• for a sum of line bundles V =
⊕

a La: µ(La) = 0 simultaneously for all
a somewhere in the interior of the Kähler cone.



SM Gauge Group and Spectrum

The line bundle construction of heterotic string models follows three
stages:

1. N = 1, 4d GUT models with gauge group G , from E8 → G × H;

2. break G to GSM and check for the right spectrum
Ingredients:

− need non-trivial π1(X ); solution: quotient X by the free action of a
discrete group Γ→ X ;

− ensure that there exists an action of Γ on V so that V induces a bundle
Ṽ → X/Γ (equivariant structure on V );

− complete the bundle Ṽ → X/Γ with a Wilson line to break the GUT
group to GSM .



Operators

The line bundle construction of heterotic string models follows three
stages:

1. N = 1, 4d GUT models with gauge group G , from E8 → G × H;

2. break G to GSM and check for the right spectrum

3. constrain the 4d supergravity operators

The SU(5) multiplets (and the GSM multiplets) come with certain
patterns of charges under the extra U(1)s. Using these charges, one
can ensure things like proton stability or R-parity conservation.



Choosing the Manifold

The class of Calabi-Yau 3-folds realised as complete intersections in
products of projective spaces (CICYs) form a particularly suitable set
for supporting the line bundle construction:

• the class is relatively small (7890 configuration matrices);

• there is a classification of linearly realised freely acting discrete
symmetries [Candelas, Davies 2008; Braun, 2010];

• cohomology computations of line bundles on CICYs are largely
possible [Anderson, He, Lukas, 2008];

We selected from the list of CICY (as constructed by Candelas,
Lütken and Shimmrick) those which:

• figure in Braun’s list of discrete symmetries

• are favourable (i.e. their second cohomology descends from that
of the embedding product of projective spaces)
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Choosing the Manifold

In this way we end up with 71 manifolds:

• h1,1(X ) = 2 : 6 manifolds

• h1,1(X ) = 3 : 12 manifolds

• h1,1(X ) = 4 : 19 manifolds

• h1,1(X ) = 5 : 23 manifolds

• h1,1(X ) = 6 : 8 manifolds

Each manifold has smooth quotients by one or more discrete groups,
sometimes with different orders.
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Spectrum and Index Requirements

The matter spectrum is given by the following cohomologies:

• 10 multiplets: H1(X ,V ) =
⊕

a

H1(X , La)

• 5̄ multiplets: H1(X ,∧2V ) =
⊕

a<b

H1(X , La ⊗ Lb)

• 5 multiplets: H2(X ,∧2V ) ∼= H1(X ,∧2V ∗) =
⊕

a<b

H1(X , L∗a ⊗ L∗b)

• SU(5) singlets: H1(X ,V ⊗ V ∗)

Require:

− h1(X ,V ) = 3|Γ| and h1(X ,V ∗) = 0:
3 SU(5) 10 families and no 1̄0s after quotienting by Γ

− h1(X ,∧2V )− h1(X ,∧2V ∗) = 3|Γ|:
chiral asymmetry of 3 5̄s after quotienting
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The Scan

A line bundle is given by a set of integers

L = OX (~k) =
⊗

α

OPnα (kα)|X

for X ⊂
∏

α

Pnα . A sum of 5 line bundles is then given by a matrix of

integers with h1,1(X ) rows and 5 columns.

We have scanned over

∼ 1040 such matrices and selected ∼ 44, 000 models which lead to
consistent SU(5) GUTs.
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The Tetraquadric Hypersurface

Q 4,68 =

P1

P1

P1

P1




2
2
2
2




4,68

and we may use this freedom to require a−1 = 0, for example. In this way we see that

there are 6 free parameters in equations (4.2). We have checked that these polynomials are

generically transverse.

The Euler number for the quotient is −64/8 = −8 and h11 = 2, since the four P1’s are

identified under the action of H, so the Hodge numbers for the quotient are (h11, h21) =

(2, 6) and h21 agrees with our counting of parameters. The group H has subgroups Z4

and Z2 generated by (say) i and −1 respectively, and we give the Hodge numbers of the

corresponding quotients in the table below.

(h11, h21) (X5,37/G) (2, 6) (3, 11) (5, 21)

G H Z4 Z2

Table 26: The Hodge numbers of smooth quotients of X5,37.

4.3. X4,68; contracting the P7

Contracting the P7 of the configuration above brings us to the tetraquadric, which is the

transpose of P7[2, 2, 2, 2].

X4,68 =

P1

P1

P1

P1




2

2

2

2




4,68

For this manifold it is possible to write a defining polynomial that is transverse and also

invariant and and fixed point free under the group H×Z2. We again choose coordinates

(sσ, s−σ), σ ∈ H+ for the four P1’s and define symmetry generators Uγ, γ ∈ H, as before,

together with a new generator, W ,

Uγ : sα → sγα for α ∈ H , W : (sσ, s−σ) → (sσ,−s−σ) for σ ∈ H+ .

There are 34 = 81 tetraquadric monomials in the sα. One of these is the fundamental

monomial,
�

α∈H sα, that is invariant under the full group. Of the other 80 monomials 40

are even under W and 40 odd. The 40 even monomials fall into 5 orbits of length 8 under

the action of H. Thus there is a 5 parameter family of invariant polynomials. The symmetry

H×Z2 does not permit any redefinition of the coordinates so the number of parameters

in the polynomials is also the number of parameters of the manifold. For the quotient

h11 = 1, since the four P1’s are identified, and the Euler number is −128/16 = −8. Hence

(h11, h21) = (1, 5), confirming the parameter count.

88

• The manifold Q 4,68 has smooth quotients by free (linear) actions
of discrete groups of orders 2, 4, 8 and 16 [Candelas, Davies
2008; Braun, 2010]

Z2; Z2 × Z2, Z4; Z2 × Z4, Z8, H;

Z4 × Z4, Z4 o Z4, Z8 × Z2, Z8 o Z2, H× Z2



Line Bundle Models on the Tetraquaric

The number of models on the tetraquadric threefold satisfying the
above criteria:

{7862, 2} −→ {19, 32, 35, 35, 35, 35, 35, 35, 35}
{7862, 4} −→ {34, 100, 111, 115, 115, 115, 115, 115, 115}
{7862, 8} −→ {17, 132, 183, 194, 199, 201, 201, 201, 201}
{7862, 16} −→ {1, 5, 10, 16, 22, 22, 24, 24, 24}



A Finiteness Result

In all the cases that we looked at, when we required that:

• the bundle V → X is poly-stable

• the index of the bundle V is fixed (3 times the order of Γ)

• there is an upper bound on c2(V ), coming from the anomaly
cancellation condition

we came to the conclusion that the number of such bundles is finite,
i.e. increasing kmax does not produce any new models.

Conjecture: for a given Chern class, the set of line bundle sums that
are poly-stable somewhere in the positive Kähler cone is finite.

We have a good understanding why this should be the case in the
interior of the Kähler cone, but things get tricky at the boundary.



Final Remarks

Returning to wider picture, let me note a few points:

• The current scan is largely an experimental work; so far we have
collected the data - a lot of work is required in order to fully
analyse these models.

• There is an immediate challenge: improving the line bundle
cohomology algorithm.

• Can we obtain an up Yukawa matrix of rank 1? In a previous
scan, rankYu was 0, 2, 3.

• How far into phenomenology can we push the line bundle
models? (e.g. neutrino physics)


