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Introduction

Introduction

Definition (F-Theory)
Defines a (real) (12− 2d)-dimensional effective
field theory after compactification on elliptically
fibered 2d-dimensional Calabi-Yau variety.

T2 // Y2d

π
��

B2d−2

Gauge group, matter, and Yukawa couplings localized at different
dimensions:

dimC Y = 1: IIB in 10-d
dimC Y = 2: Degenerate (Kodaira) fibers⇒ Gauge group
dimC Y = 3: Discriminant components intersect⇒Matter
dimC Y = 4: Matter curves intersect⇒

Yukawa couplings, flux.
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Weierstrass Model

Elliptic Curves

First, look at dim Y = 1.
Can write down CY 1-fold explicitly: Y = C/(Z⊕ τZ)

But not in higher dimenison, better use embedding in 2-d
ambient space
For example, cubic hypersurface in P2

Can always be written in Weierstrass form

y2 = x3 + ax + b

Or, more generally, a (crepant resolution of a singular Fano)
toric surface
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Weierstrass Model

16 Reflexive Polygons

Definition (Reflexive)
A lattice polytope∇ is called
reflexive if its dual ∆ is also
a lattice polytope.

Note: Larger∇⇔ smaller ∆.

The blue polygons:
minimal with respect to
removing a vertex
(blow-down).
dual is maximal with
respect to inclusion. P2 P2[1, 1, 2] P1×P1
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Weierstrass Model

Normal Form of a Cubic
Cubic surface:∑

i,j,k

aijkuivjwk = 0, [u : v : w] ∈ P2

The undergrad method:
Find a flex
Translate flex to [0 : 1 : 0]

. . .

Picking a point (= zero-section) necessary, what if its not a flex?

Better solution: Artin, Rodriguez-Villegas, Tate
Switch to the Jacobian Pic0(E)

Weierstrass parameters a, b = polynomial in aijk.
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Weierstrass Model

Weierstrass Form

How to go from this:

P(u, v,w) =
∑

i+j+k=3

aijkuivjwk = 0

to this: y2 = x3 + fxz4 + gz6 (the Weierstrass form)?

SL3-rotation of [u : v : w] should not change f , g.
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Weierstrass Model

The Ternary Cubic
A cubic in three variables

P(u, v,w) =
∑

i+j+k=3

aijkuivjwk = 0, [u : v : w] ∈ P2

has
two invariants S, T , and
four covariants P(u, v,w), H(u, v,w), Θ(u, v,w), and
J(u, v,w)

satisfying the syzygy

J2 =4Θ3 + TP2Θ2 + Θ
(
− 4S3P4 + 2STP3H − 72S2P2H2

− 18TPH3 + 108SH4)− 16S4P5H − 11S2TP4H2

− 4T2P3H3 + 54STP2H4 − 432S2PH5 − 27TH6
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Weierstrass Model

Weierstrass Form From Invariants

For P = 0, the syzygy is

J2 = 4Θ3 + 108ΘSH4 − 27TH6

so up to some rescaling: y = J, x = Θ, z = H, f = S, and g = T .

For example, the Fermat cubic P = u3 + v3 + w3:

ω : P2 → P2[2, 3, 1],u
v
w

 7→
 −u3v3 − u3w3 − v3w3

1
2(u6v3 − u3v6 − u6w3 + v6w3 + u3w6 − v3w6)

uvw


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Gauge Group

Degenerate Fibers

The Weierstrass for an elliptically fibered K3:

y2 = x3 + a(t)x + b(t)

where t is a coordinate on the base P1.

Discriminant is δ = 4a3 + 27b2 = 0
Non-Abelian gauge group G determined by degree of
vanishing of (a, b, δ) at the discriminant. [Tate]
Number of U(1)-factors = Mordell-Weil rank

rank MW(Y) + rank(G) = h11(Y)− h11(B)− 1
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Gauge Group

Toric Fibrations

Toric fibration of toric varieties equivalent to fan morphism
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Gauge Group

Tops and Bottoms

K3 as hypersurface
in 3-d toric variety
from 3-d reflexive
polygon
Fiber = kernel of fan
morphism =
preimage of origin
Fiber is one of the 16
reflexive polygons
Fiber cuts 3-d polytope in two halves (=tops)
Non-fiber vertices and edges of top form extended Dynkin
diagram of gauge group [Candelas]
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Gauge Group

A SU(5) Top

X
−1 0 1 2 3

Y
−1

0

1

2

Z

0

1 d0

d1

d2
d3

d4

f0

f1 f2

d0, . . . , d4 form SU(5) extended Dynkin diagram
Correspond to irreducible toric surfaces in the fiber over
torus fixed point
Hypersurface cuts out I5 Kodaira fiber
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Gauge Group

Toric Sections

X
−1 0 1 2 3

Y
−1

0

1

2

Z

0

1 d0

d1

d2
d3

d4

f0

f1 f2

Base of top = fiber polygon
Base vertices whose two adjacent points are a lattice basis
are toric sections
Here: single toric section f0 = 0
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Gauge Group

Trivial Top

For each fiber polygon there is the trivial top with a single
point at height 1.

This means that the fiber over the torus fixed point in the
base has only a single irreducible component.
Cartesian products and bundles are all built with trivial tops.
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Matter

Matter Charges in SU(5) × U(1) Models

Try to impose constraints on SU(5) GUT couplings by
additional U(1)

Open question: Which U(1) charges can the different
SU(5)-reps acquire?
Really question about elliptic CY 3-folds
We constructed and analyzed a relatively complicated
example

VB-Grimm-Keitel
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Matter

The Toric Data for the Calabi-Yau Threefold X

Point nz ∈ ∇ ∩ N Coordinate z Divisor V(z)
−1 −1 −1 −1 h0 Ĥ0

0 0 0 1 h1 Ĥ1

−2 −1 1 0 d0 D̂0

−1 0 1 0 d1 D̂1

0 0 1 0 d2 D̂2

0 −1 1 0 d3 D̂3

−1 −1 1 0 d4 D̂4

−1 0 0 0 f0 F̂0

0 1 0 0 f1 F̂1

1 0 0 0 f2 F̂2

−1 −1 0 0 f3 F̂3

The fan morphism is the projection on the last two coordinates.
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Matter

Mordell-Weil Group

The Hodge numbers are h11(X) = 7 and h21(X) = 63
Therefore rank MW(X) = 1
But only one toric section σ0 = {f0 = 0}
What is the generator of MW? Using intersection theory, we
guessed

[σ1] = [F̂1 − F̂0 − D̂0 − D̂3 − D̂4 + Ĥ0].

To verify the guess, compute H0
(
X,O(σ1)

)
= 1.
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Matter

Orientations of I5 and Two Sections

5–0 split 4–1 split 3–2 split

σ0 σ1 σ0

σ1

σ0

σ1

5–0 split: The SU(5) singlets have minimal U(1) charge one.
4–1 split: The SU(5) singlets have U(1) charges in 5Z. The 5 of

SU(5) (fundamental representation) have U(1) charge
2, 3 mod 5. The 10 (antisymmetric representation) have U(1)
charges 1, 4 mod 5.

3–2 split: As 4–1 but fundamentals have charges 1, 4 mod 5 and
antisymmetrics have 2, 3 mod 5.
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Matter

U(1) Charges

The example is of the 4–1 split type, easy intersection theory
computation.
This fixes the U(1) charge mod 5, but what are the actual
U(1) charges?
The 6-d hypermultiplets come from vanishing curves on the
discriminant.
Their U(1) charge is the intersection

U(1)-charge(C) = C ∩ S(σ1) =

C ∩ σ1 − C ∩ σ0 +
∑

1≤a,b≤4

(C ∩ D̂a)

 4
5

3
5

2
5

1
5

3
5

6
5

4
5

2
5

2
5

4
5

6
5

3
5

1
5

2
5

3
5

4
5


ab

(σ1 ∩ Cb)

Park-Morrison
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Matter

Codimension-Two Fibers

Need to identify the curves stuck over codimension-two fibers, for
example where I5 degenerates into an I6.

Very explicit: compute location of codimension-two fiber
and plug into hypersurface equation.
Here: projection map

π : [h0 : h1 : d0 : . . . : d4 : f0 : . . . : f3] 7→ [h0 : h1 : d0d1d2d3d4]

For example, look at the d0 = 0 toric fiber component over
the point [h0 : h1 : 0]
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Matter

The d0 = 0 Toric Fiber Component

d4

f3

f1

f0

d2

d1

Point nz Coord. z
1 0 d1

1 1 d2

0 1 d4

−1 0 f3

1 −1 f1

0 −1 f0

It is embedded as

i0 : [d1 : d2 : d4 : f0 : f1 : f3] 7→
[h0 : h1 : 0 : d1 : d2 : 1 : d4 : f0 : f1 : 1 : f3]
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Matter

Plugging into the Hypersurface Equation
1 Over a generic point [h0 : h1 : 0], get

p(h0, h1, 0, d1, d2, 1, d4, f0, f1, 1, f3) =

β0d1d2
2d4f1 + β1d1d2f0f 2

1 + β2d2d4f3 + β3f0f1f3

2 at 2 distinct codimension-two fibers the coefficient β2

vanishes and the polynomial factorizes as

p(h0, h1, 0, d1, d2, 1, d4, f0, f1, 1, f3) =

f1 ×
(
β0d1d2

2d4 + β1d1d2f0f1 + β3f0f3
)

3 at 3 distinct codimension-two fibers the hypersurface
equation factors as

p(h0, h1, 0, d1, d2, 1, d4, f0, f1, 1, f3) =

(β′0d1d2f1 + β′1f3)× (β′2d2d4 + β′3f0f1)
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Matter

Codimension-Two Fiber Components
Previous slide: The d0 = 0 node of the
extended Dynkin diagram splits in two
different ways.

1 The pull-back of the Calabi-Yau
to the d0 = 0 fiber component is

i∗0(Y) = V(p) = V(f0)+V(f1)+V(f3)

d4

f3

f1

f0

d2

d1

1 Over 2 points the fiber component decomposes as

i∗0(Y) = V(p) =
[
V(f1)

]
+
[
V(f0) + V(f3)

]
,

2 and over 3 points the fiber component decomposes as

i∗0(Y) = V(p) =
[
V(f0) + V(f1)

]
+
[
V(f3)

]
.
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Matter

Intersection Numbers of Fibers and Sections
The pull-back of the sections is

i∗0(σ0) =V(f0),

i∗0(σ1) =V(f3)− V(f0).

I6 component C̄0 C̄1 C̄2 C̄3 C̄4 C̄5

Realization V(f0) + V(f3) V(f1) C1 C2 C3 C4

∩σ0 0 1 0 0 0 0
∩σ1 1 −1 0 0 1 0

I6 component C̄0 C̄1 C̄2 C̄3 C̄4 C̄5

Realization V(f3) V(f0) + V(f1) C1 C2 C3 C4

∩σ0 1 0 0 0 0 0
∩σ1 −1 1 0 0 1 0
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Matter

U(1)-Charges

The intersection numbers of the stuck curves determine the
U(1) charges of the SU(5) matter rep that contains the hyper.
In the above example, these are 5 of SU(5)

Plugging into the formula:

U(1)−charge(2×5) = 1−0+( 0 0 0 1 )

 4
5

3
5

2
5

1
5

3
5

6
5

4
5

2
5

2
5

4
5

6
5

3
5

1
5

2
5

3
5

4
5

( 0
0
1
0

)
=

8
5

By analogous computation, find complete matter spectrum:

2× 58 + 3× 57 + 6× 53 + 8× 52 + 3× 101
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Flatness

Flat Fibrations

Want fibrations where all fibers are one-dimensional
(otherwise, have tensionless strings)
Starting with codimension-two fibers (CY 3-fold), the
dimension of the fiber can jump up.
A fibration where all fibers are of the same dimension is
called flat.
Note: flat in the sense of homological algebra, not in the
geometric sense.
As we go up in dimension, this gets more and more
restrictive.
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Flatness

Non-Flat Tops

Consider a top with an inte-
gral point in the interior of the
pentagon facet at height one.

For an elliptic K3 built
from this top, the
corresponding divisor is
interior to a facet.
The following are equivalent:

Integral point pi interior to a facet
Toric divisor V(zi) missed by the Calabi-Yau hypersurface
Toric divisor V(zi) such that the restriction of the Calabi-Yau
equation is constant.
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Flatness

Non-Flat Top in Calabi-Yau Threefold

If we use this top in a Calabi-Yau threefold:
The toric fiber is now fibred over the one-dimensional
discriminant.
The hypersurface equation is still constant in the fiber
direction on the toric fiber component coresponding to the
facet interior point of the top.
But the facet interior point of the top is not in a facet of the
4-d polytope, so this constant varies along the discriminant.
Hence, must be zero somewhere.
There, the whole 2-dimensional toric fiber is part of the
Calabi-Yau hypersurface.

The threefold fibration cannot be flat.
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Flatness

Tops in Higher Dimensions

There are more/different things that can go wrong.
They do not only depend on the top, but also its embedding
in the polytope.
Most 4-d toric hypersurfaces are not flat elliptic fibrations.

WIP
Extends to complete intersections as well. WIP
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