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Introduction

Introduction

Definition (F-Theory) 72 y2d

Defines a (real) (12 — 2d)-dimensional effective
field theory after compactification on elliptically L”
fibered 2d-dimensional Calabi-Yau variety. B2d-2

Gauge group, matter, and Yukawa couplings localized at different
dimensions:

@ dimc Y = 1: IIB in 10-d
@ dim¢ Y = 2: Degenerate (Kodaira) fibers = Gauge group
@ dim¢ Y = 3: Discriminant components intersect = Matter
@ dimc Y = 4: Matter curves intersect =
Yukawa couplings, flux.
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Weierstrass Model

Elliptic Curves

First, look at dim Y = 1.
@ Can write down CY 1-fold explicitly: Y = C/(Z @ 7Z)

@ But not in higher dimenison, better use embedding in 2-d
ambient space

e For example, cubic hypersurface in P*

@ Can always be written in Weierstrass form
vV=x+ax+b

@ Or, more generally, a (crepant resolution of a singular Fano)
toric surface
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Weierstrass Model

16 Reflexive Polygons

Definition (Reflexive)
A lattice polytope V is called

reflexive if its dual A is also 'i::z % {::I

a lattice polytope.

Note: Larger V <> smaller A. % i} Q {}
The blue polygons: ‘Q f} @ %

@ minimal with respect to

removing a vertex p A ‘@

(blow-down).

@ dual is maximal with
respect to inclusion.
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Weierstrass Model

Normal Form of a Cubic
Cubic surface:
Za,-j-kuivfwk =0, [:v:w] € P?
ik
The undergrad method:
@ Find a flex
@ Translate flexto [0 : 1 : 0]

Picking a point (= zero-section) necessary, what if its not a flex?

Better solution: Artin, Rodriguez-Villegas, Tate
@ Switch to the Jacobian Pic’(E)
@ Weierstrass parameters a, b = polynomial in a;.
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How to go from this:

P(u,v,w) E aguVwt =

i+j+k=3

to this: y* = x> + fxz* + gz% (the Weierstrass form)?

SLs-rotation of [u : v : w| should not change f, g. J




Weierstrass Model

The Ternary Cubic
A cubic in three variables
P(u,v,w) = Z aguvwt =0, [:v:w €P?
i-+j+k=3
has
@ two invariants S, 7', and
e four covariants P(u,v,w), H(u,v,w), O(u,v,w), and
J(u,v,w)
satisfying the syzygy
J? =40 + TP°©* + ©( — 4S°P* + 2STP’H — 728°P*H*
— 18TPH’ + 108SH"*) — 16S*P°H — 11S°TP*H”
— 4T°P°H’ + 54STP*H* — 4328°PH’ — 27TH®
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Weierstrass Model

Weierstrass Form From Invariants

For P = 0, the syzygy is
J? = 40° + 1080SH* — 27TH®
soup to some rescaling: y=J,x=0,z=H,f=S,andg=T.

For example, the Fermat cubic P = u® +1* + w:

w:P? - P?[2,3, 1],
3.3 3..,3 3..,3

u —u’v: —uww’ —vw
V| — %(u6v3 — 3V — udw + O3 + 1Pwb — v3w6)
w uvw
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Gauge Group

Degenerate Fibers

The Weierstrass for an elliptically fibered K3:
2 =x +a(t)x + b(r)

where 7 is a coordinate on the base P'.
@ Discriminant is 6 = 44> +27b* =0

@ Non-Abelian gauge group G determined by degree of
vanishing of (a, b, 0) at the discriminant. [Tate]

@ Number of U(1)-factors = Mordell-Weil rank

rank MW (Y) + rank(G) = h''(Y) — h''(B) — 1
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Toric fibration of toric varieties equivalent to fan morphism




Gauge Group

Tops and Bottoms

@ K3 as hypersurface
in 3-d toric variety
from 3-d reflexive
polygon

@ Fiber = kernel of fan
morphism =
preimage of origin . ‘

e Fiberisone of the 16 ~ movpltsam V. . plbe
reflexive polygons S ' "

@ Fiber cuts 3-d polytope in two halves (=fops)

@ Non-fiber vertices and edges of top form extended Dynkin
diagram of gauge group [Candelas]
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@ dy, ...,ds form SU(5) extended Dynkin diagram

@ Correspond to irreducible toric surfaces in the fiber over
torus fixed point

@ Hypersurface cuts out /s Kodaira fiber




@ Base of top = fiber polygon

@ Base vertices whose two adjacent points are a lattice basis
are toric sections

@ Here: single toric section fy = 0




Gauge Group

Trivial Top

@ For each fiber polygon there is the trivial top with a single
point at height 1.

@ This means that the fiber over the torus fixed point in the
base has only a single irreducible component.

@ Cartesian products and bundles are all built with trivial tops.
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Matter

Matter Charges in SU(5) x U(1) Models

@ Try to impose constraints on SU(5) GUT couplings by
additional U(1)

@ Open question: Which U(1) charges can the different
SU(5)-reps acquire?
@ Really question about elliptic CY 3-folds

@ We constructed and analyzed a relatively complicated
example
VB-Grimm-Keitel
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Matter

The Toric Data for the Calabi-Yau Threefold X

Pointn, € VAN | Coordinate z Divisor V(z)
-1 -1 -1 -1 ho H,
0 0 0 1 hy H,
-2 -1 1 0 dy Dy
-1 0 1 0 d D,
0 0 1 0 d> D,
0 -1 1 0 ds D;
-1 -1 1 0 d, D,
-1 0 0 0 fo F,
0O 1 0 0 fi F
1 0 0 0 2 F>
-1 -1 0 0 fs Fy

The fan morphism is the projection on the last two coordinates.
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Matter

Mordell-Weil Group

The Hodge numbers are 2'!(X) = 7 and h?!(X) = 63
Therefore rank MW (X) = 1
But only one toric section oy = {fy = 0}

What is the generator of MW? Using intersection theory, we
guessed

[0’1] = [Fl —ﬁo—bo—bg—b4+ﬁo}.

To verify the guess, compute H’(X, O(0y)) = 1.
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Matter

Orientations of I5 and Two Sections

go 01

5-0 split: The SU(5) singlets have minimal U(1) charge one.
4-1 split: The SU(5) singlets have U(1) charges in 5Z. The 5 of
SU(5) (fundamental representation) have U(1) charge
2,3 mod 5. The 10 (antisymmetric representation) have U(1)
charges 1,4 mod 5.

3-2 split: As 4—1 but fundamentals have charges 1,4 mod 5 and
antisymmetrics have 2, 3 mod 5.
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Matter

U(1) Charges

@ The example is of the 4—1 split type, easy intersection theory
computation.

@ This fixes the U(1) charge mod 5, but what are the actual
U(1) charges?

@ The 6-d hypermultiplets come from vanishing curves on the
discriminant.

@ Their U(1) charge is the intersection
U(1)-charge(C) = CN S(oy) =

CNno—CNaog+ »_ (CND,) (o1 N C)

1<a,b<4

U= L[ LW L&
QI Ul Loy W
DNIW NG L& D
QB LW DI Uil —

ab

Park-Morrison
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Matter

Codimension-Two Fibers

Need to identify the curves stuck over codimension-two fibers, for
example where /5 degenerates into an /.

@ Very explicit: compute location of codimension-two fiber
and plug into hypersurface equation.

@ Here: projection map
™ [l’loll’ll Idoi... Zd42f62... fg,] — [h()l]’l] Id0d1d2d3d4]

@ For example, look at the dy = 0 toric fiber component over
the point [ : A : 0]
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Matter

The dy = 0 Toric Fiber Component

d4
0, Point n, | Coord. z
. 1 0 d;
4 11 d
0 1 dy
I3 o Peo d, 0 f3
1 -1 fi
e ¥ 0 —1 f
f1
/ It is embedded as
0

o:[dy:dy:dy:fo:fi:fs] —
ho :hy :0:dy:dy:1:dy:fo:fi:1:f3]

Volker Braun (DIAS) SU(5) X U(1) in F-Theory LMU Miinchen

24/33



Matter

Plugging into the Hypersurface Equation

@ Over a generic point [h : A : 0], get

plho, h1,0,dy,dy, 1, dy, fo,f1,1.f3) =
Bodidydif + Brvdofof} + Badadufs + Bafafifs
© at 2 distinct codimension-two fibers the coefficient 3,
vanishes and the polynomial factorizes as
plho, h1,0,dy,dy, 1,ds, fo.f1,1.f3) =
fi x (Bodididy + Bididafofi + Bafof)

© at 3 distinct codimension-two fibers the hypersurface
equation factors as

p(h07h17 07d17d27 17d47f07f17 17f3) =
(Bodidofi + Bif3) X (Bardads + Bifafi)
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Matter

Codimension-Two Fiber Components

Previous slide: The dy = 0 node of the
extended Dynkin diagram splits in two
different ways.

© The pull-back of the Calabi-Yau ¢,
to the dy = 0 fiber component is

is(Y) = Vip) = V(fo)+V(H)+V(f)

0

Q@ Over 2 points the fiber component decomposes as

ib(Y) =Vp) = [VIi)] + [V(h) + V(5)].

© and over 3 points the fiber component decomposes as
io(Y) = V(p) = [V(f) + V()] + [V(5)].
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Matter

Intersection Numbers of Fibers and Sections

The pull-back of the sections is

ig(00) =V (fo),
ig(01) =V(f3) = V{fo).

I component | Co C, C, C; C, Cs
Realization | V(fy) + V(f3) V(i) C1 C, Ci3 C4
Noyg 0 1 O 0 o0 O
Noq 1 —1 0 O 1 0
Is component | Cy C, C, C; Cs4 Cs
Realization | V(f;) V(o) + V(i) C1 C, C; Cy
Noy 1 0 O 0 0 0
Noy —1 1 0O O 1 0
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Matter

U(1)-Charges

@ The intersection numbers of the stuck curves determine the
U(1) charges of the SU(5) matter rep that contains the hyper.

@ In the above example, these are 5 of SU(5)

@ Plugging into the formula:

| oo

U(1)—charge(2x5) = 1—-0+(0001)

(1)

@ By analogous computation, find complete matter spectrum:

Wil— L LW &

QI Ll LIy W

LW LI LIlE L

QI 0 U U —
(=l =]

2X 83 +3 x5, +6x5;+8x35,+3x10,
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Flatness

Flat Fibrations

@ Want fibrations where all fibers are one-dimensional
(otherwise, have tensionless strings)

@ Starting with codimension-two fibers (CY 3-fold), the
dimension of the fiber can jump up.

@ A fibration where all fibers are of the same dimension is
called flat.

@ Note: flat in the sense of homological algebra, not in the
geometric sense.

@ As we go up in dimension, this gets more and more
restrictive.
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Flatness

Non-Flat Tops

Consider a top with an inte-
gral point in the interior of the
pentagon facet at height one.

@ For an elliptic K3 built
from this top, the
corresponding divisor is
interior to a facet.

@ The following are equivalent:
e Integral point p; interior to a facet
e Toric divisor V(z;) missed by the Calabi-Yau hypersurface
e Toric divisor V(z;) such that the restriction of the Calabi-Yau
equation is constant.
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Flatness

Non-Flat Top in Calabi-Yau Threefold

If we use this top in a Calabi-Yau threefold:

@ The toric fiber is now fibred over the one-dimensional
discriminant.

@ The hypersurface equation is still constant in the fiber
direction on the toric fiber component coresponding to the
facet interior point of the top.

@ But the facet interior point of the top is not in a facet of the

4-d polytope, so this constant varies along the discriminant.

@ Hence, must be zero somewhere.

@ There, the whole 2-dimensional toric fiber is part of the
Calabi-Yau hypersurface.

The threefold fibration cannot be flat.
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Flatness

Tops in Higher Dimensions

@ There are more/different things that can go wrong.

@ They do not only depend on the top, but also its embedding
in the polytope.

@ Most 4-d toric hypersurfaces are not flat elliptic fibrations.

@ Extends to complete intersections as well.
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