Far-from-equilibrium Holography and Heavy Ion Collisions

David Mateos ICREA & University of Barcelona

Work with Casalderrey, Heller and van der Schee

The QCD challenge

- QCD remains a challenge after 40 years.
- We have some good tools but they all have limitations. For example:
 - Perturbation theory: Weak coupling.
 - Lattice: Difficult to apply to real-time phenomena.
 - Etc.
- A string reformulation might help.
- Topic of this talk with focus on far-from-equilibrium.
- Of theoretical and experimental interest:

Heavy Ion Collisions

Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

Heavy Ion Collisions

- How long is $t_{
 m hydro}$? Data indicates $t_{
 m hydro}T_{
 m hydro} \leq 1$.
- What determines when hydro becomes applicable?
- What is the nature of the hydro expansion?

Michal Heller's talk

- What are the initial conditions for hydro?
- Is there a qualitative mechanism/model?
- How do initial-state fluctuations evolve?
- And general questions about far-from-equilibrium QFT.

Gauge/Gravity Duality

• At present gauge/gravity duality is not a tool for *precision* QCD physics:

- Large N.
- No asymptotic freedom.
- However, it may still provide useful:
 - Quantitative ballpark estimates.
 - Qualitative insights.

• In particular, if strong coupling + far from equilibrium, then holography is the *only* first-principle tool.

Last decade: Near equilibrium QGP

Near-equilibrium QGP = Near-equilibrium Black Hole

Far from equilibrium

Classical but fully Dynamical General Relativity in AdS

Chesler & Yaffe '10 Casalderrey, Heller, D.M. & van der Schee '13

- Collide two infinite sheets of energy in N=4 SYM.
- Toy model for central collision of large nuclei.
- Collision of gravitational shock waves in AdS (2+1 problem).

Thin

(high E)

Thick

(low E)

- Scale invariance: Results depend only on $\rho\omega$
- Chesler & Yaffe choose $\rho\omega_{\rm CY}\simeq 0.64$
- In a real HIC $\rho\omega\sim\gamma^{-1/2}$
- We therefore simulate values between $\frac{1}{8}\rho\omega_{\rm CY}$ and $2\rho w_{\rm CY}$
- Dynamical crossover between *full-stopping* and *transparency* scenarios

Thick shocks collision

Thin shocks collision

Thick shocks approx. realize Landau model

Landau '53

Energy gets compressed, stops and explodes hydrodynamically.

• At $\rho t_{\text{max}} \simeq 0.58$, 90% of the energy density is moving with v < 0.1.

Thick shocks approx. realize Landau model

Landau '53

Energy gets compressed, stops and explodes hydrodynamically.

- At $\rho t_{\text{max}} \simeq 0.58$, 90% of the energy density is moving with v < 0.1.
- Deviation from hydrodynamics less than 20% everywhere.

• At z=0:
$$t_{\rm hydro}T_{\rm hydro}\simeq 0$$

- Anisotropy: $\mathcal{P}_T/\mathcal{P}_L \simeq 0.5$
- No clear separation between plasma and receding fragments.

Thick shocks approx. realize Landau model

Landau '53

Energy gets compressed, stops and explodes hydrodynamically.

- At $\rho t_{\text{max}} \simeq 0.58$, 90% of the energy density is moving with v < 0.1.
- Deviation from hydrodynamics less than 20% everywhere.

• At z=0:
$$t_{\rm hydro}T_{\rm hydro}\simeq 0$$

- Anisotropy: $\mathcal{P}_T/\mathcal{P}_L \simeq 0.5$
- No clear separation between plasma and receding fragments.
- The receding maxima move at $v \sim 0.88$.

Thin shocks realize transparency

Shocks pass through one another and plasma gets created in between. ${\cal E}/\rho^4$

Thin shocks realize transparency

Shocks pass through one another and plasma gets created in between. ${\cal E}/\rho^4$

• Most dramatic change is region of negative energy near the receding fragments.

Thin shocks realize transparency

Shocks pass through one another and plasma gets created in between \mathcal{E}/ρ^4

- Shape of shocks gets altered but they keep moving at v=1.
- Most dramatic change is region of negative energy near the receding fragments.
- Hydrodynamics only applicable away from receding fragments and at late times.
- $t_{\rm hydro}T_{\rm hydro}\simeq 0.26$
- Anisotropy: $\mathcal{P}_T/\mathcal{P}_L \simeq 15$
- Clear separation between receding fragments and plasma in between.

Two preconceptions dispelled

- 1. Strong coupling in the gauge theory may not lead to any significant stopping.
 - In particular, it is compatible with receding fragments moving at v=1.

Two preconceptions dispelled

- 2. But this does not necessarily lead to Bjorken boostinvariance at mid-rapidity.
 - Rapidity distribution is not flat but Gaussian.

Thick shocks collision

Sunday, June 21, 2009

Thin shocks collision

Gaussianity and experimental data

Thin shocks collision

- To really compare with data we should run the simulation to later times (+many other things), but Gaussianity is encouraging:
- It is also nice that the width increases with energy, as expected.

BRAHMS Collaboration for Au+Au collisions at $\sqrt{s_{NN}} = 200 \,\text{GeV}$.

Two universal lessons

1. Hydrodynamization time can be significantly shorter than $1/T_{
m hydro}$.

- Such short times are hard to achieve at weak coupling.
- Suggestive, but remember caveats.

2. Hydrodynamics can work despite large anisotropies.

- > In other words, at strong coupling $t_{
 m hydro} < t_{
 m iso}$.
- > In contrast, at weak coupling $t_{
 m iso} < t_{
 m hydro}$.

Arnold, Moore & Yaffe '04

- Mysterious from effective field theory viewpoint.
- Applicability of hydro governed by relaxation of non-hydro QNMs. Chesler & Yaffe '09
- Hydro expansion seems to be asymptotic.

Heller, Janik & Witaszczyk '13

Outlook: General collisions in confining theories

Finite impact parameter: d=4+1 in AdS

- Transverse plane dynamics.
- Event-by-event fluctuations.

Thank you.