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String theory is often studied in regimes where a geometric description is available.

But string theory also admits non-geometric backgrounds as solutions.
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motivation :: h-flux background

—

Tc Tb Ta
H,p. |+ S L y Q.7 4 ,  Rabe

Consider string theory compactified on a three-torus with H-flux:

= The geometry is characterized by  ds? = da? + dy? + dz?,

B,,=Nux.
. . 1
= [he H-flux is determined by (273 /H =N.
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motivation :: f-flux background
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After a T-duality in the z-direction, one arrives at a twisted torus:

= [he geometry is characterized by

= The geometric flux follows from

ds® = dx* + dy* + (dz + Nz dy)?,

B=0.

e’ =dzx, e’ = dy, e =dz+ Nzdy,
wpy =—N/2,

ez, ey = —Ne,.

Scherk, Schwarz - 1979
Kachru, Schulz, Tripathy, Trivedi - 2002



motivation :: g-flux background
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T. T T.
H,p. - sy S ———— | Q. | 4 ,  Rabe
After a second T-duality in the y-direction, one arrives at a T-fold:
= The geometry is characterized by  ds? = da® + ! (dy” + dz7) ,
1 4+ N2z2
Nz

= The non-geometric Q-flux reads Q.7 =N.

= [he metric and B-field are well-defined locally, but not globally.

Transition functions between local trivializations involve T-duality
transformations, hence the name T-fold.

Hellermann, McGreevy, Williams - 2002
Dabholkar, Hull - 2002

Hull - 2004
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motivation :: r-flux background

T, T

T,
H,. < S L y Qu0¢ <

Rabc
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After formally applying a third T-duality, one obtains an R-flux background:

= [he metric and B-field are not even locally well-defined.
= The non-geometric R-flux is formally written as R** = N .

= |t has been observed that this background gives rise to a non-associative
structure.

Bouwknegt, Hannabuss, Mathai -
Shelton, Taylor, Wecht -
Ellwood, Hashimoto -

2004
2005
2006

..-2010
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An approach to study non-geometric fluxes is provided by generalized geometry.

. Consider a manifold M with generalized tangent bundle T'M & T™ M and
sections X + ¢ .

= On this bundle there is a natural O(d,d)-structure, and two abelian subgroups
thereof are generated by

B-transform :: X+&— X+ (£—1xw)
B-transform :: X+€& = (X+p50)+¢

= A generalized metric which encodes the metric G and a B-field reads

< G- BG'B BG! )

H =
~-G~'B G~1

and a particular set of corresponding vielbeins reads (£%,&,) = (%, eq — te, B) .

Hitchin - 2002
Gualtieri - 2004
Grana, Minasian, Petrini, Waldram - 2008
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motivation :: generalized geometry Il

Using the Courant bracket, the algebra for the vielbeins can be determined:

= For the basis (£%, &,) one finds

[gaagb: =+ En — HapmE™

bl _ _ bem
[gaag 1 fam g Y
£4.E% = 0.

s But, after performing a S-transform on the vielbeins, one has

[gaa gb: — fabmgm )
[gaa gb - fambgm -+ Qabmgfm 9
[ga7 gb _ _|_Qmabgm 4+ Rabmgm .

The non-geometric fluxes are expressed in terms of a bi-vector 3 as
Qabc _ aaﬁbc £+ 2fam [Qﬁmg] , Rabc — 3(5[@7’”8?”5@] 4+ fmn[ﬁﬁbmﬁgn]) .

Grange, Schafer-Nameki - 2006
Grafa, Minasian, Petrini, Waldram - 2008
Halmagyi - 2009
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motivation :: double field theory

I

A further approach to study non-geometric fluxes is provided by double field theory.

= Here, one first doubles the geometry

= o = (2% %,), Oy — 04 = (0g,0%).

= The (NS-NS sector of the) action can then be expressed as

1
SDFT ~ /daﬁd.flvie_Qd (gHAB(aA%CD)(aBHCD) -

= This action is manifestly invariant under O(d, d)-transformations.

= Upon setting 9% = 0, one recovers the usual action.

Tseytlin -

Siegel -
- 2004
- 2009
- 2010

Hull

Hull, Zwiebach

Hohm, Hull, Zwiebach
Hohm, Kwak -

1991
1993

2010

Jeon, Lee, Park - 2010 & 2011

Hohm, Zwiebach -

2011



motivation :: action for non-geometric fluxes

—

To obtain an action for non-geometric fluxes, the following steps have been performed:

1. Consider the DFT action with generalized metric depending on G and B.

2. Perform an O(d,d)-transformation (T-duality transformation) and a field redefinition,
to arrive at a DFT action depending on (g, 3).

3. Set 9, = 0 and obtain an action for non-geometric fluxes.

Snon—geometric — /dx V _‘§|€_2$Z"(§7 Ba (/B) .

Alternatively, starting from the usual NS-NS Lagrangian a field redefinition has been
employed to obtain a non-geometric action

q3, B'=p5-g'pg".

<

G—l _ g—l .

Andriot, Larfors, List, Patalong - 2011
Andriot, Hohm, Larfors, Lust, Patalong - 2012



motivation :: plan of this talk
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As has been reviewed, for non-geometric fluxes a bi-vector § plays an important role

Qa" = 8.8, O = 35149, 8.

An action incorporating the bi-vector 5 can be obtained as follows:

1. Introduce a mathematical framework for describing 3
— Theory of Lie algebroids

2. Study diffeomorphisms and construct and invariant action
— Differential geometry

3. Relation to string theory
— Field redefinition a la Seiberg-Witten

4, Developments
— Extension to R-R and fermionic sectors
— Equations of motion and solutions

Blumenhagen, Deser, EP, Rennecke - 2012
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lie algebroids

I

A natural mathematical framework to describe a bi-vector 5 is given by Lie algebroids.

Hull - 2004

Halmagyi - 2008 & 2009

Berman, Perry - 2010

Blumenhagen, Deser, EP, Rennecke - 2012



lie algebroids :: definition

I

Let M be a manifold, and £ — M a vector bundle with

bracket e EXE—FE,
anchor map p: E—TM.

Then (E, |-, | g, p) is called a Lie algebroid, if (for s, € I'(E)and f € C>(M))

homomorphism p([s1,52|E) = [p(51), p(s2)]L ,

Leibnitz rule 51, fs2lg = fls1,s2]E + p(s51)(f)s2,

Jacobi identity 51, (52, 83]E|E = [[51, 52] B, 83]E + 52, |51, 83] E] B -
(E7 ['7 ]E) P

\ (TM’[’]L)
MQ MZ . 2;
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lie algebroids :: properties

Let M be a manifold, and £ — M a vector bundle with

bracket e EXE—FE,
anchor map p: E—TM.

Then (E, |-, | g, p) is called a Lie algebroid, if (for s, € I'(E)and f € C>(M))

homomorphism p([s1,82]E) = |p(s1), p(52)]L
Leibnitz rule 51, fs2lg = fls1,s2]E + p(s51)(f)s2,
Jacobi identity 51, (52, 83]E|E = [[51, 52] B, 83]E + 52, |51, 83] E] B -

There are two important properties of a Lie algebroid:
= The bracket on E can be extended to a Gerstenhaber algebra on I'(A*E) .

= The space of dual sections T'(A*E™) is a graded differential algebra with respect to
k

(dgw) (S0, ..., 5%) = Z (—1)’p(s:) (W(S0, .- 85,5 5K))

7/+ A A
—I—E 10 ([85, 851 B, 805+« 38y v ey 8iyenny k) .
1<



lie algebroids :: example |
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Let M be a manifold, and £ — M a vector bundle with

bracket e EXE—FE,
anchor map p: E—TM.

Then (E, |-, | g, p) is called a Lie algebroid, if (for s, € I'(E)and f € C>(M))

homomorphism p([s1,82]E) = |p(s1), p(52)]L
Leibnitz rule 51, fs2lg = fls1,s2]E + p(s51)(f)s2,
Jacobi identity 51, (52, 83]E|E = [[51, 52] B, 83]E + 52, |51, 83] E] B -

The standard example for a Lie algebroid is (T'M, |-, -|p, p = id):
» The bracket on T M is the Lie bracket [+, -], between vector fields.
= The extension to multi-vector fields gives the Schouten-Nijenhuis bracket |-, /s .

= The differential on I'(A*T* M) is the de Rham differential d .
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lie algebroids :: example |l

Let M be a manifold, and £ — M a vector bundle with

bracket e EXE—FE,
anchor map p: E—TM.

Then (E, |-, | g, p) is called a Lie algebroid, if (for s, € I'(E)and f € C>(M))

homomorphism p([s1,82]E) = |p(s1), p(52)]L
Leibnitz rule 51, fs2lg = fls1,s2]E + p(s51)(f)s2,
Jacobi identity 51, (52, 83]E|E = [[51, 52] B, 83]E + 52, |51, 83] E] B -

For (M, 3) a Poisson manifold, a Lie algebroid is given by (T*M, [-,-]x, p = B%).
= The anchor is characterized by:  p(e?) = 8*(e?) = %y .
= The bracket is the Koszul bracket: [§;mx = Lgieyn — tgz(y) d§,

e el = (0.8%)e’ .

» The differential on I'(A*T'M) is: dg = |5, ]sn -
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lie algebroids :: differential geometry |

A Lie derivative for a Lie algelbroid can lbe defined as follows:

= action on functions f € C®(M): Lsf:=s(f):=p(s)(f),
= gction on sections s € I'(E) : Ls,s5 =[50, 5]k
= action on sections a € I'(E™): Lsa=1s,0dpa+dgois, .

A covariant derivative is a bilinear map V : I'(F) x I'(E) — I'(F) satisfying

Vf3182 :fv81527 vslfSQ =,0(81)(f)82+fV3182-

Curvature and torsion tensors can be defined as

R(Saa Sb)Sc — vsauvsbSc — vsbvsasc — v[sa,sb]

ESC7

T(Saa Sb) — vsC,JSb — vsbsa — [Saa Sb]E .



lie algebroids :: differential geometry |l

I

A metric on a Lie algebroid gives rise to a scalar product for sections in £

<Sa7 Sb> — Gab -

The analogue of the Levi-Civita connection is obtained by requiring
= vanishing torsion Vi 82 — Vs, 81 = [81, 8] 8,
= metric compatibility p(s1)(s2,83) = (Vi 82, 83) + (51, Vg, 83)
and it is characterized by the Koszul formula
2<@8152, s3) = s1((s2,83)) + s2((s3, 1)) — s3((s1, s2))

— (81, |52, 83| E) + (52,53, 51|E) + (83, |51, 52| E) -



lie algebroids :: applications |
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Recall that there is a Lie algebroid structure on T M incorporating a bi-vector S
" given by (T*Ma ['7 ']Ka P = Bﬂ);
= defined in terms of the Koszul bracket,

= and with anchor 8% : T*M — TM .

The Jacobi identity for (T* M, [-, ]k, p = B%)
= is computed as (with n, x, ¢ € I'(T"M))
Jack (1, x,€) = d(0(1, %, C)) + L(ce,,©)dN + L0 1.0)AX F Luy0,0)dC
= where the defect © is given by the R-flux
@abe _ 35[Qmam5@] .

= [hus, for non-vanishing R-flux this construction is only a quasi Lie algebroid ...



lie algebroids :: applications Il

I

To obtain a proper Lie algebroid for non-vanishing R-flux ©, consider
= the H-twisted Koszul bracket defined by
& nw =&k — tprntpec H .
= [he corresponding Jacobi identity reads
Jacit (1, %, €) = d(R(1, X, Q) + (e, )N + L e R)AX + Loy, RYAC
= Wwith the defect given by
Rabe — gabe _ gam gbn gek pr

Therefore, a proper Lie algebroid (T* M, [-,-]&, 8*; R = 0) is obtained provided that
@abc _ 6am an 5676 Hmnk .



lie algebroids :: summary

I

To summarize, a proper Lie algebroid structure on T* M incorporating a bi-vector 3
= is given by (T*M,[-,- ]2, 8% R =0),
= provided that the R-flux ©9%¢ is related to the twist H as
@abe — gam gbn gck pr

» The metric and partial derivative will be denoted by § and D* = 329, .

One can develop a differential geometry calculus on T M ,
m With Lie derivative, covariant derivative,
m  curvature and torsion tensors,

s and Levi-Civita connection.
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diffeomorphisms :: definitions

—

For the Lie algebroid on T™ M, two different Lie derivates appear:

= The Lie derivative based on the Lie bracket Lx for X e I(TM).
= [he Lie derivative based on the Koszul bracket ﬁg for £ e T(T*"M).

Both can be used to describe and define (infinitesimal) diffeomorphisms ...



diffeomorphisms :: definitions

—

For the Lie algebroid on T™ M, two different Lie derivates appear:

= The Lie derivative based on the Lie bracket Lx for X e I(TM).
= [he Lie derivative based on the Koszul bracket ﬁg for £ e T(T*"M).

Both can be used to describe and define (infinitesimal) diffeomorphisms ...

Definitions:

= Anobject T e I'((®"TM) ® (®°T*M)) iscalleda  tensor, if it behaves
under diffeomorphisms as

ai...a, . ai...a,
Ox T %y .= (LxT)" % b .

= Atensor T eI'((®"TM)® (®°T*M)) is called a 8 -tensor, if it behaves as
under B-diffeomorphisms as

SgTalmarbl...bS — (ﬁgT)almarblmbs )



diffeomorphisms :: tensors

I

For usual diffeomorphisms,
= the transformation behavior of a scalar f implies

5xf:X(f):fo —_ 5de:Lde

= [he metric g is a tensor, that is

0xg=Lxg.
= [f the bi-vector is a tensor, it implies for the R-flux ¢ = 3 lelmg, . 5lb<l that
5)(5:[/)(5 —_ 0x0O = Lx0O.

For 5-diffeomorphisms,
= g scalar f transforms as 55 f= [15 f=¢&,D%f, where D% = 599, .

= Requiring that the partial derivative of a scalar is a 5-tensor implies
5 (D"f) = (LeDf)" + (6 8™ — ©""E) Ouf = (Le Df)"
— 0B =0, = Le B+ BU BT (O — Onbim)
— 0,0=L:O.



diffeomorphisms :: algebra of transformations

—

The algebra of infinitesimal 5-transformations does not close (with 7,&, 0 € I'(T7M))

(1506, |1 = Oley 0l F Lre, e, 0000 — d(O(E1,62,m)) |

where the defect is given by the R-flux ©.



diffeomorphisms :: algebra of transformations

—

The algebra of infinitesimal 5-transformations does not close (with 7,&, 0 € I'(T7M))

(1506, |1 = Oley 0l F Lre, e, 0000 — d(O(E1,62,m)) |

where the defect is given by the R-flux ©.

However, the combined algebra of standard and S-diffeomorphisms does close
10x1,0x,| = 01x, . Xa]1 -

[55175){1: — 5(££1X1) ’

[5‘51 ? 552: — 5[51752]-’{ T 5(’/51%2 ©) -



diffeomorphisms :: summary

I

Since two different Lie derivates appear for the Lie algebroid on T* M,
= one can describe infinitesimal diffeomorphisms by dx = Lx,

= and a new type of 3-diffeomorphisms by ¢ = L.

The infinitesimal 5-transformations of the metric and bi-vector read

A AN

0 G = (L §)™°, be B0 = (LeB)™ + 8™ B (Db — Onbm) -

The behavior under standard and Adiffeomorphisms can be summarized as

metric g  bi-vector8  derivative Df  R-flux ©

tensor v v v v
B-tensor v v v
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bi-invariant geometry :: technical remarks

—

For a basis {e*} € I'(T* M), the H-twisted Koszul bracket evaluates to

[ea’ eb}g _ (acﬁab . Bam an Hmnc) eC — Qcab eC

Due to the anomalous transformation behavior of 3, the H-twisted Koszul bracket
of g-tensors is a B-tensor

0¢[n, X5 = Len, X%

Thus, objects construct via this bracket are 5-tensors.



bi-invariant geometry :: differential geometry |

I

For the Lie algebroid (T*M, [-,-]&, 8%, R = 0) ,
= the Leibnitz rule of the covariant derivative reads (&, n € I'(T* M), f € C™(M))
Ve(fn) = fVen+ ((B€) )

= [ Ven +&m(D™f)n
= Connection coefficients for a basis {e®} € T'(T™ M) are defined as
@eae _va b _ Ca,bec7

= which for the components of a one-form and a vector field implies
@a’nb = Da??b + IAwbam Nm 5

A

Vexb— paxb 1 abxm

In order for V to be a tensor and a §-tensor, T'.%* has to transform anomalously
(0x — Lx)T.% = —D%(0.X"),
(55 _ ‘Ci) Pcab — _l_Da(DbSc —&m Qcmb) °



bi-invariant geometry :: differential geometry |l

I

The torsion operator for the present Lie algebroid
= takes the form T(&m) = Ven — Vy & = [€n)i
= which in components reads T.%° =1, T(e®, e®) =T, -T2 — Q..

= |t is a tensor with respect to standard and 5-diffeomorphisms.

The Levi-Civita connection is obtained by requiring
= metric compatibility (B*)a(n, %) = §(Vem, x) + 9(n, Vex)
= vanishing torsion Q. =1, _1/be,
= Employing the Koszul formula, the connection coefficients are computed as
~ ab 1

1
I 20 — 5 . (Daﬁbm 4 Dbga,m - Dmgab) . gcm g(a,|n Qn|b)m 4+ 5 Qcab .

The connection coefficients have the correct anomalous transformation behavior.



bi-invariant geometry :: differential geometry Il

I

The curvature operator for the present Lie algebroid
= takes the form R(?% X)§ = Wm @x}f — v[n,x]g £,
= which in components reads ~ R,*? =2(DI, 4" + T, 1,190 — 1,0 9,

= |t is a tensor with respect to standard and 5-diffeomorphisms.

The curvature tensor satisfies (for the Levi-Civita connection)

Rabcd _Rbacd _ _Rabdc _ Rcdab

Y

0 — Rabcd 4 Radbc 4+ Racdb
0 — @mRabcd 4 @dRabmc 4+ @cRabdm .

The Ricci tensor and scalar both behave as tensors and 3-tensors

A

Rab _ Rmamb , R = gabRab .
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bi-invariant geometry :: invariant action |

The transformation behavior of quantities discussed above can be summarized as:

metric ¢ bi-vector 3 derivative Df  R-flux ©  Ricci scalar R

tensor v v v v v
B-tensor v v v v
0x (V=191 L) = 0 (/—19| LX™)  —2/—[9] L (OmX™),

%
oy
A~
j
o
|
QD
3
|
N )
o
Iy
S
@
S
3
|
|
Nl
oS

(On ™" )Em -



bi-invariant geometry :: invariant action |

I

The transformation behavior of quantities discussed above can be summarized as:

metric ¢ bi-vector 3 derivative Df  R-flux ©  Ricci scalar R

tensor v
B-tensor v

v

v
v

v v
v v

The following Lagrangian then behaves as a scalar under standard & g-diffeomorphisms

A

L = e 2%

.1
(R — E@abc Oube + 4Gab D“ngbcb) .

To construct an invariant action, the measure has to transform appropriately:

ox (VTIL) =

be (V91 L) =

Om (/141

O (

A

g

LX™) —2/-]d

ﬁgn )5nm o

g

A

L(0n,X™),
L (0n ™)



bi-invariant geometry :: invariant action |

I

The transformation behavior of quantities discussed above can be summarized as:

metric ¢ bi-vector 3 derivative Df  R-flux ©  Ricci scalar R

tensor v v v v v
B-tensor v v v v

The following Lagrangian then behaves as a scalar under standard & g-diffeomorphisms

A

A 1
L = 6_2¢ (R — E@abc @abc + 4§ab Da¢Db¢> y

To construct an invariant action, the measure has to transform appropriately:
ox (V14187 L) = 0m (/14| LX™),

o (/=118 L) = 0 (/=131 |87 LEB™) .

Na )Y
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bi-invariant geometry ::

Invariant action Il

Combining these findings, one arrives at the bi-invariant action

A

S =

2/{2

d’rL

—1g| |8

A 1
1| 6_2¢ (R - E@abc Oape + 4§ab Dangbgb) :




differential geometry :: summary

I

For the Lie algebroid (T* M, [-,-]&, 8*; R = 0), a corresponding differential geometry
m characterized by a Levi-Civita connection
A 1
ab

1
I o0 — 5 . (Daﬁbm 4 Dbgam . Dmf]ab) — Gem @(a|n inb)m 4 § Qcab,

s as well as a curvature tensor have been determined
Rabcd _ Z(D[cfwad]b 4 fwa[c|m fm|d]b) o famb chd .

A bi-invariant action has been constructed

R 1 - X
522—/462/6133 -9

— — » 1 abc A a
71 e (R~ 0™ Oue + 4gar D*6D"9)
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string theory :: notation

The following notation will be employed from now on:
= standard geometric frame
= Non-geometric frame



string theory :: field redefinition

To connect to string theory, consider a Seiberg-Witten field redefinition

A

gab _ Bam ébn Gmn | 5&1) _ (B—l)ab .



string theory :: field redefinition

To connect to string theory, consider a Seiberg-Witten field redefinition

'&ab _ Bam an Gmn ] Bab _ (B—l)ab .

This relation between the frames (G, B) and (g, B) then implies that
= the metric and bi-vector are tensors.

= The field identification ©¢ = gem 3t gk f . for a proper Lie algebroid is
automatically satisfied.

= [he S-transformations correspond to gauge transformations.



string theory :: proper lie algebroid

Given the field redefinition mentioned above, the H- and R-flux can be related as

Habc — 3a[aBbc]
= =3 Bppjm (0a|8™") B
= 3 Bia|k| Bbjm| Ben D" 3"
— Bak Bbm Bcn é)mnk )

which then implies @abe — gam gbn gek py

Therefore, for the Lie algebroid (T* M, [-, ]2, 5%: R = 0) the Jacobi identity is satisfied.



string theory :: gauge transformations

The B-field behaves under gauge transformations in the following way

5§auge Bay = aa gb — ab fa .

Using the field redefinitions given above, this implies

5§auge§ab _ zﬁ(a\méw)n (amgn o angm) |
OF 8 5% = B B (Omén — Oném) -

With I the ordinary Lie derivative and £ the one based on the Koszul bracket, one has
5§auge §ab _ (Léﬁgg)ab o (2 g)ab
5§auge Bab — (LB ) [( )ab + Bamﬁbn( mgn — (‘)n&"m)] .

This agrees with the previously introduced Sg-diffeomorphisms

(Leg)™
(L B)“’” B B (D& — Onm) -

Q>
||
o

O¢
0 0



string theory :: ns-ns sector

The action In the non-geometric frame reads

A

S = d"x

2/{2

‘g 1} 6_2¢ (é LQ (:) be @abc T 4§ab Da¢Db¢) y

Employing the field redefinitions

—|G| = /~lg| |67
§ob = gomgn g i R%cap = =B Bep Bam Bon ReP™
B = (B~1)2b, Habe = Bam Bon Bep O™,
009 = Bam D™ ¢,

one arrives at the gravity part of the string theory action

S_— d"z+/—|G] —2¢( 1—12HabCH“bc+4G“b8a¢8bqb).



string theory :: ns-ns sector

The action In the non-geometric frame reads

A

S = d"x

2/4:2

‘g 1} 6_2¢ (é L2 (:) be @abc T 4§ab Da¢Db¢) y

Employing the field redefinitions

—|G| = /~lg| |67
§ob = gomgn g i R%cap = =B Bep Bam Bon ReP™
B = (B~1)2b, Habe = Bam Bon Bep O™,
009 = Bam D™ ¢,

one arrives at the gravity part of the string theory action

S_— d"z/—|G] —2¢( 1—12HabCHabc+4G“b5’a¢8bgb).
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string theory :: higher-order corrections

The string theory action in the (G, B)-frame receives higher-order «'-corrections.

These can be expressed in terms of the building blocks R.ped, Hape aNd 0,0 .

The translations of such blocks to the non-geometric frame is known, thus

S«(l) _ > d26
K

“1al 13 1‘ o—2¢ (Rabcd Ropot — _Rabcd O, 0. "

A

Ot % O, O — 1(6,,0,"")(6%,, 01 )

4+ L
24

Metsaev, Tseytlin - 1987
Hull, Townsend - 1988



string theory :: r-r sector |

Note the following:
1. If C,,. 4, isinvariant under B-field gauge transformations in the (G,5)-frame, then
é«al...an _ Balbl . -Banbncbl...bn

behaves as a #-tensor.

2. If C%9 s a B-tensor, then also
Fal...an+1 — @[al éag...an_|_1]

behaves as a f-tensor.

3. One can verify that F'%1-%+1 s invariant under
5Aéa1...an _ @[alAag...an] .

Therefore, the C* % can be considered as the analogues of the R-R gauge potentials.



string theory :: r-r sector |l

To obtain an action for the gauge potentials Cyand Cs,
= define the generalized field strengths
Fo=Fy, Fi=F, —OACY,
= which are invariant under the gauge transformations
OA (o) C* = VA, 5A(2)éa1a2"’3 = @[alA?QQ)ag] ,
She (rarazas _ —A) Oarazas

= [he action related to type lIA string theory via the above field redefinition reads

. 1 . ) )
SR = a2 /=[g1[37 (— 51512 - 1 F)

2
2/4:10

= which is invariant under gauge transformations and (3 -)diffeomorphisms.

Similarly, the Chern-Simons action is found as

A 1 1
SCS _ /le
AT 4k2, 314131 v

A—]. a b1b2b3 Ab4b5b6b7 Abgbgblo




string theory :: fermionic sector |

The Lagrangian for the dilatino in the standard frame reads
Lila = A7%eq" (0a — ‘WaBVVB’y) A

The notation Is as follows:

eoza eﬁbGab — TNag 5 UQB — éaa éﬁ gab ’

b e o c o ~ ~ ~ a ~ b ~
eceg’ I'ap + €% 0gep” = we "3, WP =e,2el T +¢e,°D*P, .

The Lagrangian in the non-geometric frame then becomes

LA = Ayl (D" — £&%5,477) X.



string theory :: fermionic sector Il

The Lagrangian for the gravitino in the standard frame reads

'CIIA _ _a’yaﬁveaaeﬁbeyc (Vb . %wb 5e ,756) \ch .

With the field redefinition
— 3@,

the Lagrangian in the non-geometric frame becomes

A

Liia = ‘I’a%méaaéﬁbévc (Vb — 2% Vée) e,

Note that the appearance of the covariant derivative is crucial.



string theory :: summary & remark

Using the field redefinition, a relation between actions has lbeen established

A

S = d"x

2/-4;2

|g ! | 6_2¢ (é _ 1_12 éabc (:)a,bc T 4gab Da¢Db¢)

|

S = 2/€2 d"x XL \/ —‘G _2¢( 1_12HabcHabc =+ 4Gab aa¢abgb)

Employing the same principle, actions have been derived
= for higher-order a~corrections,
= for the remaining bosonic terms in the type lIA action, and
= for the fermionic terms in the type IIA theory.



string theory :: summary & remark

Using the field redefinition, a relation between actions has lbeen established

A

S = d"x

2/-4;2

1| 6—2625 (ﬁ . 1_12 éabc é)a,bc + 4gab Da¢Db¢)

|

S = 2/€2 d"x XL \/ —‘G _2¢( 1_12HabcHabc =+ 4Gab aa¢abgb)

—|g] |8

Employing the same principle, actions have been derived
= for higher-order a~corrections,
= for the remaining bosonic terms in the type lIA action, and
= for the fermionic terms in the type IIA theory.

~

Contact with the action in the non-geometric (g, 5)-frame obtained via DFT is made via

~

—g—-gBtgp g, B=pF—-gb1g
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solutions :: equations of motion

The equations of motion determined from the non-geometric action

A

S = d"x

2/4;2

—|g| |8

1‘ e 29 (R — L @a’bc Oupe + 4 dab D"’ngbgb)
can be expressed as follows

]. ~ -" - ~ ACL A ]_ Aa c A

0= _§gabvavb¢+gabv ¢vb¢ — ﬂ@ ’ Oabe
A A A 1 A A

0 = Rab _|_2vavb¢_ Z@amn@bmn’

1 ~ 4 N N
0= 5 V"Omas — (V") Opnas

These field equations are of the same form as the ones in the geometric frame.



solutions :: an approximate solution

—

Consider R* with a metric and bi-vector field given by

0 +e (1 4 |z4]) 0 0 \
~ab __ cab o _6_1 (1 + |334‘) 0 0 0
gw =0"", b= .
0 0 0 +sign(z4) €6
\ 0 0 sign(z4) €0 0

The resulting non-geometric quantities read

R R R R O ¢ sign(x
031 = — 9, 18=0,32=_0,2 — | 0412 = —Q,2! = gn(z4) |
1 + ’564‘ €
R — R22 _ §}?33 _ _3 (Oe)? _ 0123 _ g
4 (1 + |z4])

The equations of motion are satisfied (up to first order in the flux) in the limit e — 0, i.e.

a e—0 A e—0 A
R4 > 0, 0. > 0, O123 =9.




—

solutions :: calabi-yau manifolds

In the geometric frame, (compact) Calabi-Yau manifolds can be characterized by

a Kahler form  w = %Gag dz* NdZ'  satisfying  dw =0,
and by R, =0.

For H,,. = 0 and ¢ = const., these are solutions to the equations of motion.

After the field redefinition, one obtains a non-geometric Calabi-Yau manifold given by

L b .
atwo-vector W =7 9., N0z  satisfying dfW =0,

and by R® =0.

For the corresponding ©%°¢ = 0 and ¢ = const., this is a non-geometric solution.
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conclusions :: part |

I

1. As reviewed, non-geometric fluxes are expressed in terms of a bi-vector 3 as

Q" = 0,8 O = 3 plemy,, gl

2. A mathematical framework to describe a bi-vector is
= the theory of Lie algebroids (generalization of the Lie bracket onT"M).

= A construction suitable for non-vanishing R-flux is (T* M, [-, |2, 8*; R = 0).

3. The differential geometry calculus for Lie algebroids was used to construct an action

Sz— d"z

|g 1| 6_2¢ (R T 1_12 (:)abc éabc T 4§ab Da¢Db¢) )

which is manifestly bi-invariant under standard and S-diffeomorphisms.



conclusions :: part |l

—

4. Motivated by the Seiberg-Witten map, a field redefinition
= relating string theory and the above action has been obtained

'&ab _ Bam an Gmn ] Bab _ (B—l)ab7

= which fits naturally into the Lie-algebroid construction.

5. Using the field redefinitions,
= gctions for the non-geometric R-R and fermionic sectors have been derived.
= [he equations of motion and some solutions have been discussed.



