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♣ Elliptic genus of K3

Elliptic genus in string theory is expressed as

Zelliptic(z; τ ) = TrHL×HR
(−1)FL+FRe

4πizJ3
L,0qL0− c

24q̄L̄0− c
24



and describes the topological invariants of the target mani-

fold and counts the number of BPS states in the theory. Here

L0 denotes the zero mode of the Visasoro operators and FL

and FR are left and right moving fermion numbers. In ellitpic

genus the right moving sector is frozen to the supersymmetric

ground states (BPS states) while in the left moving sector all

the states in the Hilbert space HL contribute.

Elliptic genus of K3 surface is known: EOTY
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ZK3(z = 0) = 24, ZK3(z =
1

2
) = 16 + O(q),

ZK3(z =
1 + τ

2
) = 2q−1

2 + O(q
1
2)

Elliptic genus of a complex D-dimensional manifold is a Ja-

cobi form of weight=0 and index=D/2. When D=2, space of

Jacobi form is one-dimensional and given by the above for-

mula.

String theory on K3 has an N=4 superconformal symmetry and

its states fall into representations of N=4 superconformal al-

gebra (SCA). N=4 SCA contains an affine SU(2)k symmetry



and has a central charge c = 6k. k = n case decsribes

complex-2n dimensional hyperKähler manifolds.

We would like to study the decomposition of the elliptic genus

in terms of irreducible characters of N=4 SCA. In N=4 SCA,

hightest-weight states |h, I⟩ are charactered by

L0|h, ℓ⟩ = h|h, ℓ⟩, J3
0 |h, ℓ⟩ = ℓ|h, ℓ⟩

and the theory possesses two different type of representa-

tions, BPS and non-BPS representations. In the case of k = 1



there are representations (in Ramond sector)

BPS rep. h =
1

4
; ℓ = 0,

1

2

non-BPS rep. h >
1

4
; ℓ =

1

2

Character of a representation is given by

TrR(−1)F qL0e4πizJ3
0

Its index is given by the value at z = 0, TrR(−1)F qL0. BPS

representations have a non-vanishing index

index (BPS, ℓ = 0) = 1

index (BPS, ℓ =
1

2
) = −2



Character function of ℓ = 0 BPS representation has the form

chR̃
k=1,h=1

4,ℓ=0
(z; τ ) =

θ1(z; τ )2

η(τ )3
µ(z; τ )

where

µ(z; τ ) =
−ieπiz

θ1(z; τ )

∑
n

(−1)n
q

1
2n(n+1)e2πinz

1 − qne2πiz

On the other hand the character of non-BPS representations

are given by

chR̃
k=1,h>1

4,ℓ=1
2

= qh−3
8

θ1(z; τ )2

η(τ )3



These have vanishing index

index (non-BPS rep) = 0

At the unitarity bound non-BPS representation splits into a sum

of BPS representations

lim
h→1

4

qh−3
8

θ2
1

η3
= chR̃

k=1,h=1
4,ℓ=1

2
+ 2chR̃

k=1,h=1
4,ℓ=0

Function µ(z; τ ) is a typical example of the so-called Mock

theta functions (Lerch sum or Appell function). Mock theta

functions look like theta functions but they have anomalous

modular transformation laws and are difficult to handle. Re-

cently there have been developments in understanding the



nature of Mock theta functions initiated by Zwegers who has

developed a way to improve their modular properties. We

will adopt his method of handling Mock theta functions.

It is possible to derive the following idenities
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where
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2
; τ ), µ4(τ )=µ(z=

τ

2
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Then we can rewrite the ellitpic genus as

ZK3 = 24chR̃
k=1,h=1

4,ℓ=0
(z; τ ) − 8

4∑
i=2

µi(τ )
θ1(z; τ )2

η(τ )3



Using q-expansion of functions µi we find

8 (µ2(τ ) + µ3(τ ) + µ4(τ )) = 2q−1
8 −2

∑
n=1

A(n)qn−1
8

⇑

polar term

A(n) (n = 1, 2, · · · ) are positive integers.

At smaller values of n, Fourier coefficients A(n) may be ob-

tained by direct expansion. We find

n 1 2 3 4 5 6 7 8 · · ·
A(n) 45 231 770 2277 5796 13915 30843 65550 . . .



Surprize: Dimensions of some irreducible reps. of Mathieu

group M24 appear

dimensions : { 45 231 770 990 1771 2024 2277
3312 3520 5313 5544 5796 10395 · · · }

A(6) = 13915 = 3520 + 10395,

A(7) = 30843 = 10395 + 5796 + 5544 + 5313 + 2024 + 1771

Mathieu moonshine? T.E.-Ooguri-Tachikawa

cf. Monsterous moonshine:

J(q) =
1

q
+ 744 + 196884q + 21493760q2 + · · ·



q-expansion coeffcients of J-function are decomposed into

a sum of irred. reps. of the monster group.

196884 = 1 + 196883, 21493760 = 1 + 196883 + 21296876

Mukai: enumeration of eleven K3 surfaces with finite non-

Abelian automorphism group. All these groups are sugb-

groups of M23.

Fantasy: Is it possible that these automorphism groups at iso-

letd points in K3 moduli space are enhanced to M24 over the

whole moduli space when one cosnider the elliptic genus?



On the other hand, using the method of Rademacher expan-

sion adapted to the case of Mock theta functions ( Bringmann-

Ono ) we can determine the asymptotic behavior of coeffi-

cients A(n) as

A(n) ≈
2

√
8n − 1

e
2π

√
1
2(n−1

8) T.E.-Hikami

Above exponent may be identified as the entropy of a baby

Black Hole in string theory compactified on K3 with Q1 =

1, Q5 = 1, D1 and D5 branes.



♣ Twisted Elliptic Genus

Dimension of the representation equals the trace of the iden-

tity element: we may identify

A(n) = TrVn 1

V1 = 45 + 45∗, V2 = 231 + 231∗, V3 = 770 + 770∗, · · ·

We may consider the trace of other group elements in M24

Ag(n) = TrVn g, g ∈ M24

Tr g depends only on the conjugacy class of g. There ex-

ists 26 conjugacy classes {g} in M24 and also 26 irreducible



representations {R}. We have the character table given by

χ
g

R = TrR g



1A 2A 3A 5A 4B 7A 7B 8A 6A 11A 15A 15B 14A 14B 23A 23B 12B 6B 4C 3B 2B 10A 21A 21B 4A 12A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

23 7 5 3 3 2 2 1 1 1 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
252 28 9 2 4 0 0 0 1 -1 -1 -1 0 0 -1 -1 0 0 0 0 12 2 0 0 4 1
253 13 10 3 1 1 1 -1 -2 0 0 0 -1 -1 0 0 1 1 1 1 -11 -1 1 1 -3 0

1771 -21 16 1 -5 0 0 -1 0 0 1 1 0 0 0 0 -1 -1 -1 7 11 1 0 0 3 0
3520 64 10 0 0 -1 -1 0 -2 0 0 0 1 1 1 1 0 0 0 -8 0 0 -1 -1 0 0

45 -3 0 0 1 e+
7 e−

7 -1 0 1 0 0 -e+
7 -e−

7 -1 -1 1 -1 1 3 5 0 e−
7 e+

7 -3 0
45 -3 0 0 1 e−

7 e+
7 -1 0 1 0 0 -e−

7 -e+
7 -1 -1 1 -1 1 3 5 0 e+

7 e−
7 -3 0

990 -18 0 0 2 e+
7 e−

7 0 0 0 0 0 e+
7 e−

7 1 1 1 -1 -2 3 -10 0 e−
7 e+

7 6 0
990 -18 0 0 2 e−

7 e+
7 0 0 0 0 0 e−

7 e+
7 1 1 1 -1 -2 3 -10 0 e+

7 e−
7 6 0

1035 -21 0 0 3 2 e+
7 2 e−

7 -1 0 1 0 0 0 0 0 0 -1 1 -1 -3 -5 0 -e−
7 -e+

7 3 0
1035 -21 0 0 3 2 e−

7 2 e+
7 -1 0 1 0 0 0 0 0 0 -1 1 -1 -3 -5 0 -e+

7 -e−
7 3 0

1035′ 27 0 0 -1 -1 -1 1 0 1 0 0 -1 -1 0 0 0 2 3 6 35 0 -1 -1 3 0
231 7 -3 1 -1 0 0 -1 1 0 e+

15 e−
15 0 0 1 1 0 0 3 0 -9 1 0 0 -1 -1

231 7 -3 1 -1 0 0 -1 1 0 e−
15 e+

15 0 0 1 1 0 0 3 0 -9 1 0 0 -1 -1
770 -14 5 0 -2 0 0 0 1 0 0 0 0 0 e+

23 e−
23 1 1 -2 -7 10 0 0 0 2 -1

770 -14 5 0 -2 0 0 0 1 0 0 0 0 0 e−
23 e+

23 1 1 -2 -7 10 0 0 0 2 -1
483 35 6 -2 3 0 0 -1 2 -1 1 1 0 0 0 0 0 0 3 0 3 -2 0 0 3 0

1265 49 5 0 1 -2 -2 1 1 0 0 0 0 0 0 0 0 0 -3 8 -15 0 1 1 -7 -1
2024 8 -1 -1 0 1 1 0 -1 0 -1 -1 1 1 0 0 0 0 0 8 24 -1 1 1 8 -1
2277 21 0 -3 1 2 2 -1 0 0 0 0 0 0 0 0 0 2 -3 6 -19 1 -1 -1 -3 0
3312 48 0 -3 0 1 1 0 0 1 0 0 -1 -1 0 0 0 -2 0 -6 16 1 1 1 0 0
5313 49 -15 3 -3 0 0 -1 1 0 0 0 0 0 0 0 0 0 -3 0 9 -1 0 0 1 1
5796 -28 -9 1 4 0 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0 36 1 0 0 -4 -1
5544 -56 9 -1 0 0 0 0 1 0 -1 -1 0 0 1 1 0 0 0 0 24 -1 0 0 -8 1

10395 -21 0 0 -1 0 0 1 0 0 0 0 0 0 -1 -1 0 0 3 0 -45 0 0 0 3 0

Here we have used e±
p =

1

2

(
±

√
−p − 1

)
.



There are two types of conjugacy classes in M24, type I and

type II.

Conjugacy class of type I fixes at least one element out of 24

and thus they arise from the conjugacy classes of M23.

On the other hand conjugacy class of type II does not have

a fixed point and is intrinsically M24.

For each conjugacy class we want to construct a twisted

genus (analogue of Thompson series in monstrous moonshine)

Zg =
∞∑

n=1

TrVn g × qn



For instance,

Z2A = −6q + 14q2 − 28q3 + 42q4 − 56q5 + 86q6 + · · ·

and has the right modular property (Z2A ∈ Γ0(2)).

Twisted genus is decomposed into massless and massive parts

Zg(τ, z) = χg chR̃
h=1

4,I=0
− Ag(τ )

θ1(τ, z)2

η(τ )3

Here χg is the Euler number assigned to the class g

g 1A 2A 3A 5A 4B 7A 8A 6A 11A 15A 14A 23A typeII
χg 24 8 6 4 4 3 2 2 2 1 1 1 0

χg vanishes for type II classes.



conjugacy class cycle shape
1A 124 ()
2A 18 · 28 (1,8)(2,12)(4,15)(5,7)(9,22)(11,18)(14,19)(23,24)
3A 16 · 36 (3,18,20)(4,22,24)(5,19,17)(6,11,8)(7,15,10)(9,12,14)
5A 14 · 54 (2,21,13,16,23)(3,5,15,22,14)(4,12,20,17,7)(9,18,19,10,24)
4B 14 · 22 · 44 (1,17,21,9)(2,13,24,15)(3,23)(4,14,5,8)(6,16)(12,18,20,22)
7A 13 · 73 (1,17,5,21,24,10,6)(2,12,13,9,4,23,20)(3,8,22,7,18,14,19)
7B 13 · 73 (1,21,6,5,10,17,24)(2,9,20,13,23,12,4)(3,7,19,22,14,8,18)
8A 12 · 21 · 41 · 82 (1,13,17,24,21,15,9,2)(3,16,23,6)(4,22,14,12,5,18,8,20)(7,11)
6A 12 · 22 · 32 · 62 (1,8)(2,24,11,12,23,18)(3,20,10)(4,15)(5,19,9,7,14,22)(6,16,13)
11A 12 · 112 (1,3,10,4,14,15,5,24,13,17,18)(2,21,23,9,20,19,6,12,16,11,22)
15A 11 · 31 · 51 · 151 (2,13,23,21,16)(3,7,9,5,4,18,15,12,19,22,20,10,14,17,24)(6,8,11)
15B 11 · 31 · 51 · 151 (2,23,16,13,21)(3,12,24,15,17,18,14,4,10,5,20,9,22,7,19)(6,8,11)
14A 11 · 21 · 71 · 141 (1,12,17,13,5,9,21,4,24,23,10,20,6,2)(3,18,8,14,22,19,7)(11,15)
14B 11 · 21 · 71 · 141 (1,13,21,23,6,12,5,4,10,2,17,9,24,20)(3,14,7,8,19,18,22)(11,15)
23A 11 · 231 (1,7,6,24,14,4,16,12,20,9,11,5,15,10,19,18,23,17,3,2,8,22,21)
23B 11 · 231 (1,4,11,18,8,6,12,15,17,21,14,9,19,2,7,16,5,23,22,24,20,10,3)
12B 122 (1,12,24,23,10,8,18,6,3,21,2,7)(4,9,11,15,13,16,20,5,22,17,14,19)
6B 64 (1,24,10,18,3,2)(4,11,13,20,22,14)(5,17,19,9,15,16)(6,21,7,12,23,8)
4C 46 (1,23,18,21)(2,12,10,6)(3,7,24,8)(4,15,20,17)(5,14,9,13)(11,16,22,19)
3B 38 (1,10,3)(2,24,18)(4,13,22)(5,19,15)(6,7,23)(8,21,12)(9,16,17)(11,20,14)
2B 212 (1,8)(2,10)(3,20)(4,22)(5,17)(6,11)(7,15)(9,13)(12,14)(16,18)(19,23)(21,24)

10A 22 · 102 (1,8)(2,18,21,19,13,10,16,24,23,9)(3,4,5,12,15,20,22,17,14,7)(6,11)
21A 31 · 211 (1,3,9,15,5,12,2,13,20,23,17,4,14,10,21,22,19,6,7,11,16)(8,18,24)
21B 31 · 211 (1,12,17,22,16,5,23,21,11,15,20,10,7,9,13,14,6,3,2,4,19)(8,24,18)
4A 24 · 44 (1,4,8,15)(2,9,12,22)(3,6)(5,24,7,23)(10,13)(11,14,18,19)(16,20)(17,21)
12A 21 · 41 · 61 · 121 (1,15,8,4)(2,19,24,9,11,7,12,14,23,22,18,5)(3,13,20,6,10,16)(17,21)



Twisted genera for all conjugacy classes have been obtained.

They reproduce correct lower-order expansion coefficients

and are invariant under the Hecke subgroup Γ0(N)

Γ0(N) = {
(

a b
c d

)
, ad − bc = 1, c ≡ 0, mod N}

N denotes the order of the element g.

M.Cheng,Gaberdiel,Hohenegger and Volpato, T.E. and K.Hikami

From the study of K3 surface with Zp (p=2,3,5,7) symmetry, for

instance, twisted genera of classes pA (p=2,3,5,7) are known

A.Sen



ZpA(z; τ ) =
2

p + 1
ϕ0,1(z; τ ) +

2p

p + 1
ϕ

(p)
2 (τ )ϕ−2,1(z; τ )

where

ϕ0,1(z; τ ) =
1

2
ZK3(z; τ ), ϕ−2,1(z; τ ) = −

θ1(z; τ )2

η(τ )6

are the basis of Jacobi forms with index=1 and

ϕ
(p)
2 (τ ) =

24

p − 1
q∂q log

(
η(pτ )

η(τ )

)
,

=
24

p − 1

∑
k=1

σ1(k)(qk − pqpk)

is an element of Γ0(p).



In the case of type II twisted genera are modular forms of

Γ0(N) with a multiplier system (invariant up to a phase). They

are given in terms of quotients of eta functions.

Z2B(z; τ ) = 2
η(τ )8

η(2τ )4
ϕ−2,1(z; τ ),

Z3B(z; τ ) = 2
η(τ )6

η(3τ )2
ϕ−2,1(z; τ ),

Z4A(z; τ ) = 2
η(2τ )8

η(4τ )4
ϕ−2,1(z; τ ),

Z4C(z; τ ) = 2
η(τ )4η(2τ )2

η(4τ )2
ϕ−2,1(z; τ )

· · ·

etc. Thus we have a complete list of the twisted genera for 26



conjugacy classes. Making use of them we can uniquely de-

compose the coefficients of K3 elliptic genus into irreducible

representations of M24 at arbitrary level.



n 1A 2A 3A 5A 4B 7A 8A 6A 11A 15A 14A 23A 12B 6B 4C 3B 2B 10A 21A 4A 12A
1 90 -6 0 0 2 -1 -2 0 2 0 1 -2 2 -2 2 6 10 0 -1 -6 0
2 462 14 -6 2 -2 0 -2 2 0 -1 0 2 0 0 6 0 -18 2 0 -2 -2
3 1540 -28 10 0 -4 0 0 2 0 0 0 -1 2 2 -4 -14 20 0 0 4 -2
4 4554 42 0 -6 2 4 -2 0 0 0 0 0 0 4 -6 12 -38 2 -2 -6 0
5 11592 -56 -18 2 8 0 0 -2 -2 2 0 0 0 0 0 0 72 2 0 -8 -2
6 27830 86 20 0 -2 -2 2 -4 0 0 2 0 0 0 6 -16 -90 0 -2 6 0
7 61686 -138 0 6 -10 2 -2 0 -2 0 2 0 -2 -2 -2 30 118 -2 2 6 0
8 131100 188 -30 0 4 -3 0 2 2 0 -1 0 0 0 -12 0 -180 0 0 -4 2
9 265650 -238 42 -10 10 0 -2 2 0 2 0 0 -2 6 10 -42 258 -2 0 -14 -2

10 521136 336 0 6 -8 0 -4 0 0 0 0 2 -2 2 16 42 -352 -2 0 0 0
11 988770 -478 -60 0 -14 6 2 -4 2 0 -2 0 0 0 -6 0 450 0 0 18 0
12 1830248 616 62 8 8 0 0 -2 2 2 0 0 2 -6 -16 -70 -600 0 0 -8 -2
13 3303630 -786 0 0 22 -6 2 0 0 0 -2 2 0 -4 6 84 830 0 0 -18 0
14 5844762 1050 -90 -18 -6 0 2 6 0 0 0 2 0 0 18 0 -1062 -2 0 10 -2
15 10139734 -1386 118 4 -26 -4 -2 6 0 -2 0 0 2 2 -10 -110 1334 4 2 22 -2
16 17301060 1764 0 0 12 0 0 0 -4 0 0 0 2 6 -28 126 -1740 0 0 -12 0
17 29051484 -2212 -156 14 28 0 -4 -4 0 -1 0 0 0 0 12 0 2268 -2 0 -36 0
18 48106430 2814 170 0 -18 8 -2 -6 -2 0 0 -2 2 -6 38 -166 -2850 0 2 14 2
19 78599556 -3612 0 -24 -36 0 0 0 2 0 0 0 -2 -6 -20 210 3540 0 0 36 0
20 126894174 4510 -228 14 14 -6 -2 4 0 2 2 0 0 0 -42 0 -4482 -2 0 -18 0
21 202537080 -5544 270 0 48 4 4 6 -2 0 0 0 -2 6 16 -282 5640 0 -2 -40 2
22 319927608 6936 0 18 -16 -7 4 0 0 0 -1 0 0 4 48 300 -6968 2 -1 24 0
23 500376870 -8666 -360 0 -58 0 -2 -8 4 0 0 2 0 0 -18 0 8550 0 0 54 0
24 775492564 10612 400 -36 28 0 0 -8 0 0 0 0 0 -8 -60 -392 -10556 4 0 -28 -4
25 1191453912 -12936 0 12 64 12 -4 0 0 0 0 0 2 -10 32 462 13064 4 0 -72 0
26 1815754710 15862 -510 0 -34 0 -6 10 0 0 0 -1 0 0 78 0 -15930 0 0 22 -2
27 2745870180 -19420 600 30 -76 -10 4 8 -2 0 -2 0 0 8 -36 -600 19268 -2 2 84 0
28 4122417420 23532 0 0 36 2 0 0 0 0 -2 0 0 12 -84 660 -23460 0 2 -36 0
29 6146311620 -28348 -762 -50 100 -6 4 -10 -2 -2 2 0 0 0 36 0 28548 -2 0 -92 -2
30 9104078592 34272 828 22 -40 0 4 -12 4 -2 0 0 0 -8 96 -840 -34352 -2 0 48 0
31 13401053820 -41412 0 0 -116 0 -4 0 0 0 0 -2 -2 -10 -44 966 41180 0 0 108 0
32 19609321554 49618 -1062 34 50 18 2 10 -2 -2 2 0 0 0 -126 0 -49518 2 0 -46 2
33 28530824630 -59178 1220 0 126 0 -6 12 0 0 0 2 -4 12 62 -1204 59430 0 0 -138 0
34 41286761478 70758 0 -72 -66 -10 -6 0 6 0 2 0 0 12 150 1332 -70890 0 2 54 0
35 59435554926 -84530 -1518 26 -154 6 2 -14 0 2 2 0 0 0 -66 0 84222 2 0 158 2
36 85137361430 100310 1670 0 70 -12 -2 -10 0 0 0 0 -2 -18 -170 -1666 -100170 0 0 -74 -2



♣ Mathieu moonshine

Orthogonality relation of characters:∑
g

ng χ
g

R′ χ̄
g

R = |G|δRR′

ng is the number of elements in the conjugacy class g and

|G| denotes the order of the group. Let cR(n) be he multi-

plicity of representation R in the decompostion of K3 elliptic

genus at level n. We then have∑
R

cR(n)χ
g

R = Ag(n)



Then using the orthogonality relation we find∑
g

1

|G|
ngχ̄

g
R Ag(n) = cR(n)

We have checked that the multiplicities cR(n) are all positive

integers upto n = 1000 and this gives a very strong evidence

for Mathieu moonshine conjecture.

T.Gannon now has a mathematical proof of Mathieu moon-

shine (to appear).



♣ Borcherds product and lift of a Jacobi form

Borcherds lift:

Go back to K3 ellitpic genus

ZK3(τ ; z) ≡ Z1A(τ ; z) = 2ϕ0,1(τ ; z)

and consider its ”second quantized” version DVV

M(Ω) =
∞∑
m

Z
[m]
K3 (τ, z)pm = exp

 ∞∑
m=1

Tm(ZK3(τ, z))pm


where Z

[m]
K3 denotes the elliptic genus of a m-th symmetric



product of K3 and Tm is the Hecke transformation

Tm(ZK3(τ ; z)) = m−1
∑

ad=m
b=0..d−1

ZK3(
aτ + b

d
τ, az)

This sum is written into an infinite product form

M(Ω) =
∏
m=1

n=0,r∈Z

(1 − pmqnyr)−c1A(nm,r)

Here c1A(n, r) are expansion coefficients of ZK3

Z1A(τ ; z) =
∑
n,ℓ

c1A(n, r)qnyr



By symmetrizing in p, q we can construct a Siegel modular

form

Φ(Ω) =
∏

n≥0,m≥0
r∈Z

(1 − pmqnyr)c1A(nm,r) (1)

(when n = m = 0,r < 0). It is well-known that this is the

wt=10 Igusa form. One also finds a ”Hodge anomaly” term

Φ(Ω)M(Ω) = p η24(τ, z)ϕ−2,1(τ, z)

Additive lift:

On the other hand class 1A has a cycle shape 124 and one



may introduce a wt=10 Jacobi form

η1A(τ ; z) = η(τ )24ϕ−2,1(τ ; z)

We consider the horizontal lift

Φ(Ω) =
∑

m≥1

Tm(η1A(τ ; z))pm (2)

Then the above sum (2) becomes also a Siegel modular form

of wt=10. It is known that these two Siegel forms in fact agree.

Borcherds lift (1)= additive lift (2)



Hence we obtain the correspondence of Jacobi forms;

Z1A ⇐⇒ η1A = η24 × ϕ−2,1 which maps a

twisted genus to an eta product.

The above identiy implies an infinite number of relations

Z1A = −T2(η1A)/η1A,

Z1A
2/2 − T2(Z1A) = T3(η1A)/η1A, · · ·

It is possible to consider ”twisted” version of the above corre-

spondence such as

Z2A ⇐⇒ η2A = η(τ )8η(2τ )8 × ϕ−2,1

Note that class 2A has a cycle shape 1828. Relevance of

cycle shape and eta product is very well-known. Mason,



McKay,,,

The pairing between twisted K3 genus and eta product holds

for classes 2A,3A,4B,5A,8A. Gritsenko-Nikulin,Sen,Gritsenko-

Clery,Dabholkar-Nampuri,Govindarajan,,,

We studied the correspondence in detail and found that the

following relation holds for all type I conjugacy classes

Zg = −T2(ηg)/ηg, · · · (3)

(Above formula becomes modified in the case of classes 11A,14A,

15A, 23A when the Jacobi form ηg has a vanishing or nega-

tive weight.)



♣ Recent Developments

Umbral moonshine: Cheng, Duncan and Harvey

Consider a series of Jacobi forms with index m = k+1 (m =



2, 3, 4, 5, 7)

Z(m = 2) = 8 × [X + Y + Z],

Z(m = 3) = 4[XY + Y Z + ZX],

Z(m = 4) = 8XY Z,

Z(m = 5) = 4[X2Y Z + · · · ] − 2[X2Y 2 + · · · ]

Z(m = 7) = −4[X3Y 3 + · · · ] + 4[X3Y 2Z + · · · ]

−8X2Y 2Z2

whereX ≡
θ2(z)2

θ2(0)2
, Y ≡

θ3(z)2

θ3(0)2
, Z ≡

θ4(z)2

θ4(0)2



These Jacobi forms are characterized by their q0 term

Z(m) ≈ 2y + (
24

m − 1
− 4) + 2y−1 (4)

It turns out that the expansion of the above Jacobi forms in

terms of N = 4 characters all exhibit moonshine phenom-

ena, with the group M24 for m = 2 and M12 for m = 3 etc.

Note:

At m = 3, for instance, there exist two Jacobi forms with index

2

J1 = X2 + Y 2 + Z2, J2 = XY + Y Z + ZX



It is known that the identity operator in NS sector is contained

in J1. The elliptic genus of symmetric product K3[2], for in-

stance, is given by

48J1 + 60J2.

It is somewhat awkward to consider Z(m = 3) = 4J2 which

does not contain the identity operator. Thus Z(m = 3) may

not possess well-defined geometrical significance. The same

comment applies to all cases m ≥ 3.

We point out Umbral series still appears to give a natural ex-

tension of original Mathieu moonshine. Let us consider an



infinite product

Mk =
∏

(1 − pmqnyr)−kc(nm,r) (5)

Here c(n, r) are the expansion coefficients of Z(m = k +1).

Umbral condition (4) implies c(−1) = 2, c(0) = 24/k − 4.

Thus we have a Hodge anomaly∏ (
(1 − yqn)2(1 − qn)24/k−4(1 − y−1qn)2

)k

= (η24/kϕ−2,1)
k = η24ϕ−2,1

k

Thus it seems reasonable to consider a Jacobi form

η(m) = η24ϕ−2,1
m−1



By computing the Hecke transformation of η(m) we find

Z(m) = −
1

(m − 1)

T2(η(m))

η(m)

for m = 3, 4, 5 and an additive correction term of 1/2·η(m =

7) for m = 7.

Idetification of target manifold is unclear in Umbral moon-

shine. Revelevant algebra is either N = 4 (hyperKäler) or

N = 2 (CY). We have studied the expansion of Z(m = 3) in

terms of characters of N = 2 representations.



N=2 moonshine T.E. and Hikami

Z(m = 3) = massless(N = 2, Q = 0)

+
∑
n

F1(n) massive(N = 2, Q = ±1)

+
∑
n

F2(n) massive(N = 2, Q = ±2)

F1, F2 are decomposed into sums of representations of group

SL2(11).

Summary

• There is a strong evidence for Mathieu mooonshine phe-

nomenon for K3 surface.



• It is beyond classical geometry and no fundamental expla-

nations so far.

• Individual K3 surfaces (with its holomorphic structure) do

not possess symmetry under (subgroups of) M24. Gaberdiel-

Hohenegger-Volpato. Rather the symmetry should act on the

BPS states or topololgical sector of the theory and this seems

a very sublte situation.

• Umbral moonshine gives a natural generalization of Math-

ieu moonshine although its geometrical significance is some-

what obscure.

• We may use N = 2 algebra instead of N = 4 and find

moonshine phenomenon.


