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Path and functional integrals

Path and functional integrals are a standard tool in theoretical
physics.
But in most cases not mathematically rigorously defined.



Path and functional integrals

Path and functional integrals are a standard tool in theoretical
physics.
But in most cases not mathematically rigorously defined.

Schroédinger equation:

ou
jh— = H
i 51 u

whereeg. H=A -V = Z/aXZ_V'



Feynman'’s view on quantum mechanics

Solution of Schrédinger equation given by

U(t, X) = 3 K(t7X7y)U0(y) d3y

where

K(t,x,y) = / exp (7’1 /0 tL(ﬂ)dt) Dy

Richard
Feynman
(1918-1988)




Does it make sense?

Problem: What does D+ mean?

Formally replace it by t!
Yields diffusion equation

ou

M _y
ot — Y

Mark Kac (1914-1984)



Heuristic formulas

For operator H = A — V consider the Cauchy problem for the

heat equation
du _
S = Hu
U(X7 0) - UO(X)
Brownian motion = heuristic path integral formula:

u(t.x) = [ ,o® (—E / V(s )-uowu))m



Problems

t
utx) = [ o (00~ [ V(s ds) -wor(0)

Problems:

m Px(1) is infinite-dimensional and the measure D~ does not
exist.

m Energy E(7) =5 fo 17(8)|?ds is defined only for
differentiable paths.

m The normalizing factor 1/Z is infinite.



Problems

t
utx) = [ o (00~ [ V(s ds) -wor(0)

Problems:

m Px(1) is infinite-dimensional and the measure D~ does not
exist.

m Energy E(7) =5 fo 17(8)|?ds is defined only for
differentiable paths.

m The normalizing factor 1/Z is infinite.
1. Solution: The measure dW = % exp (—3E(7)) D does exist.
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Mathematical Description

Wiener measure on the space of
continuous paths
{y € C°([0, 1], R") [ 4(0) = x}

Brownian path in R®



Mathematical Description

Wiener measure on the space of
continuous paths
{y € C°([0, 1], R") [ 4(0) = x}

Brownian path in R®

W["}/ GU] fU tX_y)dy:
where
k(t,z) = (4rt)~"/2 exp(—|z|?/4t)



Mathematical description

k(t,z) = (4rt)~"? exp(—|z|?/4t)

(Gauss distribution)




Feynman-Kac formula

Feynman-Kac Formula:

it = [ o (- [ virtsn os) - ataten awta)



Feynman-Kac formula

Feynman-Kac Formula:
t
)= [ oo (- [ vesnds) -t avits)

Problems with this:
m For V = 0 this formula is a tautology.
m Kinetic and potential energy are treated differently.
m Does not work for the Schrédinger equation.

2. Solution: Finite-dimensional approximation
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Renormalized integrals

Aim: Replace measure theoretic integrals by a more general
concept of integral.



Renormalized integrals

Aim: Replace measure theoretic integrals by a more general
concept of integral.

Let J be a directed system, i.e., J is a set equipped with a
relation < such that the following holds:

m Reflexivity: 7 T

m Transitivity: 7T <S&SU = T U

m Antisymmetry: T <S& ST = T=S§
mVT7T.,SegJIUeT: TUES=U



Renormalized integrals

m measure space family = family of measure spaces
Q = {(Qr, u7)} 77 parameterized by 7.

m measurable function on Q = family f = {f;} ¢~ of
measurable functions fr : Q7 — X.

m fis called integrable if fi- is eventually integrable and the
limit exists:
][ f(x = lim fT(x) dpr(x)
Tes
m {, f(x)Dx = renormalized integral of f over Q.

By abuse of notation, write f : Q@ — X and think of f as a
function on the virtual space Q. 8



Renormalized integrals, examples

Improper integrals

J = {compact intervals | C R}, “<"="C”, Q; =/, uy = dx
For measurable function f : R — R put f; := f|;. Then

]{If(x) Dx = /_c: f(x) dx



Renormalized integrals, examples

Improper integrals

J = {compact intervals | C R}, “<"="C”, Q; =/, uy = dx
For measurable function f : R — R put f; := f|;. Then

]{If(x) Dx = /_O; f(x) dx

Improper integrals, renormalized

J = {compact intervals | ¢ R}, “<"=“C”, Q; = I, uj = Iené%
E.g., fora > —1and f(x) = (x| + 1)*:
0, a<0

f(|xr+1)az>x= . a0
Q
oo, a>0



Renormalized integrals, examples

Cauchy’s Principal Value

J =(0,1), =" =">", Qr = [-1,-T]U[T, 1], ur = dx.
For f:[-1,1] = R put fr := fg,.

/_Tf(x) dij/T1 f(x) dx

—1

;
][ f(x)Dx = lim :CH/ f(x) dx
Q —1

T\0




Renormalized integrals, examples

Fredholm Determinant

‘H = separable real Hilbert space,

J = {finite-dim. subspaces H C H}, “<X" =*“C", Qy = H,
pH = 72 d"x where n = dim(H).




Renormalized integrals, examples

Fredholm Determinant

‘H = separable real Hilbert space,

J = {finite-dim. subspaces H C H}, “<X” =*“C", Qy = H,

pH = 72 d"x where n = dim(H).

Let L = 1d + A be a bounded positive self-adjoint operator
where A is of trace class. Then the determinant is defined and
satisfies

o0

det(L) = [J(1 + )

J=1



Renormalized integrals, examples

Fredholm Determinant

‘H = separable real Hilbert space,

J = {finite-dim. subspaces H C H}, “<X” =*“C", Qy = H,

pH = 72 d"x where n = dim(H).

Let L = 1d + A be a bounded positive self-adjoint operator
where A is of trace class. Then the determinant is defined and
satisfies

det(L) = [J(1 + )
j=1
Then
][ exp(—Lx, x)Dx = det(L)~"/2
Q



Path integrals on manifolds

Consider partitions P = (0 = 55 < 81 < --- < 5, = 1) of the unit
interval.

The set of partitions P forms a directed system where P < P’ if
P’ is a subdivision of P.
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The set of partitions P forms a directed system where P < P’ if
P’ is a subdivision of P.

Let M be a Riemannian manifold.

A piecewise smooth curve in M is a pair (P,~) where P is a
partition and ~ : [0, 1] — M is a continuous curve with (i, , s
smooth.



Path integrals on manifolds

Consider partitions P = (0 = 55 < 81 < --- < 5, = 1) of the unit
interval.

The set of partitions P forms a directed system where P < P’ if
P’ is a subdivision of P.

Let M be a Riemannian manifold.

A piecewise smooth curve in M is a pair (P,~) where P is a
partition and ~ : [0, 1] — M is a continuous curve with (i, , s
smooth.

A geodesic polygon is a piecewise smooth curve (P, ) if v(s;)
is not in the cut-locus of 7(s;_1) and 7|, , s is the unique
shortest geodesic joining its endpoints.

Put

B(P, M), = {(P,~) | geodesic polygon s.t. 7(0) = x and (1) = y}



Path integrals on manifolds

The map
PP, M)y = Mx...x M, (P,7) = (v(s1);--,7(5r-1))

is injective and surjective up to a null set.

Riemannian volume measure on M x ... x M induces measure
Dy on P(P, M)

Define the renormalization constant

Z(P,t) t""/ZH(47r sj—sj_1))"?
j=1

where m = dim(M).
We obtain a measure space family

{(BP. M), Z(P.dim(M). )" - Dv)}p



Heat equation on manifolds

m M = compact m-dimensional Riemannian manifold without
boundary

m E — M = Hermitian vector bundle

m H = AF — V = self-adjoint generalized Laplace operator
acting on sections of E. Locally, H has the form

m
) 52
H= Kk~ + lower order terms.
/;1 g dxloxk "

m kH(t, x,y) = heat kernel of H, i.e.,

u(t, x) = /M KH(t, x. y) Uo(y) dy

= b
u(x,0) = to(x) s

solves



Path integral formula for the heat kernel

Theorem (B., 2011)

kH(t7y7X) =

]{H(M)i exp [—2[’;] + t/ (;scal(W(S)) - V(y(s))) ds] Dry.



Path integral formula for the heat kernel

Theorem (B., 2011)

KH(t,y, x) =

]{H(M)i exp [—2[’;] + t/ (;scal(W(S)) - V(y(s))) ds] Dry.

Application: Comparison results (Hess-Schrader-Uhlenbrock
inequality)
Hope: Applicable to Schrédinger equation



Earlier results

Andersson-Driver (1999)

. . Path integral formula for solution to heat equation
for scalar operators (not for heat kernel itself)




Earlier results

Andersson-Driver (1999)

. . Path integral formula for solution to heat equation
for scalar operators (not for heat kernel itself)

B.-Pféaffle (2008)

Path integral formula for solution to heat
equation in the present setup (not for heat kernel itself)



Idea of the proof

m Start with tautological path integral formula

KH(t, y, x) = f Z(P,dim(M), t) KH(P.~) D~.
P(M)X

where KH(P,v) = kP(t(sr — sr-1),7(8r), 7(Sr—1)) 0 - -+ 0
kH(t(s1 - 50)77(31)77(30))



Idea of the proof

m Start with tautological path integral formula

Kty x) =
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m Modify integrand in the path integral without changing the
value of the integral.



Idea of the proof

m Start with tautological path integral formula

Kty x) =

Z(P,dim(M), t) K'(P,~) Dr.
PM)X

where KH(P,v) = kP(t(sr — sr-1),7(8r), 7(Sr—1)) 0 - -+ 0
kH(t(s1 - 50)77(31)77(30))

m Modify integrand in the path integral without changing the
value of the integral.

m Start modification using short time heat asymptotics:

) > a(x, )t
j=0

2
(2,50 ~ (ant) "2 exp (- T
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Gaussian integrals

Quantum field theory: Integrals over spaces of fields (e.g.
functions on a manifold)
Aim: Make

/ exp (—S(6))Do

rigorous, where S(¢) = %(qu, ¢) with L self-adjoint and positive.



Gaussian integrals

Quantum field theory: Integrals over spaces of fields (e.g.
functions on a manifold)
Aim: Make

/ exp (—S(6))Do

rigorous, where S(¢) = %(qu, ¢) with L self-adjoint and positive.
Recall that for suitable bounded L:

/ exp (—5(6))Do = det(L) /2



Determinants

Question: What is det(L)?

Zeta function:
()= > A
A€espec(L)

det(L) := exp(—¢'(0))



Determinant of the Dirac operator

Let D be the Dirac operator on M.
The spectrum of D is unbounded from above and from below.

For simplicity assume that 0 ¢ spec(D).
Then:

det(D) = exp (IZ(CDZ(O) - 770(0))) - exp (—%22(0)>

where

sgnA
()= D, 3

Aé&spec(D)



Determinant of the Dirac operator on S”

Theorem (Branson 1993, Bar-Schopka 2003)

n—1
logdet(D?; S") = >~ (A(k,n) - Ca(—k) + B(k, n) - Cr(—k))+C(n)
k=0
det(D; S") = exp(irK(n))y/det(D?; S")
with K(n) = 0, if n is odd.



Determinant of the Dirac operator on S”

det(D)

0.803354268824629
1.090359845142337
0.963796369884191
1.016473922384390
0.992614518464762
1.003422630166412
0.998408322304586
17 1.000749343263366
19  0.999645452552308
21 1.000168795852563

o2 ©~NOwW| >




Determinant of the Dirac operator on S”

det(D)

o2 ©~NOwW| >

17
19
21

0.803354268824629
1.090359845142337
0.963796369884191
1.016473922384390
0.992614518464762
1.003422630166412
0.998408322304586
1.000749343263366
0.999645452552308
1.000168795852563

Conjecture:
lim,_. det(D; S") =1

Proved by N. M. Maller
(2007)
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