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Superfluids from Holography

Superfluids are an old and well studied subject.

I Experimental realizations: He4, He3, atomic gases, neutron
stars (?).

I Perturbation theory: A superfluid as a Bose-Einstein
condensate.

I Mean/effective field theory using the order parameter.

I Monte Carlo approaches and computer simulations.



What can AdS/CFT add to the story?

I AdS/CFT is intrinsically a strong coupling approach. It works
where perturbation theory doesn’t, mapping a strongly
interacting field theory to a classical gravitational description.

I It works for real time physics and at nonzero density, unlike
many numerical lattice approaches.

I Given a stringy embedding of the gravity dual, one can in
principle understand exactly what field theory one is solving
(c.f. S. Pufu’s talk).



Outline

I Two models of a holographic superfluid:
I scalar order parameter
I vector order parameter

I Phase diagram and a scalar order parameter, probe limit.

I Second sound and a scalar order parameter.

I Analytic results and a vector order parameter, probe limit.



Holographic Phase Transitions

Goal: To have a simple holographic model of a (classical) phase
transition where we can calculate the phase diagram and transport
coefficients.

S =
1

2κ2

∫
dd+1x

√
−g(R − 2Λ)− 1

4g2

∫
dd+1x

√
−gFµνF

µν

I Einstein-Hilbert produces correlators of the stress tensor Tµν

in the boundary theory.

I Maxwell produces correlators of a global current Jµ in the
boundary.

I To model a (classical) phase transition, we need something
that will serve as an order parameter.



Two Choices of Order

I We can add a charged scalar field

−
∫

dd+1x
√
−g
(
|(∂ − iqA)Ψ|2 + V (|Ψ|)

)
.

The order parameter is the boundary value of Ψ.

I We can promote the Abelian gauge field to an SU(2) gauge
field

Fµν → F a
µν .

We find a vector order parameter which is the boundary value
of Aa

µ.



Motivating the Action from String Theory

I Ammon, Erdmenger, Kaminski, Kerner and Basu, He,
Mukherjee, Shieh: an SU(2)F theory from maximally
supersymmetric SU(N) Yang-Mills theory with two
hypermultiplets via a D3- and D7-brane construction.

I Denef and Hartnoll: the scalar field theory in 2+1 dimensions
from a consistent truncation of 11 dimensional supergravity

I Gubser, Herzog, Pufu, and Tesileanu: a proposal in 3+1
dimensions involving a consistent truncation of type IIB
supergravity and condensation of a gluino bilinear (c.f. Pufu’s
talk).

In the (first and third) cases, the action is a bit different than what
we propose to study.



Dyonic Black Holes and the Normal Phase

One solution to our scalar action with ψ = 0 is a dyonic black hole
in AdS4. The dyonic black hole is also a solution to the SU(2)
action. Dyonic black holes have electric and magnetic charge.

I The Hawking temperature of the black hole is the
temperature T of the field theory.

I The magnetic field of the black hole is the magnetic field B in
the field theory.

I The electric field of the black hole becomes the charge density
ρ of the field theory.

One can freely tune the temperature and charges of the black hole.



An instability for the scalar action

Assuming V (Ψ) = m2|Ψ|2, Gubser observed an instability for the
scalar to condense when ρ gets too large:

m2
eff = m2 + g ttA2

t

where
gtt = −g(r) ; At =

ρ

rr+
(r − r+) .

The effective mass becomes tachyonic and the scalar condenses in
a narrow region of radial coordinate r .

There is no need for a Ψ4 term!

For the case B = 0, there is only one other scale in the problem,
the temperature, so large ρ corresponds to small T .



The SU(2) instability

The SU(2) action has a similar instability. Let the τ i generate
su(2). For an electrically charged black hole in the τ3 direction,
there is an instability to generate a nonzero A1

x = w :

A = φ τ3 dt + w τ1 dx .

The nonzero w corresponds to a nonzero current in the boundary
field theory!



Phase Diagram, Scalar Order Parameter,

Probe Limit

I We now study the holographic model with a scalar order
parameter in the probe limit (in 2+1 dimensions).

I The probe limit decouples the metric degrees of freedom from
the gauge and scalar degrees of freedom. It’s the weak gravity
limit.

I But first we recall some facts from Landau-Ginzburg mean
field theory.



A Traditional Approach to the Phase Diagram

Landau and Ginzburg mean field theory

L = −
(
|∇φ|2 + α|φ|2 + β|φ|4 + γ|φ|6

)
.

I Assuming α(T ) = (T − Tc)α0 and α0, β > 0, a second order
phase transition occurs at T = Tc . Note that for T . Tc ,

|φ| ∼ (Tc − T )1/2 .

I If φ = |φ|e iξx , then |∇φ|2 = ξ2|φ|2, lowering Tc . Such a
phase gradient gives rise to a nonzero current.

I If β < 0 for T < T1, then the phase transition can become
first order provided γ > 0.



The holographic phase transition
Given V = m2L2|ψ|2 = −2|ψ|2 (above the BF bound), we can
choose a scalar in the field theory with scaling dimension one or
two.
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Figure: The condensate as a function of temperature for operators of
conformal dimension (a) one and (b) two. The curves in the plots, from
right to left, are for ξ/µ = 0, 1/4, 1/3, 2/5, and 1/2.

Numerically, we find that for T . Tc , 〈Oi 〉 ∼ (T − Tc)1/2.



First and Second Order Phase Transitions
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Figure: The difference in free energy ∆Ω1 between the phase with a
scalar condensate and without one as a function of T/µ: a) ξ = 0 and b)
ξ/µ = 4/7.



The Phase Diagram, Probe Limit
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Figure: The phase diagrams for the theory with a scalar with a)
conformal dimension one and b) conformal dimension two. The solid blue
line indicates a second order phase transition while the solid red line (in
between the dashed lines) indicates a first order phase transition. The
dashed lines are spinodal curves, while the red dot indicates the tricritical
point.



Sound and the Scalar Order Parameter

I We consider the scalar order parameter with back reaction (in
3+1 dimensions).

I As T → 0, the order parameter gets large. The probe limit
makes less physical sense here.

I A principal goal will be to analyze the speeds of sound in the
T → 0 limit



Different Kinds of Sound

Superfluids have two components which means there is more than
one kind of propagating collective motion.

I first sound: the usual sound, sourced by pressure oscillations,
where the components move in phase.

I second sound: the components move out of phase, sourced by
temperature oscillations

I third sound: involves surface waves on a thin film, not
important for today.

I fourth sound: waves in a capillary tube packed with a powder
that immobilizes the normal component.



Sound Speeds

From a hydrodynamic analysis, we calculate the speed of sound
from thermodynamic quantities.

I Vanishing of the trace of the stress tensor implies

c2
1 =

(
∂P

∂ε

)
s

=
1

d

I For the speed of second sound, we find

c2
2 =

σ2ρs

w

1

(∂σ/∂T )µ
,

where w = ε+ P = sT + µρn and σ = s/ρ.

I A nice formula for the speed of fourth sound is

c2
4 =

µρs

sT + µρ
c2
1 +

w

sT + µρ
c2
2 .



Typical Sound Speeds
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The red line is ordinary sound. The green line is fourth sound. The
blue line is second sound. Here m2L2 = ∆(∆− 4),

V (ψ) = m2|ψ|2 + u|ψ|4 ,

and q is the charge of the scalar field.



Second Sound of Helium-4 from Khalatnikov’s Book



Second Sound (3+1 dimensions)

a) b)

Figure: The speed of second sound as a function of T/Tc , computed by
evaluating thermodynamic derivatives: a) O3/2 scalar, b) O5/2 scalar for
a 3+1 dimensional field theory. The speed of second sound vanishes as
T → Tc . u = 0 means no quartic term in V .



Universality at low T

Landau predicted that

lim
T→0

c2
2 =

c2
1

d
,

i.e. second sound becomes a sound wave propagating in a gas of
phonons. Reasonable for helium-4.

We do not find this result. We believe the reason is that the low
temperature limit of this system is not a gas of phonons.

lim
T→0

Cµ
sd
6= 1 , lim

T→0

sT

sT + µρn
6= c2

1

What exactly is it?



Analytic Results, Vector Order Parameter,

Probe Limit

Starting with an electrically charged black hole at small µ/T where
A = φ τ3 dt, there is a critical chemical potential at which an
instability appears, characterized by a zero mode for A1

x (Basu, He,
Mukherjee, Shieh, 0810.3970 [hep-th]):

∂2
z A1

x +

(
f ′

f
− 1

z

)
∂zA

1
x = −φ

2

f 2
A1

x

where φ = (1− z)µ/πT and f = 1− z4:

A1
x = ε

z2

(1 + z2)2
where

µc

πT
= 4 .

We find a solution as a power series in ε.



The Phase Transition, Analytically

I The vector order parameter 〈j1x 〉 ∼ ε.
I We find

µ/πT = 4 +
71

6720
ε2 +O(ε4) ,

from which we infer 〈j1x 〉 ∼ (Tc − T )1/2.

I We can also introduce a superfluid velocity, ξ‖ and ξ⊥. (The
phase transition breaks rotational symmetry). We find a phase
separation line

µ ≈ 4πT +
1

6πT
ξ2‖ , µ ≈ 4πT +

1

3πT
ξ2⊥ .



Speed of Second Sound

Because of the broken rotational symmetry, there are actually two
speeds of second sound

c2
⊥ ≈

140

281

( µ

πT
− 4
)
,

c2
‖ ≈

70

281

( µ

πT
− 4
)
.

We were able to see these results in two ways:

I From the thermodynamic identity mentioned above.

I From poles in the current-current correlation functions.

NB: These results are valid only near Tc .



Fulde-Ferrell

I That the order parameter 〈j1x 〉 is a current is strange.

I Reminiscent of an idea by Fulde and Ferrell (also Larkin and
Ovchinnikov) — BCS in a magnetic field

kF↑ − kF↓ > 0



Remarks and Plans for the Future

I Tried to convince you that AdS/CFT is a useful tool for
studying strongly interacting field theories — equations of
state, correlation functions, transport properties.

I The hope is that these field theories may be relevant for
understanding real world condensed matter systems.

I We saw that AdS/CFT can be used to study the superfluid
phase transition.

I How do we gain control over the T → 0 limit?
I Stringy issues: Is this limit stable in string theory? What

supergravity modes do we include?
I Numerical issues: Why are the numerics difficult in this limit?
I Conceptual issues: Can we learn anything new in this limit?

Beyond Landau?



Phase Diagram for Helium-4



Phase Diagram for Helium-3


