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Is there a holographic superconductor...

1) for which the field theory is explicitly known ?

2) within ten-dimensional type |IB supergravity?
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Motivation

A holographic superconductor with field theory in 3+1 dimensions for which

1. the dual field theory is explicitly known

2. there is a qualitative ten-dimensional string theory picture of condensation

Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864

p-wave superconductor
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Motivation

This is achieved in the context of

adding flavor to gauge/gravity duality

N = 4 theory: all fields in adjoint rep of gauge group

qb N eiAgb e—z’A

QCD: quarks transform in fundamental rep of gauge group

q — e'q

Brane probes added on gravity side = fundamental d.o.f. in the dual field theory

Additional hyperplanes within AdS5 x S° or deformed version thereof
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Motivation

Fluctuations of brane probes = Mesons

Brane embeddings in confining 10d backgrounds =-

Chiral symmetry breaking

Brane probes in AdS black hole geometry =

Quarks added to finite temperature field theory

Chemical potentials for baryon, isospin density:

From non-trivial A; on gravity side

=- Rich phase structure



Outline

1. Adding Flavor to Gauge/Gravity Duality
2. Holographic Quarks at finite Temperature and Density

3. Superfluidity and Superconductivity



String theory origin of AdS/CFT correspondence

D3 branesin 10d

7 7

- duahty) S~—_
—

AdS.x S
/ / near-horizon geometry

|} Low-energy limit

N = 4 SUSY SU(N) gau-
ge theory in four dimensions Supergravity on AdSs x S°
(N — o0)



Quarks (fundamental fields) within the AdS/CFT correspondence

Adding D7 brane probe:

D3 | X | X | X | X
D7 | X | X | X | X | X[ X | X]|X




Quarks (fundamental fields) from brane probes

N D3
v
0123 conventional
open/closed string duality
)‘ 4567 > SYM
89 3-3
guarks
AU X 3
flavour open/open
/ string duality
N; probe D7 R4 Adsa_
brane
N — oo (standard Maldacena limit), N small (probe approximation)
duality acts twice:
N = 4 SU(N) Super Yang-Mills theory IIB supergravity on AdSs x S°
coupled to — N
N = 2 fundamental hypermultiplet Probe brane action on AdSs x S*

Karch, Katz 2002 Dirac-Born-Infeld action
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Gauge/Gravity Duality with Flavor

DBI (Dirac-Born-Infeld) action:

SDBI = —T7/d8§ tr\/det(—P[G] —+ 27TO(’F)

Contributions of order N¢/N.

Field theory involves fundamental fermions and scalars
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Gauge/Gravity Duality at Finite Temperature

N = 4 Super Yang-Mills theory at finite temperature is dual to AdS black hole
Witten 1998

o ; 0%
flo=1-"5 Fflo=1+-7%
Temperature and horizon related by

T OH
—_— ———
T R?

R: AdS radius

For o — 0, metric of AdSs x S° is recovered.
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D7 brane embedding in black hole background

First order phase transition

Babington, J.E., Evans, Guralnik, Kirsch
Mateos, Myers, Thomson
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D7 brane embedding in black hole background

Babington, J.E., Evans, Guralnik, Kirsch 0306018

Condensate ¢ = (y1)) vs. quark mass m
m in units of T
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Masses and decay widths of mesons - Spectral functions

Standard procedure in D3/D7: Mateos, Myers et al 2003

Meson masses calculated from linearized fluctuations of D7 embedding
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Masses and decay widths of mesons - Spectral functions

Standard procedure in D3/D7: Mateos, Myers et al 2003

Meson masses calculated from linearized fluctuations of D7 embedding

Fluctuations: dw(zx, p) = f(p)ei(g'f_wt), M? = —k?

For black hole embeddings, w develops negative imaginary part

=- damping = decay width

Make contact with hydrodynamics: Starinets, Kovtun ....
Spectral function determined by poles of retarded Green function
Quasinormal modes

|dentify mesons with resonances in spectral function
Landsteiner, Hoyos, Montero
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Finite U (1) baryon density

Mateos, Myers, Matsuura et al
Baryon density np and U (1) chemical potential u
from VEV for gauge field time component:

CZV 25/2
Y — n
0 NpV/ATE ©

At finite baryon density, all embeddings are black hole embeddings
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Phase diagram with finite U (1) baryon density

Phase diagram:

grey region: ng =0
white region: ng # 0

0.8 |
= 0.6 |
g
S
304 |
02 S d=0.00315 |
0.2 0.4 06 0.8 1
T/M

Sin, Yogendran et al; Mateos, Myers et al; Karch, O'Bannon; ...
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Isospin chemical potential and density

Embed two coincident D7-branes into AdS-Schwarzschild
gauge fields A, = A7, 0 € u(2) = u(1)p ® su(2);

Finite isospin density: A5 # 0 = Explicit breaking to u(1)s
Dynamics of Flavour degrees is described by non-abelian DBI action
Field theory described:

N = 4 Super Yang-Mills plus two flavors of fundamental matter

at finite temperature and finite isospin density
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p meson condensation

J.E., Kaminski, Kerner, Rust 0807.2663

Above a critical isospin density, a new phase forms

2.0- new phase

meson melting

stable mesons
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p meson condensation

J.E., Kaminski, Kerner, Rust 0807.2663

Above a critical isospin density, a new phase forms

2.0- new phase

meson melting

stable mesons

L T T
0.0 0.2 0.4 0.6 0.8 1.0

T/

New phase is unstable
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Quasinormal modes

Instability:

e
O z O

Q—>C?<—Q
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A new ground state forms

There is a new solution to the equations of motion

with non-zero vev for Alo! in addition to the non-zero A3c?

Pole structure:
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Superconductivity

Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864

The new ground state has properties known from superconductors:

infinite DC conductivity, gap in the AC conductivity
second order phase transition, critical exponent of 1/2 (mean field)

a remnant of the Meissner—Ochsenfeld effect
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Superfluidity and Superconductivity

Order parameter di o (yy310q + Yaysthy + bosons) # 0

Dual to Alo! in gravity theory

Spontaneous breaking of (global) U(1)3

Flavor superfluid

FFLO condensate corresponds to p meson superfluid

discussed in QCD literature Son, Stephanov; Splittorff; Sannino ...

p condensation in Sakai-Sugimoto model: Aharony, Peeters, Sonnenschein, Zamaklar
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Order parameter: p wave condensate
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T/T.
Red: Vanishing quark mass; Black: Finite quark mass, /M, = 3

Blue: Fit displaying critical exponent 1/2
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Thermodynamics

Flavor contribution to Grand potential vs. temperature
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Heat Capacity

Flavor contribution to heat capacity
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Conductivity

Frequency-dependent conductivity o(w) = LGF(w)

G retarded Green function for fluctuation a3

100 T T T 7

80

60
Reo

40 +

20 |

o =w/(277)

T/T.: Black: oo, Red: 1, Orange: 0.5, Brown: 0.28.

(Vanishing quark mass)
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Meissner effect

0.15 0.2 0.25 0.3
T

(d3)1/?

Lower phase: magnetic field and condensate coexist

Upper phase: condensate vanishes
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Non-abelian DBI action

Evaluation non-trivial in presence of both o9, o'
Two evaluation methods:
1) Expansion to fourth order

2) Simplification: Omitting commutators of Pauli matrices
Modified prescription for symmetrized trace

Allows for all-order calculation of the non-abelian DBI

Error of order 1/N;

cf. Myers, Constable, Tafjord 1999
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String picture

\charged horizon

Strings stretched between D7 branes and horizon induce a charge near the horizon
System unstable above a critical charge density

Horizon strings recombine to D7 — D7 strings

D7 — D7 strings propagate into the bulk, balancing flavorelectric and gravitational forces
D7 — D7 strings distribute isospin charge into the bulk — condensate
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Conclusion and Outlook

A holographic superconductor for which the field theory is explicitly known
First explicit example of superconductivity (superfluidity) from 10d action

Embedding of two coincident D7 branes = Finite isospin density

Outlook: Fermions

Outlook: Space-time dependent solutions
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