A flavor superconductor from string theory

Johanna Erdmenger

Max Planck-Institut für Physik, München

Holographic Superconductor from charged scalar in Einstein-Maxwell gravity

Gubser; Hartnoll, Herzog, Horowitz

Holographic Superconductor from charged scalar in Einstein-Maxwell gravity

Gubser; Hartnoll, Herzog, Horowitz

p-wave superconductor (current dual to gauge field condensing)

Gubser, Pufu

Holographic Superconductor from charged scalar in Einstein-Maxwell gravity

Gubser; Hartnoll, Herzog, Horowitz

p-wave superconductor (current dual to gauge field condensing)

Gubser, Pufu

 $(AdS_4 \text{ examples})$

Follow-up questions:

Follow-up questions:

Is there a holographic superconductor...

Follow-up questions:

Is there a holographic superconductor...

1) for which the field theory is explicitly known?

Follow-up questions:

Is there a holographic superconductor...

- 1) for which the field theory is explicitly known?
- 2) within ten-dimensional type IIB supergravity?

A holographic superconductor with field theory in 3+1 dimensions for which

A holographic superconductor with field theory in 3+1 dimensions for which

1. the dual field theory is explicitly known

A holographic superconductor with field theory in 3+1 dimensions for which

- 1. the dual field theory is explicitly known
- 2. there is a qualitative ten-dimensional string theory picture of condensation

Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864

p-wave superconductor

This is achieved in the context of

adding flavor to gauge/gravity duality

This is achieved in the context of

adding flavor to gauge/gravity duality

 $\mathcal{N}=4$ theory: all fields in adjoint rep of gauge group

$$\phi \to e^{i\Lambda} \phi \, e^{-i\Lambda}$$

This is achieved in the context of

adding flavor to gauge/gravity duality

 $\mathcal{N}=4$ theory: all fields in adjoint rep of gauge group

$$\phi \to e^{i\Lambda} \phi \, e^{-i\Lambda}$$

QCD: quarks transform in fundamental rep of gauge group

$$q \to e^{i\Lambda} q$$

This is achieved in the context of

adding flavor to gauge/gravity duality

 $\mathcal{N}=4$ theory: all fields in adjoint rep of gauge group

$$\phi \to e^{i\Lambda} \phi \, e^{-i\Lambda}$$

QCD: quarks transform in fundamental rep of gauge group

$$q \to e^{i\Lambda} q$$

Brane probes added on gravity side \Rightarrow fundamental d.o.f. in the dual field theory

Additional hyperplanes within $AdS_5 \times S^5$ or deformed version thereof

Fluctuations of brane probes \Rightarrow Mesons

Fluctuations of brane probes ⇒ Mesons

Brane embeddings in confining 10d backgrounds ⇒

Chiral symmetry breaking

Fluctuations of brane probes ⇒ Mesons

Brane embeddings in confining 10d backgrounds ⇒

Chiral symmetry breaking

Brane probes in AdS black hole geometry ⇒

Quarks added to finite temperature field theory

Fluctuations of brane probes ⇒ Mesons

Brane embeddings in confining 10d backgrounds ⇒

Chiral symmetry breaking

Brane probes in AdS black hole geometry ⇒

Quarks added to finite temperature field theory

Chemical potentials for baryon, isospin density:

From non-trivial A_t on gravity side

Fluctuations of brane probes ⇒ Mesons

Brane embeddings in confining 10d backgrounds ⇒

Chiral symmetry breaking

Brane probes in AdS black hole geometry ⇒

Quarks added to finite temperature field theory

Chemical potentials for baryon, isospin density:

From non-trivial A_t on gravity side

⇒ Rich phase structure

Outline

- 1. Adding Flavor to Gauge/Gravity Duality
- 2. Holographic Quarks at finite Temperature and Density
- 3. Superfluidity and Superconductivity

String theory origin of AdS/CFT correspondence

D3 branes in 10d

↓ Low-energy limit

 $\mathcal{N}=4$ SUSY SU(N) gauge theory in four dimensions $(N\to\infty)$

Supergravity on $AdS_5 \times S^5$

Quarks (fundamental fields) within the AdS/CFT correspondence

Adding D7 brane probe:

	0	1	2	3	4	5	6	7	8	9
D3	X	X	X	Х						
D7	X	X	X	X	X	X	X	X		

Quarks (fundamental fields) from brane probes

 $N \to \infty$ (standard Maldacena limit), N_f small (probe approximation)

duality acts twice:

$$\mathcal{N}=4$$
 SU(N) Super Yang-Mills theory coupled to \longleftrightarrow IIB supergravity on $AdS_5 \times S^5$ $+$ $\mathcal{N}=2$ fundamental hypermultiplet Probe brane action on $AdS_5 \times S^3$

Karch, Katz 2002

Dirac-Born-Infeld action

Gauge/Gravity Duality with Flavor

DBI (Dirac-Born-Infeld) action:

$$S_{DBI} = -T_7 \int d^8 \xi \operatorname{tr} \sqrt{\det(-P[G] + 2\pi\alpha' F)}$$

Contributions of order N_f/N_c

Gauge/Gravity Duality with Flavor

DBI (Dirac-Born-Infeld) action:

$$S_{DBI} = -T_7 \int d^8 \xi \operatorname{tr} \sqrt{\det(-P[G] + 2\pi\alpha' F)}$$

Contributions of order N_f/N_c

Field theory involves fundamental fermions and scalars

Gauge/Gravity Duality at Finite Temperature

 $\mathcal{N}=4$ Super Yang-Mills theory at finite temperature is dual to AdS black hole

Witten 1998

$$ds^{2} = \frac{1}{2} \left(\frac{\varrho}{R} \right)^{2} \left(-\frac{f^{2}}{\tilde{f}} dt^{2} + \tilde{f} d\vec{x}^{2} \right) + \left(\frac{R}{\varrho} \right)^{2} \left(d\varrho^{2} + \varrho^{2} d\Omega_{5}^{2} \right)$$

$$f(\varrho) = 1 - \frac{\varrho_H^4}{\varrho^4}, \quad \tilde{f}(\varrho) = 1 + \frac{\varrho_H^4}{\varrho^4}$$

Temperature and horizon related by

$$T = \frac{\varrho_H}{\pi R^2}$$

R: AdS radius

For $\varrho_H \to 0$, metric of $AdS_5 \times S^5$ is recovered.

D7 brane embedding in black hole background

First order phase transition

Babington, J.E., Evans, Guralnik, Kirsch Mateos, Myers, Thomson

D7 brane embedding in black hole background

Babington, J.E., Evans, Guralnik, Kirsch 0306018

Phase transition at $m_c \approx 0.92$ (1st order)

Condensate $c \equiv \langle \bar{\psi} \psi \rangle$ vs. quark mass m m in units of T

Kirsch 2004

Masses and decay widths of mesons - Spectral functions

Standard procedure in D3/D7:

Mateos, Myers et al 2003

Meson masses calculated from linearized fluctuations of D7 embedding

Fluctuations: $\delta w(x,\rho)=f(\rho)e^{i(\vec{k}\cdot\vec{x}-\omega t)}$, $M^2=-k^2$

Masses and decay widths of mesons - Spectral functions

Standard procedure in D3/D7:

Mateos, Myers et al 2003

Meson masses calculated from linearized fluctuations of D7 embedding

Fluctuations: $\delta w(x,\rho)=f(\rho)e^{i(\vec{k}\cdot\vec{x}-\omega t)}$, $M^2=-k^2$

For black hole embeddings, ω develops negative imaginary part

 \Rightarrow damping \Rightarrow decay width

Masses and decay widths of mesons - Spectral functions

Standard procedure in D3/D7:

Mateos, Myers et al 2003

Meson masses calculated from linearized fluctuations of D7 embedding

Fluctuations: $\delta w(x,\rho)=f(\rho)e^{i(\vec{k}\cdot\vec{x}-\omega t)}$, $M^2=-k^2$

For black hole embeddings, ω develops negative imaginary part

 \Rightarrow damping \Rightarrow decay width

Make contact with hydrodynamics:

Starinets, Kovtun

Spectral function determined by poles of retarded Green function

Quasinormal modes

Identify mesons with resonances in spectral function

Landsteiner, Hoyos, Montero

Finite U(1) baryon density

Mateos, Myers, Matsuura et al

Baryon density n_B and U(1) chemical potential μ from VEV for gauge field time component:

$$\bar{A}_0(\rho) \sim \mu + \frac{\tilde{d}}{\rho^2}, \qquad \tilde{d} = \frac{2^{5/2}}{N_f \sqrt{\lambda} T^3} n_B$$

At finite baryon density, all embeddings are black hole embeddings

Phase diagram with finite U(1) baryon density

Phase diagram:

grey region: $n_B = 0$ white region: $n_B \neq 0$

Sin, Yogendran et al; Mateos, Myers et al; Karch, O'Bannon; ...

Isospin chemical potential and density

- Embed two coincident D7-branes into AdS-Schwarzschild gauge fields $A_{\mu}=A_{\mu}^{a}\,\sigma^{a}\in u(2)=u(1)_{B}\oplus su(2)_{I}$
- Finite isospin density: $A_0^3 \neq 0 \Rightarrow$ Explicit breaking to $u(1)_3$
- Dynamics of Flavour degrees is described by non-abelian DBI action

Field theory described:

 $\mathcal{N}=4$ Super Yang-Mills plus two flavors of fundamental matter at finite temperature and finite isospin density

ρ meson condensation

J.E., Kaminski, Kerner, Rust 0807.2663

Above a critical isospin density, a new phase forms

ρ meson condensation

J.E., Kaminski, Kerner, Rust 0807.2663

Above a critical isospin density, a new phase forms

New phase is unstable

Quasinormal modes

Instability:

A new ground state forms

There is a new solution to the equations of motion with non-zero vev for $A_3^1\sigma^1$ in addition to the non-zero $A_0^3\sigma^3$

A new ground state forms

There is a new solution to the equations of motion with non-zero vev for $A_3^1\sigma^1$ in addition to the non-zero $A_0^3\sigma^3$

$$A_0^3 = \mu - \frac{\tilde{d}_0^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots, \qquad A_3^1 = -\frac{\tilde{d}_1^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots$$

A new ground state forms

There is a new solution to the equations of motion with non-zero vev for $A_3^1\sigma^1$ in addition to the non-zero $A_0^3\sigma^3$

$$A_0^3 = \mu - \frac{\tilde{d}_0^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots, \qquad A_3^1 = -\frac{\tilde{d}_1^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots$$

Pole structure:

Superconductivity

Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864

The new ground state has properties known from superconductors:

- infinite DC conductivity, gap in the AC conductivity
- second order phase transition, critical exponent of 1/2 (mean field)
- a remnant of the Meissner–Ochsenfeld effect

Superfluidity and Superconductivity

Order parameter $\tilde{d}_3^1 \propto \langle \bar{\psi}_u \gamma_3 \psi_d + \bar{\psi}_d \gamma_3 \psi_u + bosons \rangle \neq 0$

Dual to $A_3^1\sigma^1$ in gravity theory

Superfluidity and Superconductivity

Order parameter $\tilde{d}_3^1 \propto \langle \bar{\psi}_u \gamma_3 \psi_d + \bar{\psi}_d \gamma_3 \psi_u + bosons \rangle \neq 0$

Dual to $A_3^1 \sigma^1$ in gravity theory

Spontaneous breaking of (global) $U(1)_3$

Flavor superfluid

Superfluidity and Superconductivity

Order parameter $\tilde{d}_3^1 \propto \langle \bar{\psi}_u \gamma_3 \psi_d + \bar{\psi}_d \gamma_3 \psi_u + bosons \rangle \neq 0$

Dual to $A_3^1\sigma^1$ in gravity theory

Spontaneous breaking of (global) $U(1)_3$

Flavor superfluid

FFLO condensate corresponds to ρ meson superfluid

discussed in QCD literature Son, Stephanov; Splittorff; Sannino ...

ρ condensation in Sakai-Sugimoto model: Aharony, Peeters, Sonnenschein, Zamaklar

Order parameter: p wave condensate

Red: Vanishing quark mass; Black: Finite quark mass, $\mu/M_q=3$

Blue: Fit displaying critical exponent 1/2

Thermodynamics

Flavor contribution to Grand potential vs. temperature

Heat Capacity

Flavor contribution to heat capacity

Conductivity

Frequency-dependent conductivity $\sigma(\omega) = \frac{i}{\omega}G^R(\omega)$

 ${\cal G}^R$ retarded Green function for fluctuation a_2^3

$$\mathfrak{w} = \omega/(2\pi T)$$

 T/T_c : Black: ∞ , Red: 1, Orange: 0.5, Brown: 0.28.

(Vanishing quark mass)

Meissner effect

Lower phase: magnetic field and condensate coexist

Upper phase: condensate vanishes

Non-abelian DBI action

Evaluation non-trivial in presence of both σ^0 , σ^1

Two evaluation methods:

- 1) Expansion to fourth order
- 2) Simplification: Omitting commutators of Pauli matrices Modified prescription for symmetrized trace

Allows for all-order calculation of the non-abelian DBI

Error of order $1/N_f$

cf. Myers, Constable, Tafjord 1999

String picture

- Strings stretched between D7 branes and horizon induce a charge near the horizon
- System unstable above a critical charge density
- Horizon strings recombine to D7 D7 strings
- D7 D7 strings propagate into the bulk, balancing flavorelectric and gravitational forces
- D7 D7 strings distribute isospin charge into the bulk \rightarrow condensate

Charge distributions

Conclusion and Outlook

- A holographic superconductor for which the field theory is explicitly known
- First explicit example of superconductivity (superfluidity) from 10d action
- Embedding of two coincident D7 branes ⇒ Finite isospin density

Conclusion and Outlook

- A holographic superconductor for which the field theory is explicitly known
- First explicit example of superconductivity (superfluidity) from 10d action
- Embedding of two coincident D7 branes ⇒ Finite isospin density
- Outlook: Fermions
- Outlook: Space-time dependent solutions