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1. Introduction

It is a great privilege to deliver this set of lectures in honor of Professor Teiji Takagi

(1875 - 1960), the founding father of modern mathematical research in Japan. Profes-

sor Takagi was an alumnus of my high school, and our mathematics teacher liked to tell

us about the local hero who realized Kronecker’s Jugendtraum in the case of imaginary

quadratic fields by establishing Class Field Theory [1]. As a high school student, I also

enjoyed reading his popular book on the history of modern mathematics [2], where the

moments of creation of new mathematics are vividly described. I was particularly fasci-

nated by the story on elliptic functions of Gauss, Abel, and Jacobi, which turned out to

be relevant in my study of conformal field theories 7 years later. We cannot overestimate

the influence of his legendary textbook on Calculus [3] over generations of engineers and

scientists as well as mathematicians in Japan for the last three quarters of a century since

it was first published. On my bookshelves, it stands next to Feynman Lectures on Physics

and Landau-Lifshitz Course of Theoretical Physics, and I still consult it from time to time.

The main subject of this set of lectures is the topological string theory. The topo-

logical string theory was introduced by E. Witten about 20 years ago, and it has been

developed by collaborations of physicists and mathematicians. Its mathematical struc-

ture is very rich, and it has lead to discoveries of new connections between different areas

of mathematics, ranging from algebraic geometry, symplectic geometry and topology, to

combinatorics, probability and representation theory. The topological string theory also

has many important applications to problems in physics. Though the theory was initially

thought of as a simple toy model of string theory, it has turned out to be useful in comput-

ing a certain class of scattering amplitudes of physical string theory. In the past 10 years,

the relation between topological string and physical string has been applied to variety of

problems, and it has advanced our understanding of string compactifications, provided a

powerful computational tool to study strongly coupled dynamics of gauge theories, has

shed light on mysteries of quantum gravity such as quantum states of black holes, and

pointed out a promising direction to prove the AdS/CFT correspondence. Moreover, the

topological string theory has given us insights into how our concept of space and time

should be modified in order to formulate fundamental laws of nature.

Although these lectures are meant to be for mathematicians, I felt it would be appro-

priate to spend the first couple of minutes in this course explaining physicists’ motivation

to study string theory. In the past few hundred years, physicists have searched for funda-

mental laws of nature by exploring phenomena at shorter and shorter distances. Although
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the idea that everything on the Earth is made of atoms goes back to Ancient Greek, the

modern atomic theory began with the publication of “New System of Chemical Philoso-

phy” by J. Dalton in 1808. In the middle of the 19th century, the size of atoms is correctly

estimated to be about 10−10 meters. By the end of the 19th century, due to the discovery

of the electron and study of radioactivity, scientists began to think that atoms are not fun-

damental and that they have internal structure. In 1904, H. Nagaoka proposed the model

in which there is a positively charged nucleus at the center with electrons orbiting around

them. The existence of atomic nuclei was confirmed by the Geiger-Marsden experiment

and the theory of E. Rutherford. The radius of the atomic nucleus is about 10−15 - 10−14

meters. In the 1930th, thanks to the discovery of the neutron by J. Chadwick, the splitting

of the atomic nucleus by J. Cockroft and E. Walton, and the meson theory of H. Yukawa, it

became clear that the atomic nucleus is made of protons and neutrons bound together by

the π meson. The radius of the proton is about 10−15 meter. The progress of elementary

particle physics in the past 50 years has culminated in the “Standard Model of Particle

Physics,” which describes all known particle physics phenomena down to 10−18 meters.

The Large Hadron Collider, which just began its operation at CERN in Switzerland, will

probe distance as short as 10−19 meters.

It is natural to ask whether this progression continues indefinitely. Surprisingly, there

are reasons to think that the hierarchical structure of nature will terminate at the Planck

length at 10−35 meters. Let us perform a thought-experiment to explain why this might

be the case. Physicists build particle colliders to probe short distances. The more energy

we use to collide particles, the shorter distances we can explore. This has been the case

so far. One may then ask: can we build a collider with energy so high that it can probe

distances shorter than the Planck length? The answer is no. When we collide particles

with such high energy, a black hole will form and its event horizon will conceal the entire

interaction area. Stated in another way, the measurement at this energy would perturb

the geometry so much that the fabric of space and time would be torn apart. This would

prevent physicists from ever seeing what is happening at distances shorter than the Planck

length. This is a new kind of uncertainty principle. The Planck length is truly fundamental

since it is the distance where the hierarchical structure of nature will terminate.

Space and time do not exist beyond the Planck scale, and they should emerge from a

more fundamental structure. Superstring theory is a leading candidate for a mathematical

framework to describe physical phenomena at this scale since it contains all the ingredients

necessary to unify quantum mechanics and general relativity.
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2. From Points to Strings

The axiomatic method for geometry invented by Euclid of Alexandria is based on

mathematical points with no size and structure. The Elements defines a point as “that

which has no part.” 2300 years after Euclid, string theory is offering the first real alterna-

tive to this approach by introducing finite-sized objects as basic building blocks.

Consider a Riemannian manifold M and try to probe it using a point-like particle. A

typical example of “observables” is Green’s function G(x, y) obeying

(−∆x + m2)G(x, y) = δ(x, y), (2.1)

where x, y ∈ M , ∆x is the Laplace-Beltrami operator on x, m is a constant, which physicists

regard as a mass of the particle, and δ(x, y) is the delta-function for x = y. Green’s function

can be expressed as a path integral, i.e., a sum over all possible paths in M from x to y

with an appropriate weight.

In string theory, an analogue of Green’s function has richer structure. An obvious

analogue would be a sum over all possible spherical surface connecting x to y as in Figure

1(a). But there is no reason to stop at two points. We can choose n point, x1, x2, · · · , xn,

and sum over all spherical surfaces connecting them as in Figure 1(b). To define a similar

object in a point particle theory, one would need to introduce “interactions.” In string

theory, interactions are already built in without additional assumptions. More generally,

we can consider a sum over genus-g surfaces connecting the n points to define an amplitude

Fg(x1, · · · , xn). We can go even further; since we are considering string theory, we should

be able to consider n configurations of strings in M and a sum over genus-g surfaces with

n boundaries connecting them as in Figure 1(c). This can be made a little more precise as

follows.
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Figure 1 An analogue of Green’s function in string theory is given by summing over spheres

with two points fixed (a). This can be generalized to n-point functions (b) and to higher genus

amplitudes with incoming and outgoing string states (c).

2.1. String Amplitudes at Genus g

Let us define a conformal field theory in two dimensions. We start with a Hilbert

space H, which realizes the Virasoro algebra

[Ln, Lm] = (n − m)Ln+m +
c

12
(n3 − n)δn+m,0, n, m = 0,±1,±2, · · · . (2.2)

Physicists regard it as a “space of states” of the conformal field theory. Here c is the central

charge, which commutes with all other generators and takes a fixed value on H. The Hilbert

space H is decomposed into a sum of products of irreducible unitary representations Vh of

the Virasoro algebra with the highest weight h as

H = ⊕h,h̄Nh,h̄Vh ⊗ Vh̄, (2.3)

where Nh,h̄ are non-negative integers. It is convenient to distinguish the Virasoro algebra

realized on the two factors of Vh ⊕ Vh̄, so physicists use {Ln} for Vh and {L̄n} for Vh̄ and

call them the left-movers and the right-movers.
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According to [4,5], a conformal field theory is defined as a functor,

Σg(n, m) → Ag(n, m) ∈ Hom(H⊗n,H⊗m), (2.4)

where Σg(n, m) is a Riemann surface of genus g with n parametrized boundaries with the

inbound orientation and m parametrized boundaries with the outbound orientation. It is

supposed to satisfy the gluing axioms spelled out in [5].

To define string theory, we need a particular type of conformal field theory where one

can define a nilpotent operator Q : H → H of degree 1 such that the Virasoro generators

are Q-trivial,

Ln = {Q, bn}, L̄n = {Q, b̄n}, (2.5)

for some operators bn, b̄n : H → H of degree −1. We need the central charge c = 0 for

this to be possible. In physics literature, bn’s are called anti-ghosts. Let Mg(n, m) be

the moduli space of Σg(n, m), and Ω∗(Mg(n, m)) be the space of differential forms on it.

When (2.5) holds for a conformal field field theory (2.4), one can define

ωg(n, m) ∈ Ω∗(Mg(n, m)) ⊗ Hom(H⊗n,H⊗m), (2.6)

so that it is closed, Dωg(n, m) = 0 with respect to D = d + Q, where d is the de Rham

operator on Ω∗(Mg(n, m)). There is a set of gluing axioms for ωg(n, m). For example, for

the gluing map,

glue : Mg1
(n, k) ⊕Mg2

(k, m) → Mg1+g2
(n, m), (2.7)

ωg(n, m) responds as

glue∗ (ωg1+g2
(n, m)) = TrH⊗k (ωg1

(n, k)ωg2
(k, m))

∈ Ω∗(Mg1
(n, k) ⊕Mg2

(k, m)) ⊗ Hom(H⊗n,H⊗m).
(2.8)

Physicists have developed a method to construct ωg(n, m) for all known perturbative string

theories, including bosonic string, superstring, heterotic string and topological string. The

genus-g string amplitude Fg(n, m) is given by integrating the top component of ωg(n, m)

over Mg(n, m),

Fg(n, m) =

∫

Mg(n,m)
ωg(n, m). (2.9)
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2.2. Open Strings

Mathematics of open strings was pioneered by K. Fukaya and M. Kontsevich before

physicists (except for Witten [6]) realized geometric significance of D branes. Although it

is difficult to do justice to recent progress in this area’s mathematics in this short course

of lectures, let us briefly introduce D branes and open strings as we will need them later.

Figure 2 An open string amplitude of genus 3. It has no incoming closed string, 1 incoming open

string, 1 outgoing closed string, and 2 outgoing open strings (n = 0, nopen = 1, m = 1, mopen = 2).

Note that each open string state is attached to a segment on a boundary. The remaining boundary

components are assigned with boundary conditions, Ei, Ej , Ek, El.

An open string has two end-points, and we need to specify boundary conditions there.

In physics literature, each boundary condition is called a D brane. Let us choose a set of

D branes, {Ei : i = 1, · · · , k}. Some of the D branes may coincide, i.e., some boundary

conditions may be identical. For a pair of D branes, Ei and Ej , we can define an open

string Hilbert space Hopen(Ei, Ej). Consider a Riemann surface Σg,b(n, nopen; m, mopen)

with genus g and (b + n + m) boundaries with the following markings. See Figure 2.

As in the case of closed string, there are n parametrized boundaries with the inbound

orientation and m parametrized boundaries with the outbound orientation. In addition,

there are (nopen + mopen) disjoint embeddings of the interval [0, 1] into the remaining b

boundaries, where nopen of them are inbound and mopen are outbound. We arrange so that

boundaries make a right-angle turn at each end point of the images of [0, 1]. This is needed

for the gluing rules to work for open strings. The complement of these images in the b

boundaries has several disjoint components, and they are either circles or intervals. We
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assign a D brane boundary condition to each of the disjoint components. In this way, each

image of [0, 1] is sandwiched by a pair of boundary components with prescribed boundary

conditions, Ei and Ej for example. We can then associate the Hilbert space Hopen(Ei, Ej) to

the image on [0, 1] on the boundary. The open/closed conformal field theory is a functor,

Σg,b(n, nopen; m, mopen) →Ag,b(n, nopen; m, mopen)

∈ Hom
(

H⊗n ⊗H⊗nopen
open ,H⊗m ⊗H⊗mopen

open

)

.
(2.10)

If the Virasoro generator acting on H and Hopen are Q-trivial, one can construct

ωg,b(n, nopen; m, mopen) ∈ Ω∗ (Σg,b(n, nopen; m, mopen))

⊗ Hom
(

H⊗n ⊗H⊗nopen
open ,H⊗m ⊗H⊗mopen

open

)

,
(2.11)

which is closed with respect to D = d +Q, and it can be used to define a string amplitude

Fg,b(n, nopen; m, mopen) by integrating its top component over the moduli space.

Open string theory and closed string theory (the one which contains closed strings

only) seem very different. For one thing, open string theory can be formulated using string

field theory [7]. Mathematically, it means that the moduli space for Σg,b $=0 has a nice

triangulation that corresponds to a sum of Feynman diagrams. String field theories for

open topological strings are particularly simple. In section 5, we will discuss the Chern-

Simons gauge theory in three dimensions [8] and random matrix models [9], as examples of

string field theories. In contrast, a string field theory to compute closed string amplitudes

Fg (2.9) for all g is not known, except for the topological B-model [10]. The topological

B-model is special since it is manifest that the string amplitudes Fg receive contributions

only from boundaries of the moduli space Mg.

3. Topological String Theory

To define the topological string theory, we consider a conformal field theory with the

N = 2 superconformal symmetry generated by {Ln, G+
n , G−

n , Jn} and the central charge ĉ.

These generators obey the commutation relations,1

[Ln, Lm] = (n − m)Ln+m, {G+
n , G−

m} = 2Ln+m,

[Ln, G+
m] = −mG+

n+m, [Ln, G−
m] = (n − m)G−

n+m, [Jn, G±
m] = ±G±

n+m,

[Jn, Jm] = ĉnδn+m, [Ln, Jm] = −mJn+m.

(3.1)

1 A CFT connoisseur may notice that the commutation relations listed here are slightly

difference from the standard ones. In fact, they are related to by rearranging the generators, the

process called topological twist.
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We see that the Virasoro algebra with c = 0 is a sub-algebra and that the Virasoro

generators are Q-trivial, Ln = {Q, bn}, where Q = G+
0 + Ḡ+

0 and bn = 1
2G−

n . Thus, we can

use the formalism of section 2.2 to define the genus-g string amplitudes Fg(n, m).

3.1. Two Models for One Calabi-Yau Manifold

A prototypical example of conformal field theories with N = 2 superconformal sym-

metry is the supersymmetric sigma-model whose target space is a Calabi-Yau manifold M .

For a given Calabi-Yau manifold, one can define two distinct sigma-models with different

Q operators, the A-model and the B-model [11].

In physics, the A-model is defined in terms of a path integral over (not necessarily

holomorphic) maps

X : Σ → M, (3.2)

together with Grassmannian fields on Σ,

θ(z, z̄) ∈ T 1,0
X(z,z̄)M, η(z, z̄) ∈ Ω1,0(Σ) ⊗ T 0,1

X(z,z̄)M,

θ̄(z, z̄) ∈ T 0,1
X(z,z̄)M, η̄(z, z̄) ∈ Ω0,1(Σ) ⊗ T 1,0

X(z,z̄)M,
(3.3)

where (z, z̄) ∈ Σ, T 1,0
x M and T 0,1

x M are the holomorphic and anti-holomorphic components

of the tangent space at x ∈ M , and Ω1,0(Σ) and Ω0,1(Σ) are the spaces of (1, 0) and (0, 1)

forms on Σ. In this model, the operator Q is the Noether charge associated to the following

transformation,
δX i = εθi, δX̄ ī = εθ̄ī; δθi = δθ̄ī = 0;

δη̄i = ε∂̄X i − Γi
jkθ

j η̄k, δηī = ε∂X̄ ī − Γī
j̄k̄θ̄

j̄ηk̄,
(3.4)

where I have used holomorphic coordinates (x1, · · · , xĉ), Γi
jk is the Christoffel connection

associated to the Ricci flat Kähler metric, and ε is a Grassmann number to parametrize

the transformation. It then follows that Q cohomology of H in this model is given by the

Hodge-de Rham cohomology of M as,

HQ(H) = ⊕ĉ
p,q=0H

p,q(M). (3.5)

The degrees (p, q) can be identified as eigenvalues of (J0, J̄0) in the left-moving and right-

moving N = 2 superconformal algebras.

Another consequence of the Q symmetry is that a path integral for a Q invariant

amplitude localizes to a sum over fixed points of the symmetry.2 For the A-model, the

2 See section 5 of [11] for discussion on the localization mechanism.
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fixed points of (3.4) consist of holomorphic maps from Σ to M together with θ = θ̄ = 0,

so that δη̄ ∼ ∂̄X = 0. The space of holomorphic maps is finite dimensional and can be

used as a basis for mathematical investigation. This leads to the connection between the

topological string theory and the Gromov-Witten invariants, which we will discuss later.

An example of Q invariant amplitudes is Ag(n, m) given in (2.4) evaluated for a Q-closed

state in H⊗n ⊗H∗⊗m. Such amplitudes can be expressed as sums over holomorphic maps.

On the other hand, ωg(n, m) as in (2.6) is invariant under D = d + Q but not under Q.

This leads to an interesting subtlety in evaluating Fg =
∫

Mg(n,m) ωg(n, m). In particular,

it will show up as the holomorphic anomalies [12,10], as we will see below.

Let us turn to the B-model. Its degrees of freedom are maps X : Σ → M and

Grassmannian fields on Σ,

θ̄(z, z̄) ∈ T 0,1
X(z,z̄)M, θ(z, z̄) ∈ T ∗1,0

X(z,z̄)M,

η(z, z̄) ∈
(

Ω1,0(Σ) ⊕Ω0,1(Σ)
)

⊗ T 1,0
X(z,z̄)M.

(3.6)

The Q transformation is given by

δX i = 0, δX̄ ī = εθ̄ī; δηi = εdX i, δθ = δθ̄ = 0 (3.7)

The Q cohomology of H in this case is the ∂̄ cohomology,

HQ(H) = ⊕ĉ
p,q=0H

p

∂̄
(M,∧qT 1,0M). (3.8)

The degrees (p, q) can be identified as eigenvalues of (J0, J̄0) in the left-moving and right-

moving N = 2 superconformal algebras. On a Calabi-Yau manifold of complex dimensions

ĉ, there is a unique holomorphic (ĉ, 0)-form Ω which is nowhere vanishing, and it can be

used to identify this cohomology with the Hodge-de Rham cohomology as,

Hp

∂̄
(M,∧qT 1,0M) ( Hp,ĉ−q(M). (3.9)

Fixed points of the Q transformation (3.7) can be found at dX = 0, namely constant

maps X : Σ → p ∈ M . Thus, Q invariant amplitudes, such as conformal field theory

amplitudes Ag(n, m) evaluated for Q closed states in H⊗n ⊗ H∗⊗m, can be expressed as

a sum over constant maps, which is the same thing as an integral over M . The string

amplitudes Fg(n, m) =
∫

Mg(n,m) ωg(n, m), on the other hand, does not necessarily localize

to integrals over M since they are invariant under D = d + Q and not under Q. The

difference of D and Q shows up as contributions from boundaries of the moduli space

Mg(n, m), and the part of Fg which fails to be localized on constant maps can be expressed

in terms of Feynman diagrams for point particles. This is the origin of the Kodaira-Spencer

description of the B-model mentioned at the end of section 2.2.
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3.2. Moduli Space of Topological String Theory

According to Yau’s theorem, a Ricci-flat Kähler metric of a Calabi-Yau manifold M

is uniquely determined by complex structure and Kähler class. Infinitesimal deforma-

tions of complex structure correspond to elements of H1
∂̄
(M, T 1,0M), while Kähler class is

parametrized by H1,1(M). In string theory, it is natural to complexify Kähler class. For

each choice of complex structure and complexified Kähler class, there is a conformal field

theory and we can use it to define string amplitudes Fg(n, m). Thus, topological string

amplitudes should be regarded as geometric objects over the moduli space of Calabi-Yau

manifolds.

Infinitesimal deformations of a conformal field theory are generated by marginal oper-

ators, which in the case of a topologically twisted N = 2 conformal field theory correspond

to Q cohomology elements of (J0, J̄0) = (1, 1). In the A and B-models, they are elements

of H1,1(M) and H1
∂̄
(M, T 1,0M) respectively, as we can see from (3.5) and (3.8). Thus, we

expect that string amplitudes Fg depend on the Kähler moduli in the A-model and the

complex moduli in the B-model.

Due to the index theorem and the triviality of the first Chern class of M , the number

of zero modes of fermions η, η̄ minus the number of zero modes of θ, θ̄ on Σg is equal to

(2g−2)ĉ. When ĉ = 3, this coincides with dim Mg. Because of this, ωg with n = m = 0 is

a top form on Mg, and we can define the vacuum amplitude Fg =
∫

Mg
ωg. We will mainly

consider the case of ĉ = 3 in the following, except for g = 1, where the index vanishes.

It turns out that this is also the most interesting case for physical applications of string

theory since 2ĉ = 6 = 10− 4, where 10 is the critical dimensions of superstring theory and

4 is the macroscopic dimensions of our spacetime.

Let us discuss the moduli space of the topological string theory. It is easier to start

with the B-model since its conformal field theory amplitudes are expressed as integrals over

M and we can use classical geometry to describe them. The moduli space of the B-model

is the complex moduli space MC of M . Since the holomorphic (3, 0)-form Ω is unique up

to scale, it defines a line bundle L over MC (a sub-bundle of the Hodge bundle) with a

natural metric,

||Ω||2 = i

∫

M

Ω ∧ Ω̄. (3.10)

The metric on MC is given as a curvature of this line bundle,

Gij̄ = ∂i∂̄j̄K, (3.11)
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with the Kähler potential K,

K = −log||Ω||2. (3.12)

On MC , there are particularly useful coordinates called the flat coordinates. To define

them, let us choose a symplectic basis of homology 3-cycles, {αI , βI}I=0,1,···,h1,2 . Note that

dimH3 = 2 + 2h1,2 since h3,0 = 1 for a Calabi-Yau manifold. Let us consider the period

integrals of Ω,

XI =

∫

αI

Ω, FI =

∫

βI

Ω. (3.13)

Since the complex structure of M is determined by the periods XI over the α cycles, FI ’s

are functions of XI ’s. Moreover, they are homogeneous functions of X ’s with weight 1

since XI ’s and FI ’s scale in the same way under scaling of Ω. It is known that they can

be expressed as derivatives of a single function F (X) as,

FI(X) =
∂F (X)

∂XI
, (3.14)

where F (X) is a homogeneous function of X ’s of weight 2. In physics literature, F (X) is

called the prepotential. Since scaling of Ω does not affect the complex structure, we can

use ratios of X ’s as coordinates of the moduli space MC ,

ti =
X i

X0
, i = 1, · · · , h1,2. (3.15)

These t’s are called the flat coordinates of MC and play an important role in defining the

mirror map from M to its mirror partner. The prepotential F (X) is not globally defined

as a holomorphic section of L2 on the moduli space, because the periods XI , FI undergo

monodromy transformations. However, its third derivatives with respect to t’s,

Cijk =
∂3F

∂ti∂tj∂tk
=

∫

M

Ω
∂3Ω

∂ti∂tj∂tk
, (3.16)

define a global holomorphic section of L2 ⊗ Sym⊗3T ∗1,0MK . In physics literature, Cijk

is called the Yukawa couplings. It is equal to the genus-0 topological string amplitude

Ag=0(3, 0) evaluated for 3 elements of H1(M, T 0,1M) ( H1,2(M) corresponding to the

deformations ∂i, ∂j, ∂k of complex structure of M . Since the moduli space of a sphere with

three punctures Mg=0(3, 0) is 0-dimensional, the string amplitude ωg=0(3, 0) is equal to

the conformal field theory amplitude Ag=0(3, 0).
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The existence of the line bundle L over the moduli space and its relation to the

moduli space metric are general features of the topological string theory, not restricted to

the B-model [13]. The Q cohomology of H makes an analogue of the Hodge bundle over

the moduli space and it can be used to define the metric and compute the genus-0 string

amplitudes. For more details, see Chapter 2 of [10].

In particular, the same structure exists for the A-model, even though we must move

away from classical geometry in this case. Classically, the Kähler moduli space MK is a

cone in H1,1(M) where the metric in M is positive definite and the Yukawa coupling is a

constant tensor given by the intersection,

C(classical)
abc =

∫

M

uaubuc, (3.17)

of ua, ub, uc ∈ H1,1(M). Quantum mechanically, the metric and the Yukawa coupling are

corrected due to nontrivial holomorphic maps from Σg=0 to M . For example, the quantum

corrected Yukawa coupling is given by

Cabc =

∫

M

uaubuc +
∑

n

nanbncN0,n
e2πint

1 − e2πint
, (3.18)

where N0,n is the genus-0 Gromov-Witten invariants for holomorphic maps of degrees

n = (n1, · · · , nh1,1), and t = (t1, · · · , th1,1

) are the flat coordinates of MK . In the A-model,

t’s are simply the linear coordinates on H1,1(M). Once the Yukawa coupling is given, one

can integrate Cabc = ∂a∂b∂cF to compute the prepotantial F . The Kähler potential K is

then given by

K = −log
(

4F − 4F̄ + t̄a∂aF − ta∂̄āF̄
)

. (3.19)

Due to the quantum corrections (3.18), the Kähler metric Gab̄ = ∂a∂̄b̄K is not the one

for the cone of H1,1(M) anymore, but it acquires more elaborate structure. In particu-

lar, Kähler moduli spaces of topologically distinct Calabi-Yau manifolds can be combined

together into a single smooth moduli space [14,15].

A pair of Calabi-Yau manifolds (M, M̃) is called a mirror pair if the A-model for M

is equivalent to the B-model for M̃ . It is an isomorphism of two conformal field theories.

Thus, for example, the Hilbert space H of the A-model for M is isomorphism to the

Hilbert space H̃ of the B-model for M̃ , including how they are decomposed into irreducible

representations of the N = 2 superconformal algebra. The first example of the mirror pair

was found by B. Greene and M. R. Plesser [16]. The flat coordinate t that appear in (3.18)
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in the A-model are ratios of the periods of Ω in the B-model and the Yukawa coupling

(3.16) is also expressed in terms of the periods. Therefore, one can compute the genus-0

Gromov-Witten invariants of M by evaluating the period integrals in M̃ . This procedure

was applied by P. Candelas, X. De La Ossa, P. Green, and L. Parkes [17] to the mirror

pair of Greene and Plesser. It would be fair to say that it was their computation that

demonstrated the power of the mirror symmetry for the first time and sparked interests in

the mathematical community.

4. Topological String at Higher Genera

At genus-0, the A-model computes the number of holomorphic maps from a sphere to

the Calabi-Yau manifold M , and the B-model amplitudes are given by the periods of the

holomorphic (3, 0)-form. The mirror symmetry relates these two computations. Since the

mirror symmetry is an isomorphism of two conformal field theories, we expect that the

relation

FA−model
g (M) = FB−model

g (M̃). (4.1)

continues to hold for g ≥ 1. We note that Fg is a section of L2−2g.

4.1. Genus One

The genus-1 case is special for two reasons [12]. Firstly, we do not have to restrict to

the case of ĉ = 3 to consider the vacuum amplitude Fg. This is because, for g = 1, the

index theorem mentioned in the last section only says that η and θ have the same number

of zero modes for g = 1, and this does not prevent ωg=1(0, 0) from carrying a top form on

Mg=1 for any ĉ. Secondly, since Ω0,1(Σ) and Ω1,0(Σ) are trivial on a genus-1 surface, the

A-model (3.3) and the B-model (3.6) have the same set of fields. What happens is that

the genus-1 vacuum amplitude is a sum of two contributions, one depends on the Kähler

moduli (t, t̄) and another depends on the complex moduli (τ, τ̄) of M ,

F1 = FA−model
1 (t, t̄) + FB−model

1 (τ, τ̄). (4.2)

It is instructive to consider the case when M is an elliptic curve T 2. We use the

standard parameter τ for the complex moduli of T 2. The Kähler moduli t can be chosen

so that its imaginary part is the area of T 2. In this case, the conformal field theory

on Σ consists of a complex-valued massless free scalar field (corresponding to the map
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X : Σ → T 2) and a few massless free fermions. These fields are free since the metric on

T 2 is flat. This means that their path integrals are Gaussian with coefficients given by the

Laplacians on Σ. Thus the conformal field theory amplitude ωg=1 is given by a sum over

harmonic maps from Σ to T 2 weighted by the determinants of the Laplacians on X and

on η, θ. The determinants cancel out due to the Q invariance, and the sum over harmonic

maps and the integral of the resulting ωg=1 over the moduli space Mg=1 can be carried

out using the Poisson re-summation method. The result is

F1 = −log
(√

Imt|η(t)|2
)

− log
(√

Imτ |η(τ)|2
)

, (4.3)

where η(τ) is the Dedekind eta-function. We note that the genus-1 amplitude is expressed

as a sum of the t dependent term and the τ dependent term, as expected in (4.2). On the

other hand, the holomorphic splitting is spoiled by the holomorphic anomalies,

∂2F1

∂t∂t̄
=

1

2(Imt)2
,

∂2F1

∂τ∂τ̄
=

1

2(Imτ)2
. (4.4)

The A-model part of F1 counts the number of holomorphic maps in an appropriate

sense. To see this, it is useful to write

i

2π

∂F1

∂t |t̄→∞
=

1

24
− 1

2

∑

M

e2πi|detM|t, (4.5)

where the sum in the right-hand side is over M ∈ GL(2, Z) such that it maps τ into the

fundamental domain of Mg=1. This can be interpreted as a sum over holomorphic maps

from Σ to T 2. For a generic complex structure of Σ, there is no holomorphic map from Σ

to T 2. Thus, the counting of holomorphic maps makes sense only when we integrate over

Mg=1. The complex moduli dependent part −log(
√

Imτ |η(τ)|2) has the familiar expression

as the logarithm of the determinant of the Laplacian on T 2. It is worthwhile to note that

the torus T 2 is self-mirror. Namely, the mirror of T 2 is another T 2 with the Kähler moduli

and the complex moduli exchanged. The exchange symmetry of (4.3) under t ↔ τ is a

consequence of the mirror symmetry in this case.

For a general Calabi-Yau manifold M , the splitting (4.2) continues to hold. The

A-model amplitude FA−model
1 computes the genus-1 Gromov-Witten invariants,3

i

2π

∂FA−model
1

∂ta |t̄→∞
=

(−1)ĉ

24

∫

M

ua ∧ cĉ−1 −
∑

n

naN1,n

∑

m

me2πimnt

1 − e2πimnt

− 1

12

∑

n

naN0,n
e2πint

1 − e2πint
,

(4.6)

3 Note that some of the expressions for F1 given in [12] are missing a factor of 1/2 since we

did not properly take into account the Z2 automorphism of T 2. This has been corrected in [10].
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where cn is the n-th Chern-Class of M , and ua ∈ H1,1(M) corresponds to the deformation

of the Kähler moduli ∂/∂ta. Note the contributions from the genus-0 Gromov-Witten

invariants in the second line in the right-hand side. A mathematical explanation of these

contributions is given by S. Katz in the appendix to [12].

The B-model amplitude FB−model
1 can be expressed in terms of determinants of del-

bar operators on various bundles over M . Let V be a holomorphic vector bundle over M

and ∆(p)
V = ∂̄†

V ∂̄V on Ω0,p(M) ⊗ V . The holomorphic Ray-Sinter torsion for V is defined

by

I(V ) =
∏

p

(

det′∆(p)
V

)(−1)pp

. (4.7)

It is important to note that I(V1)/I(V2) is independent of the Kähler structure of M [18].

The genus-1 B-model amplitude is given by their combination as

FB−model
1 =

1

2

∑

q

(−1)qqlogI(Ωq,0). (4.8)

In [12], the holomorphic anomaly equation for F1 was derived using the invariance of

ωg=1 under D = d + Q. The idea is to use the invariance to relate the Q trivial operation

(such as ∂2/∂t∂t̄) on F1 to contributions from the boundary of Mg=1. The result, for a

Calabi-Yau threefold M , is given by

∂i∂̄j̄F1 =
1

2
CimnC̄j̄m̄n̄e2KGmm̄Gnn̄ −

(

χ(M)

24
− 1

)

Gij̄ , (4.9)

where χ(M) is the Euler characteristic of M . In sections 5.6 - 5.8 of [10], it was shown

that this agrees with the application of the Quillen anomaly formula,

∂∂̄logI(V ) = ∂∂̄
∑

p

(−1)pdp + 2πi

∫

M

Td(TM)Ch(V ), (4.10)

where dp is the determinant of the inner product in the kernel of ∂̄V on Ω0,p(M) ∧ V , Td

is the Todd class and Ch is the Chern class. However, the (4.9) does not assume that F1

is given in terms of the Ray-Singer torsions. In particular, it applies to the A-model also.

The mirror symmetry (4.1) for the genus-1 amplitudes relates the genus-1 Gromov-

Witten invariants in (4.6) to the Ray-Singer torsions (4.8). In [12], this was used to compute

Ng=1,n explicitly for the quintic threefold. The result was recently proven mathematically

by A. Zinger [19]. The result of [12] also predicted a certain behavior of the torsions (4.8)

at boundaries of the moduli space of the mirror of the quintic threefold. This prediction

was also proven recently by H. Fang, Z. Lu, and K. Yoshikawa [20].
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4.2. Genus greater than One

The A-model amplitude FA−model
g for g > 1 is related to the genus-g Gromov-Witten

invariants as (sections 5.10 - 5.13 of [10]),

FA−model
g|t̄→∞ =

1

2
χ(M)

∫

Mg

c3
g−1 +

∑

n

Ng,ne2πint

+ (contributions from Ng′<g,n and multicoverings),

(4.11)

where cn is the n-th Chern class of the Hodge bundle over Mg. The formula for the first

term in the right-hand side was derived in [21] as
∫

Mg

c3
g−1 =

(−1)g−1

(2π)2g−2
2ζ(2g − 2)χg, (4.12)

where χg is the Euler characteristics of Mg given by

χg =
(−1)g−1

2g(2g − 2)
Bg. (4.13)

The B-model amplitude is formally expressed as a sum of Feynman diagrams for

quantization of the Kodaira-Spencer theory (sections 5.1-5.4 of [10]). Although such an

expression is a natural generalization of the genus-one result relating F1 to the Ray-Singer

torsion – in quantum field theory, one-loop amplitudes are given by determinant of Laplace

operators – not much is known on how to carry out the computation beyond g = 1 using

Feynman diagrams.

The holomorphic anomaly equation found in [10] has turn out to be a useful tool to

compute Fg for higher genera,

∂̄īFg =
1

2
C̄īj̄k̄e2KGjj̄Gkk̄

(

DjDkFg−1 +
g−1
∑

r=1

DjFrDkFg−r

)

. (4.14)

It is the only known method to compute Fg systematically for higher genera in the case

of compact Calabi-Yau manifolds. In [10], a diagramatic method was developed to obtain

a general solution to the holomorphic anomaly equation recursively in g, to all order in

g. Recently, the method was made more efficient by S. Yamaguchi and S.-T. Yau [22].

In [23], it was shown that, using known behavior of Fg at boundaries of the Calabi-Yau

moduli space, the holomorphic anomaly equations can be integrated to obtain Fg up to

g = 51 for the quintic threefold. It is hoped that, with a better understanding of boundary

data, we can go to even higher genera. In fact, the asymptotic behavior of Fg for g → ∞
for compact Calabi-Yau manifolds is needed to clarify the relation between the topological

string theory and quantum states of black holes to be discussed later.
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5. Open/Closed String Duality

In section 2.2, we defined open string theory for a given choice of boundary conditions

{Ei : i = 1, · · · , k}. Let us denote the topological string amplitude of genus-g with ni

boundaries of type Ei (i = 1, · · · , k) by Fg;n1,...,nk
. It is useful to consider a generating

function with weights t1, · · · , tk as,

Fg(t) =
∑

n1,···,nk

Fg;n1,...,nk
tn1

1 · · · tnk

k . (5.1)

The open/closed string duality is a conjecture that there is a family M̃(t) of a Calabi-

Yau threefold such that the generating function Fg(t) defined in the above is the genus-g

vacuum amplitude for closed topological string on M̃(t). The idea of open/closed string

duality originally appeared in the paper by G. ’t Hooft [24] 24 years ago. For this reason,

ti’s are called ’t Hooft couplings.

Let us present a couple of examples for this. The vacuum amplitude of the Chern-

Simons gauge theory on S3 is given by [25]

Z(S3) =
ei π

8
N(N−1)

(k + N)
N
2

√

k + N

N

N−1
∏

s=1

[

2sin

(

sπ

k + N

)]N−s

. (5.2)

Here k is the level of the Chern-Simons theory and the gauge group is U(N). In [8], it was

observed that Z(S3) can be expressed as

Z(S3) = exp

(

−
∑

g,n

Fg,nλ
2g−2tn

)

, (5.3)

where the string coupling λ and the ’t Hooft coupling t are given in terms of the Chern-

Simons variables as

λ =
2π

k + N
, t = iλN, (5.4)

and that Fg,n is the A-model amplitude of genus g with n boundaries. The target space is

the cotangent space of S3, which is a non-compact Calabi-Yau threefold, and the boundary

condition is set so that open strings end on the base S3 of T ∗S3, or more specifically the

map X : Σg,n → T ∗S3 obeys the Neumann condition along S3 and the Dirichlet condition

transverse to S3. The boundary conditions for the fermions η, θ are determined so that

the Q symmetry is preserved. The fact that the base S3 is a Lagrangian sub-manifold of
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T ∗S3 then guarantees the Q symmetry. Physicists refer to this boundary condition as “D

branes are wrapping the base S3 of T ∗S3.”

Subsequently, Gopakumar and Vafa pointed out that the generating function of Fg,n

with the ’t Hooft coupling t can be expressed as [26]

Fg(t) =
∑

n

Fg,ntn

=

∫

Mg

c3
g−1 −

χg

(2g − 3)!

∑

n=1

n2g−3e2πint,
(5.5)

where the Hodge integral and the Euler characteristics χg in the right-hand side are given

in the last section in (4.12) and (4.13). This is exactly equal to the genus-g A-model

amplitude for the small resolution of the conifold u2 + v2 + x2 + y2 = 0, where we can

identify t as the Kähler moduli for the blown up P 1. Thus, they conjectured that the open

string theory on T ∗S3 is equivalent to the closed string theory on the resolved conifold,

where the ’t Hooft coupling t in the open string side is identified with the amount of blow

up on the closed string side.

Since the Chern-Simons gauge theory can be used to compute invariants of knots

and links in three dimensions [25], it is natural to ask if there are closed string duals

for such computations also. To compute these invariants in the topological string theory,

one needs to introduce another D brane (i.e. another Lagrangian sub-manifold of T ∗S3)

which intersects with the base S3 along the knot or link in question. One can take the

closed string dual of this set up and find that the same knot invariants can be computed

in the resolved conifold [27]. This result predicted new algebraic structure of knot and link

invariants and the existence of new integer invariants, which were proven in [28].

In this way, knot invariants can be regarded as topological string amplitudes with 2

types of D branes; one is the base S3 of T ∗S3 and another is determined by the choice of

knot. A generalization of this for 3 types of D branes gives the topological vertex, which

can be used to compute Fg for any toric Calabi-Yau manifold [29]. For more detail, see

[30].

So far we have been discussing open topological string associated to the A-model.

According to [8], an analogue of the Chern-Simons gauge theory in the B-model is the

holomorphic Chern-Simons theory. A particularly simple case is when D branes wrap P 1

in a Calabi-Yau space. Consider the singular space,

u2 + v2 + y2 + W ′(x)2 = 0 in C4, (5.6)

18



where W (x) is a degree (k + 1) polynomial xk+1 + · · ·. We can make small resolution and

blow up k P 1’s. We can then consider k different boundary conditions, one for each P 1.

It was shown in [9] that Fg;n1,···,nk
in this case is computable by the random matrix model

with a potential given by trW (M),

∫

dM exp

[

− 1

λ
trW (M)

]

= exp

[

−
∑

g,n1,···,nk

Fg;n1,···,nk
λ2g−2tn1

1 · · · tnk

k

]

, (5.7)

where
∫

dM is an integral over N × N matrices, ti = iλNi, and Ni is the number of

eigenvalues of M near the i-th critical point of W (x). The closed string dual is the

topological string on the deformed geometry,

u2 + v2 + y2 + W ′(x)2 + f(x) = 0, (u, v, x, y) ∈ C4, (5.8)

for some polynomial f(x) determined by ti’s.

It is important to note that the open/closed string duality holds for each genus sep-

arately. As such, it is a property of two-dimensional conformal field theories. In [31], a

microscopic derivation of the Gopakumar-Vafa duality was given by studying phases of

the conformal field theory. It is hoped that the AdS/CFT correspondence [32,33] can be

derived in a similar way.

6. Quantum States of Black Holes

So far we have discussed mainly mathematical aspects of topological string theory.

Indeed, in the earlier days, the topological string theory was studied as a toy model of

string theory. It is worth pointing out, however, that Witten already expressed the vision

in his pioneering paper [34] that the topological string theory may describe a new phase of

string theory where general covariance is unbroken.4 By the early 90’s, it was also realized

that the genus-0 topological string amplitude F0(M) can be used for some computation in

physical superstring compactified on M times the four-dimensional Minkowski space. The

third derivatives of F0 given by (3.16) and (3.18) are called the Yukawa couplings since

they are related to the couplings of two spinors to one scalar field in the heterotic string

compactified on a Calabi-Yau manifold [35]. See also section 6 of [11].

4 In the Minkowski space, general covariance is spontaneously broken to the Poincare

symmetry.
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In [10], the relation to topological string and physical string was generalized for all g ≥
1. It turned out that a certain series of higher derivative terms in the low energy effective

action of type IIA / IIB superstring theory compactified on M times the Minkowski space

is computed by Fg’s of the A / B-model. But, what are these terms in the low energy

effective theory good for? One answer to this question was found in black holes.

Black holes are classical solutions to the Einstein equation coupled to matter fields.

There are singularities, but they are covered by event horizons. Anything that goes inside

of the horizons will not be able to come back out. As classical solutions, black holes are

characterized by a very small set of parameters such as mass, angular momentum, and

electric and magnetic charges. In contrast, a quantum black hole is expected to carry

a large number of quantum states, roughly the exponential of the area of the horizon

measured in the unit of the Planck area ∼ 10−70m2. For example, a typical astrophysical

black hole of mass ∼ 1031kg would have about e1078

states. This expectation is based on

the following.

For classical solutions to the Einstein equation with an energy-momentum tensor satis-

fying the positive energy condition, S. Hawking proved the black hole area theorem stating

that the total area of black hole event horizons cannot decrease in any classical process

[36]. Based on an analogy between this theorem and the second law of thermodynamics,

which states that the thermodynamic entropy can only increase in time, J. Bekenstein pro-

posed that a black hole carries an entropy S proportional to the area A of its horizon [37].

The proportionality constant was undetermined at that time, however. Within a year,

S. Hawking [38] used the semi-classical quantization of spacetime geometry and matter

near the horizon and showed that a black hole of mass M emits the black body radiation

with temperature T consistent with the standard thermodynamic formula

1

T
=

∂S

∂M
, (6.1)

if the entropy S is given by

S =
1

4

A

.2P
, (6.2)

where .P ∼ 1.6 × 10−35m is the Planck length. Hawking’s computation gave an evidence

for Bekenstein’s conjecture and also fixed the proportionality constant to be (4.2P)−1. Since

the area A of the horizon scales as M2, this entropy formula predicts that a black hole of

mass M should have quantum states as many as ∼ e
(

M
MP

)

2

, where the Planck mass MP ∼
10−8kg. The number e1078

quoted in the previous paragraph is obtained by estimating

20



eS for astrophysical black holes. The proposed entropy formula (6.2) can be compared

to the definition of the thermodynamic entropy by R. Clausius in the 19th century. The

Bekenstein-Hawking formula (6.2) was proposed based on macroscopic properties of black

holes, and it calls for a microscopic explanation just as Boltzmann recognized that the

thermodynamic entropy is the logarithm of the number of states and explained much of

classical thermodynamics based on the microscopic point of view. Doing the same for the

black hole entropy was posed as a challenge to any theory that claims to unify quantum

mechanics and general relativity consistently.

String theory has partially met this challenge. There is a class of black holes in

superstring theory called BPS black holes. These solutions are invariant under non-trivial

subalgebras of supersymmetry, and their Hawking temperatures are zero. These black

holes are therefore stable, and their quantum states can be reliably counted. Thanks to

the D brane construction by Polchinski [39], some of them can be realized in terms of D

branes in superstring theory. This description is useful since low energy quantum states

of these black holes can be described using supersymmetric gauge theories on D branes.

A. Strominger and C. Vafa used this technique to count the number of quantum states

of BPS black holes and found a perfect agreement with the prediction of Bekenstein and

Hawking in the limit when the masses of black holes are asymptotically large [40]. One

has to take this limit since Hawking’s computation in [38] is reliable only in this limit.

As the black hole becomes small, the curvature near the horizon becomes strong and the

semi-classical approximation breaks down.

To deepen our understanding of the black hole microstates, we need to know what

happens for small black holes. In fact, the counting of microstates typically becomes

simpler for small black holes since the gauge theory on D branes becomes weakly coupled.

On the other hand, the gravity side of the story becomes more complicated. The strong

curvature at the horizon means that we must take into account corrections to Einstein’s

theory due to stringy effects and quantum gravity effects. Remarkably, topological string

amplitudes Fg compute exactly such corrections for small BPS black holes. Inspired by

the earlier work [41], the following conjecture was formulated in [42].

For definiteness, let us consider type IIB superstring theory compactified on a Calabi-

Yau manifold. For type IIA, we take the mirror of the story below. Let us choose the

symplectic basis of homology 3-cycles, {αI , βI}I=0,1,···,h1,2 on M . In type IIB string, there

are D3 branes – it means that we can consider boundary conditions such that open strings

end on a (3 + 1) dimensional submanifold in the four-dimensional Minkowski space times
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M . Submanifols are chosen to be special Lagrangian submanifolds of M , as required by

supersymmetry [43,44], times a time-like direction in the Minkowski space. Seen in four

dimensions, it is a particle moving in the time-like direction. We can consider a bound

state of several D branes. Take a bound state of D3 branes whose total homology class

is given by
∑

I pIαI + qIβI for some integers (pI , qI). Seen in four dimensions, the mass

of the resulting particle is proportional to the total volume of the special Lagrangian

submanifolds. Clearly, the mass of the particle becomes large as (pI , qI) increases. As the

mass becomes large, the particle starts influencing the spacetime around it. In the limit

of large mass, the Schwarzschild radius becomes longer than the Compton wave-length,

and the geometry is described by BPS black hole solutions of the type discussed in the

previous paragraph. What we want to compute is the number of quantum states of D3

branes for arbitrary values of (pI , qI). Let us call the number σ(p, q).

To state the conjecture on σ(p, q), we need to set up some notation for topological

string amplitudes Fg. In the B-model, Fg is a section of L2−2g over the moduli space

of complex structure of M . The complex structure can be parametrized by the periods

XI =
∫

αI
Ω of the holomorphic (3, 0)-form. Since L is the sub-bundle of the Hodge bundle

associated to scaling of Ω, we can regard Fg as a homogeneous function of XI ’s of weight

(2 − 2g).

The conjecture of [42] is that

∑

qI

σ(p, q)e−πφIqI =
∣

∣

∣
exp

(

− F (X)
)

∣

∣

∣

2
, (6.3)

where F (X) is the sum of the topological string amplitudes to all genera,

F (X) =
∞
∑

g=0

Fg(X), (6.4)

and the periods XI are fixed as

XI = pI + iφI . (6.5)

Since Fg(X) is a homogeneous function of X of weight (2−2g), we should think of F (X) =
∑∞

g=0 Fg(X) in (6.4) as an asymptotic expansion for large X . If we neglect the higher

genus terms Fg≥1(X) in (6.4) and simply use the leading term F0(X) for F (X) in (6.3),

we reproduce the Bekenstein-Hawking formula (6.2) by S = logσ(p, q) evaluated for large

(p, q). Thus, the conjecture is that the subleading terms (6.4) – terms with g ≥ 1 –

represent quantum gravity corrections to the entropy formula.
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The gauge theory computation of σ(p, q) takes a familiar form in type IIA superstring

theory. In this case, instead of D3 branes wrapping 3 cycles in M , we should consider D0,

D2, D4 and D6 branes on holomorphic cycles in M . In particular, D0 branes are points and

D6 branes wraps the entire Calabi-Yau manifold. By the homological mirror symmetry of

Kontsevich, pI count the numbers of D4 and D6 branes, and qI count the numbers of D0

and D2 branes. If there are no D6 branes, the gauge theory on D4 branes is the N = 4

supersymmetric gauge theory topologically twisted and the number of quantum states is

computed by the Witten index as in the work by Vafa and Witten [45]. It is the Euler

characteristics of the instanton moduli space. The numbers of D0 and D2 branes are the

second and the first Chern classes of the gauge bundles on D4 branes. The left-hand side

of (6.3) then becomes the generating function of the Euler characteristics of the instanton

moduli space on D4 branes of the type studied by H. Nakajima [46]. With D6 branes, one

has to think about a gauge theory in six dimensions.

Therefore, in mathematical terms, the conjectured formula (6.3) relates the Gromov-

Witten invariants of M to the Euler characteristics of the moduli space of instantons

on four manifolds embedded in M , in the case of the A-model. For some non-compact

Calabi-Yau manifolds, both sides of the formula can be evaluated explicitly, resulting in

non-trivial checks of the conjecture [47,48]. Though the formula (6.3) has not been proven

even to the standard of physicists, there have been several promising attempts and they

have deepened our understanding of topological string, black holes microstates, and the

AdS/CFT correspondence [49,50,51,52,53,54,55]. To understand (6.3) better, it appears

useful to develop a method to estimate of Fg for large g for compact Calabi-Yau manifolds.

7. Concluding Remarks

There are many aspects of the topological string theory I could not cover in this set

of lectures. In particular, the topological vertex [29] to compute Fg for toric Calabi-Yau

manifolds is only briefly mentioned in section 5. Among other important discoveries I

could not mention in these lectures are the relations of the topological string theory to

dimer models and crystal melting [56], to the Donaldson-Thomas theory [57,58,59], to the

Seiberg-Witten theory [60], and to BPS counting in M theory [61,62]. More recently, the

non-commutative version of the Donaldson-Thomas theory has been formulated in [63,64]

and its relation to the crystal melting model and the black hole microstate counting have

been pointed out in [65] generalizing the result of [56].
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Though the topological string theory has rich mathematical structure and a broad

range of applications to problems in physics, one should be reminded that it is still a

simplified version of superstring theory. There is a vast terra incognita in superstring

theory, and we need new mathematics to guide us through this territory. In this connection,

it is also humbling to note that, after 80 years since the conception of quantum field

theory by Heisenberg and Pauli [66], there has been no proof that it exists as a consistent

mathematical theory, except for some cases in lower dimensions. In fact, the existence proof

of quantum version of the Yang-Mills theory in four dimensions with a demonstration of

its confinement property is posed as one of the Seven Millennium Problems by the Clay

Mathematics Institute.

After the discovery of D brane construction by Polchinski and the AdS/CFT corre-

spondence by Maldacena, many quantum field theories have been found to be dual (i.e.,

equivalent) to string theory in various geometries. This duality between quantum field

theory and string theory has been used to evaluate non-perturbative effects in quantum

field theories that are not accessible in any other method. At the same time, many fun-

damental issues in string theory have been translated into quantum field theory questions

and this has shed important lights on mysteries of quantum gravity such as the black hole

information paradox of Hawking. Because of this development, research in quantum field

theories has become increasingly intertwined with string theory research. The progress in

the past 10 years suggests that an ultimate solution to the Yang-Mills Problem could be

built on a foundation where quantum field theories and string theory are extended and

transformed into a single mathematical framework.
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