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1 Introduction: Why String Theory?

The so-called Standard Model of Particle Physics is the most successful scientific theory
of Nature in the sense that no other theory has such a high level of accuracy over such
a complete range of physical phenomena using such a modest number of assumptions
and parameters. It is unreasonably good and was never intended to be so successful.
Since its formulation around 1970 there has not been a single experimental result that
has produced even the slightest disagreement. Nothing, despite an enormous amount of
effort. But there are skeletons in the closet. Let me mention just three.

The first is the following: Where does the Standard Model come from? For example it
has quite a few parameters which are only fixed by experimental observation. What fixes
these? It postulates a certain spectrum of fundamental particle states but why these? In
particular these particle states form three families, each of which is a copy of the others,
differing only in their masses. Furthermore only the lightest family seems to have much
to do with life in the universe as we know it, so why the repetition? It is somewhat
analogous to Mendelev’s periodic table of the elements. There is clearly a discernible
structure but this wasn’t understood until the discovery of quantum mechanics. We
are looking for the underlying principle that gives the somewhat bizarre and apparently
ad hoc structure of the Standard Model. Moreover the Standard Model also doesn’t
contain Dark Matter that constitutes most of the ‘stuff’ in the observable universe.

The second problem is that, for all its strengths, the Standard Model does not include
gravity. For that we must use General Relativity which is a classical theory and as such
is incompatible with the rules of quantum mechanics. Observationally this is not a
problem since the effect of gravity, at the energy scales which we probe, is smaller by
a factor of 10−40 than the effects of the subnuclear forces which the Standard Model
describes. You can experimentally test this assertion by lifting up a piece of paper with
your little finger. You will see that the electromagnetic forces at work in your little
finger can easily overcome the gravitational force of the entire earth which acts to pull
the paper to the floor.

However this is clearly a problem theoretically. We can’t claim to understand the
universe physically until we can provide one theory which consistently describes gravity
and the subnuclear forces. If we do try to include gravity into QFT then we encounter
problems. A serious one is that the result is non-renormalizable, apparently producing
an infinite series of divergences which must be subtracted by inventing an infinite series
of new interactions, thereby removing any predictive power. Thus we cannot use the
methods of QFT as a fundamental principle for gravity.

The third problem I want to mention is more technical. Quantum field theories
generically only make mathematical sense if they are viewed as a low energy theory.
Due to the effects of renormalization the Standard Model cannot be valid up to all
energy scales, even if gravity was not a problem. Mathematically we know that there
must be something else which will manifest itself at some higher energy scale. All we
can say is that such new physics must arise before we reach the quantum gravity scale,
which is some 1017 orders of magnitude above the energy scales that we have tested to

3



date. To the physicists who developed the Standard Model the surprise is that we have
not already seen such new physics many years ago. And we are all hoping to see it soon
at the LHC.

With these comments in mind this course will introduce string theory, which, for good
or bad, has become the dominant, and arguably only, framework for a complete theory
of all known physical phenomena. As such it is in some sense a course to introduce the
modern view of particle physics at its most fundamental level. Whether or not String
Theory is ultimately relevant to our physical universe is unknown, and indeed may never
be known. However it has provided many deep and powerful ideas. Certainly it has had
a profound effect upon pure mathematics. But an important feature of String Theory
is that it naturally includes gravitational and subnuclear-type forces consistently in a
manner consistent with quantum mechanics and relativity (as far as anyone knows).
Thus it seems fair to say that there is a mathematical framework which is capable of
describing all of the physics that we know to be true. This is no small achievement.

However it is also fair to say that no one actually knows what String Theory really is.
In any event this course can only attempt to be a modest introduction that is aimed at
students with no previous knowledge of String Theory. There will be much that we will
not have time to discuss: most notably the Veneziano amplitude, anomaly cancellation
and compactification. The reader will undoubtably benefit from the other courses in
the School, in particular the notes of Ralph Blumenhagen on D-branes.

These notes are a variation on a course “String Theory and Branes (7ccmms34)”
that I have given at King’s College London. You can find the notes here:

http://www.mth.kcl.ac.uk/courses/cmms34.html

We will first discuss the Bosonic string in some detail. Although this theory is unphysical
in several ways (it has a tachyon and no Fermions) it is simpler to study than the
superstring but has all the main ideas built-in. We then add worldsheet Fermions and
supersymmetry to obtain the superstring theories that are used in current research but
our discussion will be relatively brief.

2 Classical and Quantum Dynamics of Point Parti-

cles

2.1 Classical Action

We want to describe a single particle moving in spacetime. For now we simply consider
flat D-dimensional Minkowski space

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + ...+ (dxD−1)2 (2.1)

A particle has no spatial extent but it does trace out a curve - its worldline - in spacetime.
Furthermore in the absence of external forces this will be a straight line (geodesic if you
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know GR). In other words the equation of motion should be that the length of the
worldline is extremized. Thus we take

Spp = −m
∫
ds

= −m
∫ √

−ηµνẊµẊνdτ

(2.2)

where τ parameterizes the points along the worldline and Xµ(τ) gives the location of the
particle in spacetime, i.e. the embedding coordinates of the worldline into spacetime.

Let us note some features of this action. Firstly it is manifestly invariant under
spacetime Lorentz transformations Xµ → Λµ

νX
ν where ΛTηΛ = η. Secondly it is

reparameterization invariant under τ → τ ′(τ) for any invertible change of worldline
coordinate

dτ =
dτ

dτ ′
dτ ′ , Ẋµ =

dXµ

dτ
=
dτ ′

dτ

dXµ

dτ ′
(2.3)

thus

Spp = −m
∫ √

−ηµν
dXµ

dτ

dXν

dτ
dτ

= −m
∫ √√√√−ηµν

(
dτ ′

dτ

)2
dXµ

dτ ′
dXν

dτ ′
dτ

dτ ′
dτ ′

= −m
∫ √

−ηµν
dXµ

dτ ′
dXν

dτ ′
dτ ′

(2.4)

Thirdly we can see why the m appears in front and with a minus sign by looking at the
non-relativistic limit. In this case we choose a gauge for the worldline reparameterization
invariance such that τ = X0 i.e. worldline ’time’ is the same as spacetime ’time’. This
is known as static gauge. It is a gauge choice since, as we have seen, we are free to take
any parameterization we like. The nonrelativistic limit corresponds to assuming that
Ẋ i << 1. In this case we can expand

Spp = −m
∫ √

1− δijẊ iẊjdτ =
∫
−m+

1

2
mδijẊ

iẊjdτ + . . . (2.5)

where the ellipses denotes terms with higher powers of the velocities Ẋ i. The second
term is just the familiar kinetic energy 1

2
mv2. The first term is simply a constant and

doesn’t affect the equations of motion. However it can be interpreted as a constant
potential energy equal to the rest mass of the particle. Thus we see that the m and
minus signs are correct.

Moving on let us consider the equations of motion and conservation laws that fol-
low from this action. The equations of motion follow from the usual Euler-Lagrange
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equations applied to Spp:

d

dτ

 Ẋν√
−ηλρẊλẊρ

 = 0 (2.6)

These equations can be understood as conservations laws since the Lagrangian is invari-
ant under constant shifts Xµ → Xµ + bµ. The associated charge is

pµ =
mẊµ√

−ηλρẊλẊρ
(2.7)

so that indeed the equation of motion is just ṗµ = 0. Note that I have called this a charge
and not a current. In this case it doesn’t matter because the Lagrangian theory we are
talking about, the worldline theory of the point particle, is in zero spatial dimensions.
So I could just as well called pµ a conserved current with the conserved charge being
obtained by integrating the temporal component of pµ over space. Here there is no space
pµ only has temporal components.

Warning: We are thinking in terms of the worldline theory where the index µ labels
the different scalar fields Xµ, it does not label the coordinates of the worldline. In par-
ticular p0 is not the temporal component of pµ from the worldline point of view. This
confusion between worldvolume coordinates and spacetime coordinates arises through-
out string theory

If we go to static gauge again, where τ = X0 and write vi = Ẋ i then we have the
equations of motion

d

dτ

vi

√
1− v2

= 0 (2.8)

and conserved charge

pi = m
vi

√
1− v2

(2.9)

which is simply the spatial momentum. These are the standard relativistic expressions.
We can solve the equation of motion in terms of the constant of motion pi by writing

vi

√
1− v2

= pi/m ⇐⇒ p2/m2 =
v2

1− v2
⇐⇒ v2 =

p2

p2 +m2
(2.10)

hence

X i(τ) = X i(0) +
piτ√
p2 +m2

(2.11)

and we see that vi is constant with v2 < 1.
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2.2 Electromagnetic field

Next we can consider a particle interacting with an external electromagnetic field. An
electromagnetic field is described by a vector potential Aµ and its field strength Fµν =
∂µAν − ∂νAµ. The natural action of a point particle of mass m and charge q in the
presence of such an electromagnetic field is

Spp = −m
∫ √

−ηµνẊµẊνdτ + q
∫
Aµ(X)Ẋµdτ (2.12)

For those who know differential geometry the vector potential is a connection one-form
on spacetime and AµẊ

µdτ is simply the pull-back of Aµ to the worldline of the particle.
The equation of motion is now

−m d

dτ

 ηµνẊ
ν√

−ηλρẊλẊρ

− q
d

dτ
Aµ + q∂µAνẊ

ν = 0 (2.13)

which we rewrite as

m
d

dτ

 ηµνẊ
ν√

−ηλρẊλẊρ

 = qFµνẊ
ν (2.14)

To be more concrete we could choose static gauge again and we find

m
d

dτ

(
vi

√
1− v2

)
= qFi0 + qFijv

j (2.15)

Here we see the Lorentz force magnetic law arising as it should from the second term
on the right hand side. The first term on the right hand side shows that an electric field
provides a driving force.

At this point we should pause to mention a subtlety. In addition to (2.15) there is also
the equation of motion for X0 = τ . However the reparameterization gauge symmetry
implies that this equation is automatically satisfied. In particular the X0 equation of
motion is

−m d

dτ

(
1√

1− v2

)
= qF0iv

i (2.16)

Problem: Show that if (2.15) is satisfied then so is (2.16)

Problem: Show that, in static gauge X0 = τ , the Hamiltonian for a charged particle is

H =
√
m2 + (pi − qAi)(pi − qAi)− qA0 (2.17)
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2.3 Quantization

Next we’d like to quantize the point particle. This is made difficult by the highly non-
linear form of the action. To this end we will consider a new action which is classically
equivalent to the old one. In particular consider

SHT = −1

2

∫
dτe

(
− 1

e2
ẊµẊνηµν +m2

)
(2.18)

Here we have introduced a new field e(τ) which is non-dynamical, i.e. has no kinetic
term. This action is now just quadratic in the fields Xµ. The point of it is that it
reproduces the same equations of motion as before. To see this consider the e equation
of motion:

1

e2
ẊµẊνηµν +m2 = 0 (2.19)

we can solve this to find e = m−1
√
−ẊµẊνηµν . We now compute the Xµ equation of

motion

0 =
d

dτ

(
1

e
Ẋµ

)

= m
d

dτ

 Ẋµ√
−ẊλẊρηλρ

 (2.20)

This is exactly what we want. Thus we conclude that SHT is classically equivalent to
Spp.

One way to think about this action is that we have introduced a worldline metric
γττ = −e2 and its inverse γττ = −1/e2 so that infinitesimal distances along the worldline
have length

ds2 = γττdτ
2 (2.21)

Note that previously we never said that dτ represented the physical length of a piece of
worldline, just that τ labeled points along the worldline.

There is another advantage to this form of the action; we can smoothly set m2 = 0
and describe massless particles, which was impossible with the original form of the
action.

Now the action is quadratic in the fields Xµ we calculate the Hamiltonian and
quantize more easily. The first step here is to obtain the momentum conjugate to each
of the Xµ

pµ =
∂L

∂Ẋµ

=
1

e
ηµνẊ

ν

(2.22)
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There is no conjugate momentum to e, it acts as a constraint and we will deal with it
later. The Hamiltonian is

H = pµẊ
µ − L

=
e

2

(
ηµνp

µpν +m2
)

(2.23)

To quantize this system we consider wavefunctions Ψ(X, τ) and promote Xµ and pµ

to the operators

X̂µΨ = XµΨ p̂µΨ = −i ∂Ψ

∂Xµ
(2.24)

We then arrive at the Schrödinger equation

i
∂Ψ

∂τ
=
e

2

(
−ηµν ∂2Ψ

∂Xµ∂Xν
−m2Ψ

)
(2.25)

Lastly we must deal with e which we saw has no conjugate momentum. Classically its
equation of motion imposes the constraint

pµpµ +m2 = 0 (2.26)

which is the mass-shell condition for the particle. Quantum mechanically we realize
this by restricting our physical wavefunctions to those that satisfy the corresponding
constraint

−ηµν ∂2Ψ

∂Xµ∂Xν
+m2Ψ = 0 (2.27)

However this is just the condition that ĤΨ = 0 so that the wavefunctions are τ indepen-
dent. If you trace back the origin of this time-independence it arises as a consequence
of the reparameterization invariance of the worldline theory. It simply states that wave-
functions must also be reparameterization invariant, i.e. they can’t depend on τ . This
is deep issue in quantum gravity. In effect it says that there is no such thing as time in
the quantum theory.

This equation should be familiar if you have learnt quantum field theory. In partic-
ular if we consider a free scalar field Ψ in D-dimensional spacetime the action is

S = −
∫
dDx

(
1

2
∂µΨ∗∂µΨ +

1

2
m2Ψ∗Ψ

)
(2.28)

and the corresponding equation of motion is

∂2Ψ−m2Ψ = 0 (2.29)

which is the same as our Schrodinger equation (when restricted to the physical Hilbert
space).

Thus we see that there is a natural identification of a free scalar field with a quantum
point particle. In particular the quantum states of the point particle are in a one-to-
one correspondence with the classical solutions of the free spacetime effective action.
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However one important difference should be stressed. The quantum point particle gave
a Schrodinger equation which could be identified with the classical equation of motion
for the scalar field. In quantum field theory one performs a second quantization whereby
particles are allowed to be created and destroyed. This is beyond the quantization of the
point particle that we considered since by default we studied the effective action on the
worldline of a single particle: it would have made no sense to create or destroy particles.
Thus the second quantized spacetime action provides a more complete physical theory.

Here we also can see that the quantum description of a point particle in one dimen-
sion leads to a classical spacetime effective action in D-dimensions. This is an important
concept in String theory where the quantum dynamics of the two-dimensional worldvol-
ume theory, with interactions included, leads to interesting and non-trivial spacetime
effective actions.

Problem: Find the Schödinger equation, constraint and effective action for a quantized
particle in the background of a classical electromagnetic field using the action

Spp = −
∫ 1

2
e
(
− 1

e2
ẊµẊνηµν +m2

)
− AµẊ

µ (2.30)

3 Classical and Quantum Dynamics of Strings

3.1 Classical Action

Having studied point particles from their worldline perspective we now turn to our main
subject: strings. Our starting point will be the action the worldvolume of a string, which
is two-dimensional. The natural starting point is to consider the action

Sstring =
1

2πα′

∫
d2σ

√
− det(∂αXµ∂βXνηµν) (3.1)

which is simply the area of the two-dimensional worldvolume that the string sweeps out.
Here σα, α = 0, 1 labels the spatial and temporal coordinates of the string: τ, σ. Here√
α′ is a length scale that determines the size of the string.
Again we don’t want to work directly with such a highly non-linear action. We saw

above that we could change this by coupling to an auxiliary worldvolume metric γαβ.

Problem: Show that by solving the equation of motion for the metric γαβ on a d-
dimensional worldsheet the action

SHT = −1

2

∫
ddσ

√
−γ

(
γαβ∂αX

µ∂βX
νηµν +m2(d− 2)

)
(3.2)

one finds the action

SNG = m2−d
∫
ddσ

√
− det (∂αXµ∂βXνηµν) (3.3)
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for the remaining fields Xµ, i.e. calculate and solve the γαβ equation of motion and then
substitute the solution back into SHT to obtain SNG. Note that the action SHT is often
referred to as the Howe-Tucker form for the action whereas SNG is the Nambu-Goto
form. (Hint: You will need to use the fact that δ

√
−γ/δγαβ = −1

2
γαβ

√
−γ). If you have

not yet learnt much about metrics just consider the case of d = 1 where γαβ just has a
single component γττ .

So we might instead start with

Sstring = − 1

4πα′

∫
d2σ

√
−γγαβ∂αX

µ∂βX
νηµν (3.4)

where we have taken d = 2 in (3.2).

Problem: What transformation law must γαβ have to ensure that Sstring is reparame-
terization invariant? (Hint: Use the fact that

∂σ′γ

∂σα

∂σβ

∂σ′γ
= δβ

α (3.5)

why?)

However this case is very special. If we evaluate the γαβ equation of motion we find

Tαβ = ∂αX
µ∂βX

νηµν −
1

2
γαβγ

γδ∂γX
µ∂δX

νηµν = 0 (3.6)

Once again we see that γαβ = b∂αX
µ∂βX

νηµν for some b. However in this case nothing
fixes b, it is arbitrary. This occurs because there is an addition symmetry of the action
that is unique to two-dimensions: it is conformally invariant. That means that under a
worldvolume conformal transformation

γαβ → e2ϕγαβ (3.7)

(here ϕ is any function of the worldvolume coordinates) the action is invariant.
There are other features that are unique to two-dimensions. The first is that, up

to a reparameterization, we can always choose the metric γαβ = e2ρηαβ. To see this we
note that under a reparameterization we have

γ′αβ =
∂σγ

∂σ′α
∂σδ

∂σ′β
γγδ (3.8)

Thus we simply choose our new coordinates to fix γ′01 = 0 and γ′00 = −γ′11. This requires
that

∂σγ

∂σ′0
∂σδ

∂σ′1
γγδ = 0 (3.9)

and
∂σγ

∂σ′1
∂σδ

∂σ′1
γγδ +

∂σγ

∂σ′0
∂σδ

∂σ′0
γγδ = 0 (3.10)
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These are two (complicated) differential equation for two functions σ0(σ′0, σ′1) and
σ1(σ′0, σ′1). Hence there will be a solution (at least locally).

The second feature is that in two-dimensions the Einstein equation

Rαβ −
1

2
γαβR = 0 (3.11)

vanishes identically. The reason for this is that in two-dimensions there is only one
independent component for the Riemann tensor: R0101 = −R0110 = −R1001 = R1010.
Therefore R00 = R0101γ

11, R11 = R0101γ
00 and R01 = −R0101γ

01. Thus we see that

R = 2R0101(γ
00γ11 − γ01γ01)

= 2R0101 det(γ−1)

=
2

det(γ)
R0101 (3.12)

Now we note that (
γ00 γ01

γ01 γ11

)
=

1

det(γ)

(
γ11 −γ01

−γ01 γ00

)
(3.13)

and the result follows.
Thus Einstein’s equation

Rαβ −
1

2
γαβR = Tαβ (3.14)

will imply that Tαβ = 0. Hence even if we include two-dimensional gravity the γαβ

equation of motion imposes the constraint that the energy-momentum tensor vanishes

Tαβ =
∂L
∂γαβ

= 0 (3.15)

Thus we can use worldsheet diffeomorphisms to set γαβ = e2ρηαβ and then use
worldsheet conformal invariance to set ρ = 0, i.e. γαβ = ηαβ. This means that the
worldvolume metric γαβ actually decouples from the fields Xµ. This conformal invari-
ance of two-dimensional gravity coupled to the embedding coordinates (viewed as scalar
fields) will be our fundamental principle. It allows us to simply set γαβ = ηαβ. Thus to
consider strings propagating in flat spacetime we use the action (known as the Polyakov
action)

Sstring = − 1

4πα′

∫
d2σηαβ∂αX

µ∂βX
νηµν (3.16)

subject to the constraint (3.15) which becomes

∂αX
µ∂βX

νηµν −
1

2
ηαβη

γδ∂γX
µ∂δX

νηµν = 0 (3.17)

12



3.2 Spacetime Symmetries and Conserved Charges

We should also pause to outline how the spacetime symmetries lead to conserved currents
and hence conserved charges in the worldsheet theory.

First we summarize Noether’s theorem. Suppose that a Lagrangian L(ΦA, ∂αΦA),
where we denoted the fields by ΦA, has a symmetry: L(ΦA) = L(ΦA + δΦA). This
implies that

∂L
∂ΦA

δΦA +
∂L

∂(∂αΦA)
δ∂αΦA = 0 (3.18)

This allows us to construct a current:

Jα =
∂L

∂(∂αΦA)
δΦA (3.19)

which is conserved

∂αJ
α = ∂α

(
∂L

∂(∂αΦA)

)
δΦA +

∂L
∂(∂αΦA)

∂αδΦA

= ∂α

(
∂L

∂(∂αΦA)

)
δΦA −

∂L
∂ΦA

δΦA

= 0

(3.20)

by the equation of motion. This means that the integral over space of J0 is a constant
defines a charge

Q =
∫

space
σJ0 (3.21)

which is conserved

dQ

dt
=

∫
space

∂0J
0

= −
∫

space
∂iJ

i

= 0

Let us now consider the action

Sstring = − 1

4πα′

∫
d2σηαβ∂αX

µ∂βX
νηµν (3.22)

This has the spacetime Poincare symmetries: translations δXµ = aµ and Lorentz trans-
formations δXµ = Λµ

νX
ν . In the first case the conserved current is

Pα
aµ = − 1

2πα′
∂αXµa

µ (3.23)
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The associated conserved charge is just the total momentum along the direction aµ and
in particular there are D independent choices

pµ =
1

2πα′

∫
dσẊµ (3.24)

We can also consider the spacetime Lorentz transformations which lead to the conserved
currents

Jα
Λ = − 1

2πα′
∂αXµΛµ

νX
ν (3.25)

The independent conserved charges are therefore given by (hereQΛ =
∫
dσJ0

Λ = Mµ
νΛ

ν
µ)

Mµ
ν =

1

4πα′

∫
dσẊµXν −XµẊν (3.26)

The Poisson brackets of these worldsheet charges will, at least at the classical level,
satisfy the algebra Poincare algebra. In the quantum theory they are lifted to operators
that commute with the Hamiltonian.

3.3 Quantization

Next we wish to quantize this action. Unlike the point particle this action is a field theory
in (1+1)-dimensions. As such we must use the quantization techniques of quantum field
theory rather than simply constructing a Schrodinger equation. There are several ways
to do this. The most modern way is the path integral formulation and Fadeev-Popov
ghosts. However this requires some techniques that are possibily unfamiliar. So here we
will use the method of canonical quantization.

Canonical quantization is essentially the Heisenberg picture of quantum mechanics
where the fields Xµ and their conjugate momenta Pµ are promoted to operators which
satisfy the equal time commutation relations

[X̂µ(τ, σ), P̂ν(τ, σ
′)] = iδ(σ − σ′)δµ

ν

[X̂µ(τ, σ), X̂ν(τ, σ′)] = 0

[P̂µ(τ, σ), P̂ν(τ, σ
′)] = 0

(3.27)

as well as the Heisenberg equation

dX̂µ

dτ
= i[Ĥ, X̂µ]

dP̂µ

dτ
= i[Ĥ, P̂µ] (3.28)

In the case at hand we have

L̂ =
1

4πα′

∫
dσηµν

˙̂
X

µ ˙̂
X

ν

− ηµνX̂
′µX̂ ′ν (3.29)

hence

P̂µ =
1

2πα′
ηµν

˙̂
X

ν

(3.30)
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and

Ĥ =
∫
dσP̂µ

˙̂
X

µ

− L̂

=
∫
dσ2πα′ηµνP̂µP̂ν −

∫
dσ

1

4πα′
(2πα′)2ηµνP̂µP̂ν +

1

4πα′
ηµνX̂

′µX̂ ′ν

=
∫
dσπα′ηµνP̂µP̂ν +

1

4πα′
ηµνX̂

′µX̂ ′ν

(3.31)

We can now calculate

˙̂
X

µ

(σ) = i[Ĥ, X̂µ(σ)]

= πα′i
∫
dσ′ηλν [P̂λ(σ

′)P̂ν(σ
′), X̂µ(σ)]

= 2πα′i
∫
dσ′ηλνP̂λ(σ

′)[P̂ν(σ
′), X̂µ(σ)]

= 2πα′
∫
dσ′ηλνP̂λ(σ

′)δµ
ν δ(σ − σ′)

= 2πα′ηµνP̂ν(σ)

(3.32)

which we already knew. But also we can now calculate

˙̂
P µ(σ) = i[Ĥ, P̂µ(σ)]

=
i

4πα′

∫
dσ′ηλν [X̂

′λ(σ′)X̂ ′ν(σ′), P̂µ(σ)]

=
i

2πα′

∫
dσ′ηλνX̂

′λ(σ′)[X̂ ′ν(σ′), P̂µ(σ)]

=
i

2πα′

∫
dσ′ηλνX̂

′λ(σ′)
∂

∂σ′
[X̂ν(σ′), P̂µ(σ)]

= − i

2πα′

∫
dσ′ηλνX̂

′′λ(σ′)[X̂ν(σ′), P̂µ(σ)]

=
1

2πα′

∫
dσ′ηλνX̂

′′λ(σ′)δν
µδ(σ − σ′)

=
1

2πα′
ηµνX̂

′′ν(σ)

(3.33)

or equivalently

− ¨̂
X

µ

+ X̂ ′′µ = 0 (3.34)

Of course this is just the classical equation of motion reinterpreted in the quantum
theory as an operator equation. In two-dimensions the solution to this is simply that

X̂µ = X̂µ
L(τ + σ) + X̂µ

R(τ − σ) (3.35)
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i.e. we can split X̂µ into a left and right moving part.
To proceed we expand the string in a Fourier series

X̂µ = xµ + α′pµτ +

√
α′

2
i
∑
n6=0

(
aµ

n

n
e−in(τ+σ) +

ãµ
n

n
e−in(τ−σ)

)
(3.36)

The various factors of n and α′ will turn out to be useful later on. We have also included
linear terms since X̂µ need not be periodic (more on this later). Or if you prefer

X̂µ
L = xµ

L +
1

2
α′pµ(τ + σ) +

√
α′

2
i
∑
n6=0

aµ
n

n
e−in(τ+σ)

X̂µ
R = xµ

R +
1

2
α′pµ(τ − σ) +

√
α′

2
i
∑
n6=0

ãµ
n

n
e−in(τ−σ)

(3.37)

Note that we have dropped the hat on the operators aµ and ãµ since they will appear
frequently. But don’t forget that they are operators! Note also that we haven’t yet
said what n is, e.g. whether or not it is an integer, we will be more specific later.
The aµ

n and ãµ
n have the interpretation as left and right moving oscillators. Just as in

quantum mechanics and quantum field theory these will be related to particle creation
and annihilation operators.

Since Xµ is an observable we require that it is Hermitian in the quantum theory.
This in turn implies that

(aµ
n)† = aµ

−n , (ãµ
n)† = ãµ

−n (3.38)

and (xµ)† = xµ, (pµ)† = pµ. In this basis

P̂ µ =
1

2πα′
˙̂
X

µ

=
1

2πα′

α′pµ +

√
α′

2

∑
−n6=0

aµ
ne
−in(τ+σ) +

√
α′

2

∑
n6=0

ãµ
ne
−in(τ−σ)

 (3.39)

We can work out the commutator. First we take xµ = pµ = 0

[X̂µ(τ, σ), P̂ν(τ, σ
′)] =

i

4π

∑
n

∑
m

1

n
e−i(n+m)τe−i(nσ+mσ′)[aµ

n, a
ν
m]

+
i

4π

∑
n

∑
m

1

n
e−i(n+m)τei(nσ+mσ′)[ãµ

n, ã
ν
m]

+
i

4π

∑
n

∑
m

1

n
e−i(n+m)τei(nσ−mσ′)[ãµ

n, a
ν
m]

+
i

4π

∑
n

∑
m

1

n
e−i(n+m)τe−i(nσ−mσ′)[aµ

n, ã
ν
m]

(3.40)

16



In order for the τ -dependent terms to cancel we see that we need the commutators to
vanish if n 6= −m. The sum now reduces to

[X̂µ(τ, σ), P̂ ν(τ, σ′)] =
i

4π

∑
n

1

n
e−in(σ−σ′)[aµ

n, a
ν
−n]

+
i

4π

∑
n

1

n
ein(σ−σ′)[ãµ

n, ã
ν
−n]

+
i

4π

∑
n

1

n
ein(σ+σ′)[ãµ

n, a
ν
−n]

+
i

4π

∑
n

1

n
e−in(σ+σ′)[aµ

n, ã
ν
−n]

(3.41)

Next translational invariance implies that the σ + σ′ terms vanish and hence

[aµ
n, ã

ν
m] = 0 (3.42)

A slight rearrangement of indices shows that we are left with

[X̂µ(τ, σ), P̂ ν(τ, σ′)] =
i

4π

∑
n

1

n
e−in(σ−σ′)([aµ

n, a
ν
−n] + [ãµ

n, ã
ν
−n]) (3.43)

In a Fourier basis

δ(σ − σ′) =
1

2π

∑
n

e−in(σ−σ′) (3.44)

Note that there is a contribution from n = 0 here that doesn’t come from the oscillators,
we’ll deal with it in a moment. Therefore we see that we must take

[aµ
n, a

ν
m] = nηµνδn,−m , [ãµ

n, ã
ν
m] = nηµνδn,−m (3.45)

Next it remains to consider the zero-modes (including the n = 0 contribution in (3.44)).

Problem: Show that if xµ, pµ 6= 0 then we also have

[xµ, pν ] = iηµν (3.46)

with the other commutators vanishing.
We also have to consider the constraint T̂αβ = 0. Its components are

T̂00 =
1

2
˙̂
X

µ ˙̂
X

ν

ηµν +
1

2
X̂ ′µX̂ ′νηµν

T̂11 =
1

2
X̂ ′µX̂ ′νηµν +

1

2
˙̂
X

µ ˙̂
X

ν

ηµν

T̂01 =
˙̂
X

µ

X̂ ′νηµν

(3.47)
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It is helpful to change coordinates to

σ+ = τ + σ
σ− = τ − σ

⇐⇒
τ = σ++σ−

2

σ = σ+−σ−

2

(3.48)

Problem: Show that in these coordinates

T̂++ = ∂+X̂
µ∂+X̂

νηµν

T̂−− = ∂−X̂
µ∂−X̂

νηµν

T̂+− = T−+ = 0

(3.49)

Let us now calculate T++ in terms of oscillators. We have

∂+X̂
µ =

√
α′

2

∞∑
n=−∞

aµ
ne
−in(τ+σ) (3.50)

where we have introduced

aµ
0 =

√
α′

2
pµ +

√
1

2α′
wµ (3.51)

thus

T̂++ =
α′

2

∑
nm

aµ
na

ν
me

−i(n+m)(τ+σ)ηµν

= α′
∑
n

Lne
−in(τ+σ)

(3.52)

with

Ln =
1

2

∑
m

aµ
n−ma

ν
mηµν (3.53)

where again we’ve dropped a hat on Ln, even though it is an operator. Similarly we
find

T−− = α′
∑
n

L̃ne
−in(τ−σ) (3.54)

with

L̃n =
1

2

∑
m

ãµ
n−mã

ν
mηµν (3.55)

and

ãµ
0 =

√
α′

2
pµ −

√
2

α′
wµ (3.56)

We can rewrite the commutators (3.45) using (3.38) as

[aµ
n, a

ν
n
†] = nηµν [ãµ

n, ã
ν
n
†
] = nηµν (3.57)
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with n > 0. Thus we can think of aµ
n and ãµ

n annihilation operators and aµ
n
† and ãµ

n
†

as creation operators. Following the standard practice of QFT we consider the ground
state |0 > to be annihilated by an and ãn:

an|0 >= 0 , ãn|0 >= 0 , n > 0 (3.58)

The zero modes also act on the ground state. Since xµ and pµ don’t commute we can
only chose |0 > to be an eigenstate of one, we take

p̂µ|0 >= pµ|0 > (3.59)

when we want to be precise we label the ground state |0; p >. You will have to excuse
the clumsy notion where I have reintroduce a hat on an operator to distinguish it from
its eigenvalue acting on a state. We can now construct a Fock space of multi-particle
states by acting on the ground state with the creation operators aµ

−n and ãµ
−n. For

example
aµ
−1ã

ν
−1|0 > , aµ

−2ã
λ
−1ã

ρ
−1|0 > , etc. (3.60)

These elements should be familiar from the study of the harmonic oscillator. In a
string theory each classical vibrational mode is mapped in the quantum theory to an
individual harmonic oscillator with the same frequency.

Note that we really should considering normal ordered operators, where the annihi-
lation operators always appear to the right of the creation operators. For Ln and L̃n

with n 6= 0 there is no ambiguity as aµ
m and aν

n−m will commute. However for L0 and

L̃0 one finds

L0 =
1

2
aµ

0a
ν
0ηµν +

∑
m>0

aµ
−ma

ν
mηµν −

1

2

∑
m>0

[aµ
−m, a

ν
m]ηµν (3.61)

The last term is an infinite divergent sum

D

2

∑
m>0

m (3.62)

This can be thought of as sum over the zero-point energies of the infinite number of
harmonic oscillators. We must renormalize. Clearly L̃0 has the same problem and this
introduces the same sum. Since this is just a number the end result is that we define
the normal ordered L0 and L̃0 to be

: L0 : =
1

2
aµ

0a
ν
0ηµν + α′

∑
m>0

aµ
−ma

ν
mηµν

: L̃0 : =
1

2
ãµ

0 ã
ν
0ηµν + α′

∑
m>0

ãµ
−mã

ν
mηµν

(3.63)

In string theory : Ln : and : L̃n : play a central role.
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How do we deal with constraints in the quantum theory? We should proceed by
reducing to the so-called physical Hilbert space of states which are those states that are
animated by : T̂αβ :. However this turns out to be too strong a condition and would

remove all states. Instead we impose that the positive frequency components of : T̂αβ :
annihilates any physical state

: Ln : |phys >=: L̃n : |phys >= 0 , n > 0 (: L0 : −a)|phys >= (: L̃0 : −a)|phys >= 0
(3.64)

Here we have introduced a parameter a since : L0 : differs from L0 by an infinite constant
that we must regularize to the finite value a. For historical reasons the parameter a is
called the intercept (and α′ the slope). However it is not a parameter but rather is fixed
by consistency conditions. Indeed it can be calculated by a variety of methods (such as
ζ-function regularization or by using the modern BRST approach to quantization). We
will see that the correct value is a = 1.

This is then sufficient to show that the expectation value of : T̂αβ : vanishes

< phys| : Ln : |phys >=< phys| : L̃n : |phys >= 0 ∀n 6= 0 (3.65)

since the state on the right is annihilated by the postiche frequency parts where as by
taking the Hermitian conjugates one sees that the state on the left is annihilated by the
negative frequency part.

It is helpful to calculate the commutator [: Lm :, : Ln :]. There will be a similar
expression for [: L̃m :, : L̃m :] and clearly one has [: Lm :, : L̃n :] = 0. To do this we first
consider the case without worrying about normal orderings

[Lm, Ln] =
1

4

∑
pq

[aµ
m−pa

ν
p, a

λ
n−qa

ρ
q ]ηµνηλρ

=
1

4

∑
pq

ηµνηλρ

(
[aµ

m−pa
ν
p, a

λ
n−q]a

ρ
q + aλ

n−q[a
µ
m−pa

ν
p, a

ρ
q ]
)

=
1

4

∑
pq

ηµνηλρ

(
aµ

m−p[a
ν
p, a

λ
n−q]a

ρ
q + [aµ

m−p, a
λ
n−q]a

ν
pa

ρ
q

+aλ
n−qa

µ
m−p[a

ν
p, a

ρ
q ] + aλ

n−q[a
µ
m−p, a

ρ
q ]a

ν
p

)
=

1

4

∑
p

ηµρ

(
paµ

m−pa
ρ
n+p + (m− p)aµ

pa
ρ
n+m−p

+paρ
n+pa

µ
m−p + (m− p)aρ

n+m−pa
µ
p

)
=

1

2

∑
p

ηµρ

(
(p− n)aµ

m+n−pa
ρ
p + (m− p)aµ

pa
ρ
n+m−p ηµρ

)
(3.66)

Here we have used the identities

[A,BC] = [A,B]C +B[A,C] , [AB,C] = A[B,C] + [A,C]B (3.67)
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and shifted the p=variable in the sum. Thus we find

[Lm, Ln] = (m− n)Lm+n (3.68)

This is called the classical Virasoro algebra and is of crucial importance in string theory
and conformal field theory in general. Recall that it is the algebra of constraints that
arose from the condition T̂αβ = 0 which is the statement of conformal invariance.

In the quantum theory we must consider the issues associated with normal ordering.
We saw that this only affected : L0 :. It follows that the only effect this can have on
the Virasoro algebra is in terms with an : L0 :. Since the effect on : L0 : is a shift by
an infinite constant it won’t appear in the commutator on the left hand side. Thus any
new terms can only appear with : L0 : on the right hand side. Thus the general form is

[: Lm :, : Ln :] = (m− n) : Lm+n : +C(n)δm −n (3.69)

The easiest way to determine the C(n) is to note the following (one can also perform a
direct calculation but it is notoriously complicated and messy). First one imposes the
Jacobi identity

[: Lk :, [: Lm :, : Ln :]] + [: Lm :, [: Ln :, : Lk :]] + [: Lm :, [: Ln :, : Lk :]] = 0 (3.70)

If we impose that k +m + n = 0 with k,m, n 6= 0 (so that no pair of them adds up to
zero) then this reduces to

(m− n)C(k) + (n− k)C(m) + (k −m)C(n) = 0 (3.71)

If we pick k = 1 and m = −n− 1 one finds

−(2n+ 1)C(1) + (n− 1)C(−n− 1) + (n+ 2)C(n) = 0 (3.72)

Now we note that C(−n) = −C(n) by definition. Hence we learn that C(0) = 0 and

C(n+ 1) =
(n+ 2)C(n)− (2n+ 1)C(1)

n− 1
(3.73)

This is just a difference equation and given C(2) it will determine C(n) for n > 1
(note that it can’t determine C(2) given C(1)). We can look for a solution to this by
considering polynomials. Since it must be odd in n the simplest guess is

c(n) = c1n
3 + c2n (3.74)

In this case the right hand side becomes

(n+ 1)(c1n
3 + c2n)− (2n+ 1)(c1 + c2)

n− 1
=

c1n
4 + 2c1n

3 + c2n
2 − 2c1n− (c1 + c2)

n− 1

=
(n− 1)(c1n

3 + 3c1n
2 + (3c1 + c2)n+ c1 + c2)

n− 1
(3.75)
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Expanding out the left hand side gives

c1(n+ 1)3 + c2(n+ 1) = c1n
3 + 3c1n

2 + (3c1 + c2)n+ c1 + c2 (3.76)

and hence they agree.
Note that if we shift L0 by a constant l then C(n) is shifted by 2nl (note that in

so doing we’d have to shift a as well). This means that we can change the value of
c2. Therefore we will fix it to be c1 = −c2. Finally we must calculate c1. To do this
we consider the ground state with no momentum |0; 0, 0 > This state is annihilated by
: Ln : for all n ≥ 0. Thus we have

< 0, 0; 0| : L2 :: L−2 : |0; 0, 0 > = < 0, 0; 0|[: L2 :, : L−2 :]|0; 0, 0 >

= 4 < 0, 0; 0| : L0 : |0; 0, 0 > +6c1 < 0, 0; 0|0; 0, 0 >

= 6c1 (3.77)

where we assume that the ground state has unit norm.

Problem: Show that

< 0, 0; 0| : L2 :: L−2 : |0; 0, 0 >=
D

2
(3.78)

So we deduce that

[: Lm :, : Ln :] = (m− n) : Lm+n : +
D

12
(m3 −m)δm −n (3.79)

Of course there is a similar expression for [: L̃m :, : L̃m :]. This is called the central
extension of the Virasoro algebra and D is the central charge which has arisen as a
quantum effect. From now on we will always take operators to be normal ordered and
we will drop the :: symbol, unless otherwise stated.

Let us return to our Fock space of states. It is built up out of the ground state which
we take to have unit norm < 0|0 >= 1. One sees that the one-particle state aµ

−1|0 >
has norm

< 0|aµ
1a

µ
−1|0 >=< 0|[aµ

1 , a
µ
−1]|0 >= ηµµ (3.80)

where we do not sum over µ. Thus the state a0
−1|0 > has negative norm!

Problem: Show that the state (a0
−1 + a1

−1)|0 > has zero norm.

Thus the natural innerproduct on the Fock space is not positive definite because
the time-like oscillators come with the wrong sign. This also occurs in other quantum
theories such as QED and doesn’t necessarily represent any kind of sickness.

There are stranger states still. A physical state |χ > that satisfies < χ|phys >= 0 for
all physical states is called null (or spurious if it only satisfies the n = 0 physical state
condition). It then follows that a null state has zero norm (as it must be orthogonal to
itself).
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There are many such states. To construct an example just consider

|χ >= L−1|0; p > with p2 = 0 (3.81)

Note that the zero-momentum ground state satisfies Ln|0; 0 >= 0 and for all n ≥ 0 and
this remains true if for |0; p > if p2 = 0. First we verify that |χ > is physical. We have
For m ≥ 0

Lm|χ > = LmL−1|0; p >

= [Lm, L−1]|0; p >

= (m+ 1)Lm−1|0; p > +
D

12
(m3 −m)δm1|0; p >

(3.82)

The last term will vanish automatically whereas the first term can only be non-zero for
m = 0 (since Ln|0; p >= 0 for all n ≥ 0). Here we find L0|χ >= |χ > which is the
physical state condition for a = 1 which will turn out to be the case. Next we see that
< χ|phys >=< 0|L1|phys >= 0. Note that we could have used any state instead of
|0; p > that was annihilated by Ln for all n ≥ 0 to construct a null state.

Thus if we calculate some amplitude between two physical states < phys′|phys >
we can shift |phys >→ |phys > +|χ > where |χ > is a null state. The new state
|phys > +|χ > is still physical but the amplitude will remain the same - for any other
choice of physical state |phys′ >. Thus we have a stringy gauge symmetry whereby
two physical states are equivalent if their difference is a null state. This will turn out
to be the origin of Yang-Mills and other gauge symmetries within string theory. And
furthermore one can prove a no-ghost theorem which asserts that there are no physical
states with negative norm (at least for a = 1 and D = 26).

3.4 Open Strings

Strings come in two varieties: open and closed. To date we have tried to develop as
many formulae and results as possible which apply to both. However now we must make
a decision and proceed along slightly different but analogous roots. Open strings have
two end points which traditionally arise at σ = 0 and σ = π. We must be careful to
ensure that the correct boundary conditions are imposed. In particular we must choose
boundary conditions so that the boundary value problem is well defined. This requires
that

ηµνδX
µ∂σX

ν = 0 (3.83)

at σ = 0, π.

Problem: Show this!

There are essentially two boundary conditions that one can impose. The first is
Dirichlet: we hold Xµ fixed at the end points so that δXµ = 0. The second is Neumann:
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we set ∂σX
µ = 0 at the end points. The first condition implies that somehow the end

points of the string are fixed in spacetime, like a flag to a flag pole. At first glance
this seems unphysical and we will ignore it for now, although such boundary conditions
turn out to be profoundly important. So we will start by considering second boundary
condition, which states that no momentum leaks off the ends of the string.

The condition that ∂σX̂
µ(τ, 0) = 0 implies that

aµ
n = ãµ

n (3.84)

i.e. the left and right oscillators are not independent. If we look at the boundary
condition at σ = π then we determine that∑

n6=0

aµ
ne

inτ sin(nπ) = 0 (3.85)

Thus n is indeed an integer. The mode expansion is therefore

Xµ = xµ + 2α′pµτ +
√

2α′i
∑
n6=0

aµ
n

n
einτ cos(nσ) (3.86)

(Note the slightly redefined value of pµ as compared to before.)
For the open string the physical states are constrained to satisfy

Ln|phys >= 0 , n > 0 and (L0 − 1)|phys >= 0 (3.87)

in particular there is only one copy of the constraints required since the L̃n constraints
will automatically be satisfied. The second condition is the most illuminating as it gives
the spacetime mass shell condition. To see this we note that translational invariance
Xµ → Xµ + xµ gives rise to the conserved current P̂ µ = 1

2πα′
Ẋµ. This is a worldsheet

current and hence the conserved charge (from the worldsheet point of view) is

pµ =
1

2πα′

∫ π

0
dσẊµ

=
1

2πα′

∫ π

0
dσ2pµ +

√
2α′

∑
n6=0

aµ
ne

inτ cos(nσ)

= pµ

(3.88)

where again we have abused notation and confused the operator p̂µ that appears in the
mode expansion of Xµ with its eigenvalue pµ which we have now identified with the
conserved charge. In any case we do this because we have shown that pµ is indeed the
spacetime momentum of the string. Note that this also explains why we put in the extra
factor of 2 in front of pµτ in the mode expansion.

Next we let
N =

∑
n>0

ηµνa
µ
−na

ν
n (3.89)
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Which is the analogue of the number operator that appears in the Harmonic oscillator.
Again this is an operator even though we are being lazy and dropping the hat. It is
easy to see that for m > 0

[N, aλ
−m] =

∑
n>0

ηµνa
µ
−n[aν

n, a
λ
−m]

= maλ
−m (3.90)

Thus if |n > is a state with N |n >= n|n > then

Naλ
−m|n > = ([N, aλ

−m] + aλ
−mN)|n >

= (maλ
−m + aλ

−mn)|n >
= (m+ n)aλ

−m|n > (3.91)

Therefore aλ
−m|n > is a state with N -eigenvalue n+m. You can think of N as counting

the number of oscillator modes in a given state.
With this definition we can write the physical state condition (L0− 1)|phys >= 0 as

(pµp
µ +

1

α′
(N − 1))|phys >= 0 (3.92)

Thus we can identify the spacetime mass-squared of a physical state to be the eigenvalue
of

M2 =
1

α′
(N − 1) (3.93)

We call the eigenvalue of N the level of the state. In other words the higher oscillator
modes give more and more massive states in spacetime. In practice one takes a−1/2 to
be a very high mass scale so that only the massless modes are physically relevant. Note
that the number of states at level n grows exponentially in n as the number of possible
oscillations will be of order of the number of partitions of n into smaller integers. This
exponentially growing tower of massive modes a unique feature of strings as opposed to
point particles.

Of course we must not forget the other physical state condition Ln|phys >= 0 for
n > 0. This constraint will take the form of a gauge fixing condition . Let us consider
the lowest lying states.

At level zero we have the vacuum |0; p >. We see that the mass-shell condition is

p2 − α′
−1

= 0 (3.94)

The other constraint, Ln|0; p >= 0 with n > 0, is automatically satisfied. This has a
negative mass-squared! Such a mode is called a Tachyon. Tachyons arise in field theory
if rather than expanding a scalar field about a minimum of the potential one expands
about a maximum. Thus they are interpreted as instabilities. The problem is that
no one knows in general whether or not the instability associated to this open string
tachyon is ever stabilized. We will simply ignore the tachyon. Our reason for doing this
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is that it naturally disappears once one includes worldsheet Fermions and considers the
superstring theories. However the rest of the physics of Bosonic strings remains useful
in the superstring. Hence we continue to study it.

Next consider level 1. Here we have

|Aµ >= Aµ(p)aµ
−1|0; p > (3.95)

Since these modes have N = 1 it follows from the mass shell condition that they are
massless (for a = 1!), i.e. the L0 constraint implies that p2Aµ = 0. Note that this
depends crucially on the fact that a = 1. If a > 1 then |Aµ > would be tachyonic
whereas if a < 1 |Aµ > would be massive. In either case there is no known constituent
theory of a massive (or tachyonic) vector field.

But we must also check that Ln|A >= 0 for n > 0. Thus

Ln|Aµ > =
1

2
Aµ

∑
m

ηνλa
ν
n−ma

λ
ma

µ
−1|0; p >

=
1

2
Aµηνλ

∑
m≤1

aν
n−ma

λ
ma

µ
−1|0; p >

=
1

2
Aµηνλ

∑
n−1≤m≤1

aν
n−ma

λ
ma

µ
−1|0; p >

(3.96)

In the second line we’ve noted that if m > 1 we can safely commute aλ
m past aµ

−1 where
it annihilates the vacuum. In the third line we’ve observed that if n−m > 1 then we can
safely commute aν

n−m through the other two oscillators to annihilate the vacuum (recall
that for n > 0 aν

n−m always commutes through aλ
m). Thus for n > 1 we automatically

have Ln|Aµ >= 0. For n = 1 we find just two terms

L1|A > =
1

2
Aµηνλ(a

ν
1a

λ
0a

µ
−1 + aν

0a
λ
1a

µ
−1)|0; p >

= Aµa
µ
0 |0; p >

=
√

2α′pµAµ|0; p >

(3.97)

Thus we see that |Aµ > is represent a massless vector mode with pµAµ = 0. In position
space this is just ∂µAµ = 0 and this looks like the Lorentz gauge condition for an
electromagnetic potential.

Indeed recall that before we found the null state, with p2 = 0,

|Λ > = iΛ(p)L−1|0; p >

= iηµνΛa
µ
0a

ν
−1|0; p >

= i
√

2α′pµΛaµ
−1|0; p >

(3.98)
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provided that p2 = 0. Thus we must identify Aµ ≡ Aµ + i
√

2α′pµΛ which in position
space is the electromagnetic gauge symmetry Aµ ≡ Aµ +

√
2α′∂µΛ. Again this occurs

precisely when a = 1, otherwise L−1|0; p > is not a null state and their would not be a
gauge symmetry.

There is one more thing that can be done. Since and open string has two preferred
points, its end points, we can attach discrete labels to the end points so that the ground
state, of the open string carries two indices

|0; p, ab > (3.99)

where a = 1, .., N refers the σ = 0 end and b = 1, ..., N refers to the σ = π end. It then
follows that all the Fock space elements built out of |0; p, ab > will carry these indices.
These are called Chan-Paton indices. The level one states now have the form

|Aab
µ >= Aab

µ a
µ
−1|0; p, ab > (3.100)

The null states take the form

|Λab >= iΛabL−1|0; p, ab > (3.101)

and the gauge symmetry is
Aab

µ ≡ Aab
µ +

√
2α′∂µΛab (3.102)

These are the gauge symmetries of a non-Abelian Yang-Mills field with gauge group
U(N) (at lowest order in the fields). Thus we see that we can obtain non-Abelian gauge
field dynamics from open strings.

3.5 Closed Strings

Let us now consider a closed string, so that σ ∼ σ + 2π. The resulting “boundary
condition” is more simple: we simply demand that X̂µ(τ, σ + 2π) = X̂µ(τ, σ). This is
achieved by again taking n to be an integer. However we now have two independent
sets of left and right moving oscillators. Thus the mode expansion is given by

Xµ = xµ + α′pµτ +

√
α′

2
i
∑
n6=0

(
aµ

n

n
e−in(τ+σ) +

ãµ
n

n
e−in(τ−σ)

)
(3.103)

note the absence of the factor of 2 in front of pµτ . The total momentum of such a string
is calculated as before to give

pµ =
1

2πα′

∫ 2π

0
dσẊµ

=
1

2πα′

∫ 2π

0
dσpµ +

√
α′

2

∑
n6=0

aµ
ne
−in(τ+σ) + ãµ

ne
−in(τ−σ)

= pµ

(3.104)
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so again pµ is the spacetime momentum of the string.
We now have double the constraints:

(L0 − 1)|phys > = (L̃0 − 1)|phys >= 0

Ln|phys = L̃n|phys >= 0

(3.105)

with n > 0. If we introduce the right-moving number operator Ñ

Ñ =
∑
n>0

ηµν ã
µ
−nã

ν
n (3.106)

then the first conditions can be rewritten as

(pµp
µ +

4

α′
(N − 1))|phys >= 0 (N − Ñ)|phys >= 0 (3.107)

where we have recalled that, if wµ = 0, aµ
0 = ãµ

0 =
√

α′

2
pµ and L0 = 1

2
ηµνa

µ
0a

ν
0 + N ,

L0 = 1
2
ηµν ã

µ
0 ã

ν
0 + Ñ . The second condition is called level matching. It simply says that

any physical state must be made up out of an equal number of left and right moving
oscillators. Again the remaining constraints will give gauge fixing conditions.

Let us consider the lowest modes of the closed string. At level 0 (which means level 0
on both the left and right moving sectors by level matching) we simply have the ground
state |0; p >. This is automatically annihilated by both Ln and L̃n with n > 0. For
n = 0 we find

p2 − 4

α
= 0 (3.108)

Thus we again find a tachyonic ground state. No one knows what to do with this
instability. It turns out to be much more serious than the open string tachyon that we
saw, which can sometimes be dealt with. Most people today would say that the Bosonic
string is inconsistent although this hasn’t been demonstrated. However for us the cure
is the same as for the open string: in the superstring this mode is projected out. So we
continuing by simply ignoring it, as our discussion of the other modes still holds in the
superstring.

ext we have level 1. Here the states are of the form

|Gµν >= Gµνa
µ
−1ã

ν
−1|0; p > (3.109)

Just as for the open string these will be massless, i.e. p2 = 0 (again only if a = 1). Next
we consider the constraints Lm|Gµν >= L̃m|Gµν >= 0 with m > 0.

Problem: Show that these constraints imply that pµGµν = pνGµν = 0

The matrix Gµν is a spacetime tensor. Under the Lorentz group SO(1, D − 1) it
will decompose into a symmetric traceless, anti-symmetric and trace part. What this
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means is that under spacetime Lorentz transformations the tensors gµν , bµν and φ will
transform into themselves. Here

gµν = G(µν) −
1

D
ηλρGλρηµν

bµν = G[µν]

φ = ηλρGλρ (3.110)

i.e. Gµν = gµν + bµν + 1
D
ηµνφ.

Problem: Show this.

Thus from the spacetime point of view there are three independent modes labeled
by gµν , bµν and φ. Just as for the open string there is a gauge symmetry

|Gµν >→ |Gµν > +iξµL−1ã
µ
−1|0; p > +iζµL̃−1a

µ
−1|0; p > (3.111)

where we have used the fact that ξµL−1ã
µ
−1|0; p > and ζµL̃−1a

µ
−1|0; p > are null states,

provided that p2 = 0. The proof of this is essentially the same as it was for the open
string. We need only ensure that the level matching condition is satisfied, which is clear,
and that L̃nL−1ã−1|0; p >= LnL̃−1a−1|0; p >= 0 for n > 0. Thus we need only check
that

LnL̃−1a
µ
−1|0; p > =

1

2
L̃−1

∑
m

ηλρa
λ
n+ma

ρ
−ma

µ
−1|0; p >= 0

(3.112)

Just as before the n > 1 terms will vanish automatically. So we need only check

L1L̃−1a
µ
−1|0; p > =

1

2
L̃−1

∑
m

ηλρa
λ
1+ma

ρ
−ma

µ
−1|0; p >

= L̃−1ηλρa
λ
0a

ρ
1a

µ
−1|0; p >

= L̃−1ηλρa
λ
0 [a

ρ
1, a

µ
−1]|0; p >

= L̃−1a
µ
0 |0; p >

=

√
α′

2
L̃−1p

µ|0; p >

(3.113)

Similarly for L̃nL−1ã
µ
−1|0; p >. Thus we also find that pµξµ = pµζµ = 0. This of course

is required to preserve the condition pµGµν = pνGµν = 0.
In terms of Gµν this implies that

Gµν → Gµν + i

√
α′

2
pµξν + i

√
α′

2
pνζµ (3.114)
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or, switching to coordinate space representations and the individual tensor modes, we
find

gµν → gµν +
1

2

√
α′

2
∂µ(ξν + ζν) +

1

2

√
α′

2
∂ν(ξµ + ζµ)

bµν → Bµν +
1

2

√
α′

2
∂µ(ξν − ζν)−

1

2

√
α′

2
∂ν(ξµ − ζµ)

φ → φ+ 2

√
α′

2
∂µ(ξµ + ζµ)

(3.115)

If we let vµ = 1
2

√
α′

2
(ξµ + ζµ) and Λµ = 1

2

√
α′

2
(ξµ − ζµ) and use ∂µξµ = pµζµ = 0 then we

find

gµν → gµν + ∂µvν + ∂νvµ

bµν → bµν + ∂µΛν − ∂νΛµ

φ → φ

(3.116)

The first term line gives the infinitesimal form of a diffeomorphism, xµ → xµ − vµ

and thus we can identify gµν to be a metric tensor. The second line gives a generalization
of and electromagnetic gauge transformation. The analogue of the gauge invariant field
strength is

Hλµν = ∂λbµν + ∂µbνλ + ∂νbλµ (3.117)

Thus the massless field content at level 1 consists of a graviton mode gµν , an anti-
symmetric tensor field bµν and a scalar φ, subject to the gauge transformations (3.115).
Finally the massless condition p2Gµν = 0 leads to

∂2gµν = 0

∂2bµν = 0

∂2φ = 0

(3.118)

The conditions pµGµν = pνGµν = 0 now reduce to the linearized equations

∂µgµν + ∂νφ = 0

∂µbµν = 0

(3.119)

These equations can be viewed as gauge fixing conditions (in effect φ = 1
D
gλση

λσ). The
fields gµν , bµν and φ are known as the graviton (metric), Kalb-Ramond (b-field) and
dilaton respectively.
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4 Light-cone gauge

So far we have quantized a string in flat D-dimensional spacetime. Apart from D we
have the parameters a and α′. In fact α′ is not a parameter, it is a dimensional quantity
- it has the dimensions of length-squared - and simply sets the scale. What is important
are unitless quantities such as p2α′. For example small momentum means p2α′ << 1.

We are left with D and a but actually these are fixed: quantum consistency demands
that D = 26 and a = 1. We have seen that things would go horribly wrong if a 6= 1.

The easiest way to see this is to introduce light-cone gauge. Recall that the action we
started with had diffeomorphism symmetry. We used this symmetry to fix γαβ = e2ρηαβ.
However there is still a residual symmetry. In particular in terms of the coordinates σ±

then under a transformation

σ′
+

= σ′
+
(σ+) σ′

−
= σ′

−
(σ−) (4.120)

we see that γ′αβ = e2ρ′ηαβ with

ρ′ = ρ+
1

2
ln

(
∂σ+

∂σ′+
∂σ−

∂σ′−

)
(4.121)

i.e. this preserves the conformal gauge. In terms of the worldsheet coordinates σ, τ we
see that

τ ′ =
1

2
(σ′

+
+ σ′

−
) (4.122)

and since σ′± are arbitrary functions of σ± we see that any τ that solves the two-
dimensional wave equation can be obtained by such a diffeomorphism. Therefore, with-
out loss of generality, we can choose the worldsheet ’time’ coordinate τ to be any of the
spacetime coordinates (since these solve the two-dimensional wave-equation). Of course
there are many choices but the usual one is to define

X̂+ =
1

2
(X0 +XD−1) X̂− =

1

2
(X0 −XD−1) (4.123)

and then take
X̂+ = x+ + α′p+τ (4.124)

This is called light cone gauge.
Next we evaluate the conformal symmetry constraints (3.15). We observe that in

these coordinates the spacetime ηµν is

η−+ = η+− = −2 ηij = δij (4.125)

Thus we find that

T00 = T11 = −2α′p+Ẋ− +
1

2
Ẋ iẊjδij +

1

2
X ′iX ′jδij = 0

T01 = T10 = −2α′p+X̂ ′− + Ẋ iX ′jδij = 0

(4.126)
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where i, j = 1, 2, 3, ..., D − 2. This allows one to explicitly solve for X− in term of the
mode expansions for X i.

Problem: Show that with our conventions

X− = x− + α′p−τ + i

∑
n6=0

a−n
n
e−inσ+

+
ã−n
n
e−inσ−

 (4.127)

where

a−n =
1

2p+

∑
m

ai
n−ma

j
mδij (4.128)

and the massshell constraint is

−4α′p+p− + α′pipjδij + 2(N + Ñ) = 0 (4.129)

with

N + Ñ =
1

2
δij
∑
n6=0

ai
na

j
−n + ãi

nã
j
−n (4.130)

To continue we note that in the quantum theory there is a normal ordering ambiguity
in the definition of N + Ñ and we must include our constant a again into the definition.
Hence we must take (temporarily putting in the :: symbols for normal ordering)

: N + Ñ := δij
∞∑

n=1

αi
−nα

j
n + α̃i

−nα̃
j
n (4.131)

However since we have dropped an infinite constant, the intercept a will now show up
in the mass shell constraint as

−4α′p+p− + α′pipjδij + 2(N + Ñ − 2a) = 0 (4.132)

Note that −4p+p−+pipjδij = ηµνp
µpν so this really just tells us that the mass of a state

is

M2 =
2

α′
(N + Ñ − 2a) (4.133)

Where we have dropped the :: to indicate normal ordering.
We still have a level matching condition for closed strings

N = Ñ (4.134)

This arises because we only have one spacetime momentum pµ (not separate ones for
left and right moving modes).

Note that this breaks the SO(1, D − 1) symmetry of our flat target space since we
choose X0 and XD−1 whereas any pair will do (so long as one is timelike). Thus we
will not see a manifest SO(1, D − 1) symmetry but just an SO(D − 2) symmetry from
rotations of the X̃ i. However it is important to realize that the SO(1, D− 1) symmetry
is not really broken, we have merely performed a kind of gauge fixing (recall there was
this underlying gauge symmetry of the string spectrum). It is just no longer manifest.
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4.1 D = 26, a = 1

On the other hand the benefit of this procedure is that the physical Hilbert space is
manifestly postive definite because we remove the oscillators a0

n, ã
0
n, a

D−1
n , ãD−1

n . This is
often a helpful way to determine the physical spectrum of the theory.

For example we can reconsider the low lying states that we constructed above. The
ground states are unchanged as they do not involve any oscillators. For the open string
we find the D − 2 states at level one

|Ai >= ai
−1|0; p > (4.135)

These are the transverse components of a massless gauge field. For the closed string we
find, at level one,

|Gij >= Gija
i
−1ã

j
−1|0; p > (4.136)

These correspond to the physical components, in a certain gauge, of the metric, Kalb-
Ramond field and dilaton Note however that there is no remnant at all of gauge sym-
metry which is a crucial feature of dynamics

Now formally a is given by

a = −1

2

∞∑
m=1

[ai
m, a

j
−m]δij

= −D − 2

2

∞∑
m=1

m

(4.137)

This is divergent however it can be regularized in the following manner. We note that

a = −D − 2

2
ζ(−1) (4.138)

where ζ(s) is the Riemann ζ-function

ζ(s) =
∞∑

m=1

1

ms
(4.139)

This is analytic for complex s with Re(s) > 1. Thus it can be extended to a holomorphic
function of the complex plane, with poles at a discrete number of points. Analytically
continuing to s = −1 one finds ζ(−1) = −1/12 and hence

a =
D − 2

24
(4.140)

We have seen that in order to have a sensible theory we must take a = 1 (otherwise
there are no massless states or nice gauge invariances). Hence we must take D = 26.

This is not a very satisfactory derivation of the dimension of spacetime. A more
convincing argument is the following. Light cone gauge is just a gauge. Therefore
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although the manifest spacetime Lorentz symmetry is no longer present there is still an
SO(1, D − 1) Lorentz symmetry, even though only an SO(D − 2) subgroup is manifest
in light cone gauge. In light cone gauge the spacetime Lorentz generators Mµ

ν split into

M i′
j M+

j, M−
j, M+

− (4.141)

The quantization procedure preserves SO(D− 2) so the commutators [M i
j,M

k
l] are as

they should be. However problems can arise with [M i
j,M

+
k] etc.. It is too lengthy a

calculation to do here, but one can show that the full SO(1, D − 1) Lorentz symmetry,
generated by the charges (3.26), is preserved in the quantum theory, i.e. once normal
ordering is taken into account, if and only if a = 1 and D = 26. You are urged to read
the section 2.3 of Green Schwarz and Witten or section 12.5 of Zwiebach where this is
shown more detail.

4.2 Partition Function

A useful concept is the notion of a partition function which ‘counts’ the physical states.
Since light cone gauge only contains physical states this is most easily computed here.

Let us start with an open string and define

Z =
∑

qL0−1 (4.142)

where the sum is over states (at zero momentum) and q = e−2πt is ‘place-holder’. First
note that for a string in flat spacetime L0 is a sum of 24 independent free Bosons. Thus

Z = (Z1)
24 (4.143)

where

Z1 =
∑

q
∑

l
a−lal− 1

24

=
∑

q−
1
24

∏
l

qa−lal (4.144)

For a single Boson we have the oscillators a−1, a−2, .... Each oscillator a−l can be used
k times in which case a−lal contributes k to the exponent. We need to sum over all k
and using

∑∞
k=0 q

kl = (1− ql)−1 we find

Z1 = q−
1
24

∞∏
l=1

(1− ql)−1 (4.145)

and hence

Z = q−1
∞∏
l=1

(1− ql)−24 = η(t) (4.146)
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where η(t) is known as the Dedekind eta-function. It can be extended to the upper half
complex plane τ = θ + it, t > 0 and is known to posses the following property:

η(−τ−1) = η(τ) (4.147)

In particular it is invariant under t → 1/t when θ = 0. This property is known as
modular invariance. This is a crucial feature of strings (and requires that we have 24
physical oscillators - another important feature of D = 26).

We can provide a physical interpretation of Z by noting that∫ ∞

0
dte−2πt(L0−1) =

1

2π

1

L0 − 1
(4.148)

and 1/(L0 − 1) is the propagator. Thus Z has the interpretation of a vacuum one-loop
diagram:

Z = Tr < 0|
(

1

2π

1

L0 − 1

)
|0 > (4.149)

(hence the restriction to zero momentum). The variable t arises in the Schwinger proper
time formalism. The worldsheet of an open string is a cylinder of radius R and length
L. By conformal invariance the only parameter that matters is t = R/L. In the large
t limit the open string is relatively short compared to the size of the loop. In this case
the important states that propagate around the loop are the light modes, corresponding
to the IR limit of open strings. Indeed here we see, taking q → 0

Z ∼ q−1 + 24q0 +O(q) (4.150)

here we see the tachyon dominants, followed by the 24 massless modes and then the
massive spectrum gives ever vanishing corrections.

What about the t → 0 limit? In this case the the cylinder has a very short radius
compared to its length. This corresponds to the UV behaviour of the open string and
the massive states dominate. Here we can use modular invariance to evaluate

lim
t→0

η(e−2πt) = lim
t→0

η(e−2π/t) = lim
t̃→∞

η(e−2πt̃) ∼ q̃−1 + 24q̃0 +O(q̃) (4.151)

where q̃ = e−2πt̃. An alternative interpretation of such a diagram is that it can be viewed
as a closed string of radius R propagating at tree-level along a distance L, i.e. no loops.
Again Z dominated by the closed string tachyon and then the 24 (left-right symmetric)
massless closed string modes.

This is one of the most important features of string theory. The UV description of
open strings has a dual interpretation in terms of an IR propagation of closed strings
and vice-versa.

Problem: Show that for a periodic Fermion, where L0 =
∑

l d−ldl + 1
24

and {dn, dm} =
nδn,−m, one has

Z1 = q
1
24

∞∏
l=1

(1 + ql) (4.152)
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and for an anti-periodic Fermion, where L0 =
∑

r b−rbr − 1
48

, {br, bs} = rδr,−s and
r, s ∈ Z + 1

2
, one has

Z1 = q−
1
48

∞∏
l=1

(1 + ql− 1
2 ) (4.153)

5 Curved Spacetime and an Effective Action

5.1 Strings in Curved Spacetime

We have considered quantized strings propagating in flat spacetime. This lead to a spec-
trum of states that included the graviton as well as other modes. More generally a string
should be allowed to propagate in a curved background with non-trivial values for the
metric and other fields. Our ansatz will be to consider the most general two-dimensional
action for the embedding coordinates Xµ coupled to two-dimensional gravity subject to
the constraint of conformal invariance. This later condition is required so that the two-
dimensional worldvolume metric decouples from the other fields. We will consider only
closed strings in this section. The reason for this is that these days one views open
strings as description soliton like objects, called Dp-branes, that naturally sit inside the
closed string theory.

Before proceeding we note that

SEH =
1

4π

∫
d2σ

√
−γR = χ (5.1)

is a topological invariant called the Euler number, i.e. the integrand is locally a total
derivative. Thus we could add the term SEH to the action and not change the equations
of motion.

With this in mind the most general action we can write down for a closed string is

Sclosed = − 1

4πα′

∫
d2σα′

√
−γφ(X)R+

√
−γγαβ∂αX

µ∂βX
νgµν(X)+εαβ∂αX

µ∂βX
νbµν(X)

(5.2)
where φ is a scalar, gµν symmetric and bµν antisymmetric. These are precisely the correct
degrees of freedom to be identified with the massless modes of the string. One can think
of this worldsheet theory as two-dimensional quantum gravity coupled to some matter
in the form of scalar fields. More generally one can think of and conformal field theory
(with central charge equal to 26) as defining the action for a string.

Furthermore this action has the diffeomorphism symmetry Xµ → X ′µ(X)

∂αX
′µ =

∂X ′µ

∂Xν
∂αX

ν g′µν =
∂Xλ

∂X ′µ
∂Xρ

∂X ′ν gλρ b′µν =
∂Xλ

∂X ′µ
∂Xρ

∂X ′ν bλρ φ′ = φ (5.3)

automatically built in. It also incorporates the b-field gauge symmetry

b′µν = bµν + ∂µλν − ∂µλν (5.4)
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however to see this we note that

δSclosed = − 1

2πα′

∫
d2σεαβ∂αX

µ∂βX
ν∂µλν

= − 1

2πα′

∫
d2σ∂α(εαβ∂βX

νλν)

= 0 (5.5)

where we used the fact that εαβ∂α∂βX
ν = 0 in the second to last line and the fact that

the worldsheet is a closed manifold in the last line, i.e. the periodic boundary conditions.
Notice something important. If the dilaton φ is constant then the first term in the

action is a topological invariant, the Euler number. In the path integral formulation the
partition function for the full theory is defined by summing over all worldsheet topologies

Z =
∞∑

g=0

∫
DγDXe−S (5.6)

Here the path integral is over the worldsheet fields γαβ and Xµ. Now each genus g
worldsheet will appear suppressed by the factor e−φχg = e−2φ(g−1). Thus gs = eφ can
be thought of as the string coupling constant which counts which genus surface is con-
tributing to a calculation. In particular for gs → 0 one can just consider the leading
order term where the worldsheet is a sphere.

However if one wants to consider the splitting and joining of strings then one must
take gs > 0 and include higher genus surfaces. In particular the first non-trivial string
interactions arise when the worldsheet is a torus. To see the analogy with quantum
field theory note that a torus can be thought of as the worldvolume of a closed string
that has gone around in a loop. Thus it is analogous to 1-loop processes in quantum
field theory. Similarly higher genus surfaces incorporate higher loop processes. One of
the great features of string theory is that each of these contributions is finite. So this
defines a finite perturbative expansion of a quantum theory which includes gravity!

As stated above our general principle is the conformal invariance of the worldsheet
theory, which ensures that the worldsheet metric γαβ decouples. The action we just
wrote down is conformal as a classical action. However this will not generically be the
case in the quantum theory. Divergences in the quantum theory require regularization
and renormalization and these effects will break conformal invariance by introducing an
explicit scale: the renormalization group scale. It turns out that conformal invariance
is more or less equivalent to finiteness of the quantum field theory. This restriction
leads to equations of motions for the spacetime fields φ, gµν and bµν (which from the
worldvolume point of view are just fancy coupling constants). It is beyond the scope of
these lectures to show this but the constraints of conformal invariance at the one loop
level give equations of motion

0 = Rµν +
1

4
HµλρH

λρ
ν − 2DµDνφ+O(α′)

0 = DλHλµν − 2DλφHλµν +O(α′)

0 = 4D2φ+ 4(Dφ)2 −R− 1

12
H2 +O(α′) (5.7)
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where Hµνλ = 3∂[µbνλ]. In general there will be corrections to these equations coming
from all orders in perturbation theory, i.e. higher powers of α′. However such terms will
be higher order spacetime derivatives and can be safely ignored at energy scales below
the string scale.

5.2 A Spacetime Effective Action

A string propagating in spacetime has an infinite tower of massive excitations. However
all but the lightest (massless) modes will be too heavy to observe in any experiment that
we do. Thus in many cases one really just wants to consider the dynamics of the massless
modes. This introduces the concept of an effective action. This is a very general concept
(ubiquitous in quantum field theory) whereby we introduce an action for the light modes
that we are interested in (below some scale M). The action is constructed so that it
has all the correct symmetries of the full theory and its equations of motion reproduce
the correct scattering amplitudes of the light modes that the full theory predicts. In
general effective actions need not be renormalizable and they are not expected to be
valid at energy scales above the scale M where the massive modes we’ve ignored can
be excited and can no longer be ignored. Often one says that the massive modes have
been integrated out. Meaning that one has performed the path integral over modes with
momenta larger than M and is just left with a path integral over the low momentum
modes.

In our case we have considered a string propagating in a curved spacetime that can
be thought of as a background coming from a non-trivial configuration of its massless
modes. In particular in our discussion we implicitly assumed that the massive modes
were set to zero. The result was that quantum conformal invariance predicted the
equations of motion (5.7). These are the on-shell conditions for a string to propagate
in spacetime as derived in the full quantum theory. Note that they pick up an infinite
series of α′ corrections and also an infinite series of gs corrections (where we allow the
splitting an joining of strings). In other words, at lowest order in α′ and gs these are
the equations of motion for the spacetime fields. Furthermore these equations of motion
can be derived from the spacetime action

Seffective = − 1

2α′12

∫
d26x

√
−ge−2φ

(
R− 4(∂φ)2 +

1

12
HµνλH

µνλ
)

+ . . . (5.8)

Problem: Show that the equations of motion of (5.8) are indeed (5.7). You may need
to recall that δ

√
−g = −1

2

√
−ggµνδg

µν and gµνδRµν = DµDνδg
µν − gµνD

2δgµν .

This is therefore the effective action for the massless modes of a closed string. It
plays the same role that the free scalar equation played for the point particle (although
Seffective does not include the infinite tower of string states which isn’t there for the
point particle). The ellipsis denotes contributions from higher loops which will contain
higher numbers of derivatives and which are suppressed by higher powers of α′. Note
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that string theory also predicts corrections to the effective action from string loops, that
is from higher genus Riemann surfaces. These terms will come with factors of e−2gφ

where g = 0,−1,−2, ... and can be ignored if the string coupling gs = eφ is small.

6 Superstrings

In the final section let us try to extend the pervious sections to the superstring. Con-
ceptually not much changes but there are several additional bells and whistles that need
to be considered.

6.1 Type II strings

The starting point for the superstring is include Fermions ψµ on the worldsheet so as to
construct a supersymmetric action

S = − 1

4πα′

∫
d2σ∂αX

µ∂βX
νηµνη

αβ + iψ̄µγα∂αψ
νηµν (6.9)

where ψ̄ = ψTγ0 and γα are real 2×2 matrices that satisfy {γα, γβ} = 2ηαβ. A convenient
choice is γ0 = iσ2 and γ1 = σ1. This action is also conformally invariant and in addition
has the supersymmetry

δXµ = iε̄ψµ , δψµ = γα∂αX
µε (6.10)

for any constant ε.

Problem: Show this.

The mode expansion for the Xµ remains as before with the aµ
n and ãµ

n oscillators.
When we expand the Fermionic fields we can allow for two types of boundary conditions
(let us just consider boundary conditions consistent with a closed string where σ ∼ σ+2π
and Xµ(τ, σ) = Xµ(τ, σ + 2π)):

R : ψµ(τ, σ + 2π) = ψµ(τ, σ)

NS : ψµ(τ, σ + 2π) = −ψµ(τ, σ)

(6.11)

these are known as the Ramond and Neveu-Schwarz sectors respectively. Thus we find

R : ψµ(τ, σ + 2π) =
∑
n∈Z

dne
−inσ+

+ d̃ne
−inσ−

NS : ψµ(τ, σ + 2π) =
∑

r∈Z+ 1
2

bre
−irσ+

+ b̃re
−irσ−

(6.12)
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One finds that these satisfy the anti-commutation relations

{dµ
m, d

ν
n} = ηµνδm,−n {bµr , bνs} = ηµνδr,−s

{d̃µ
m, d̃

ν
n} = ηµνδm,−n {b̃µr , b̃νs} = ηµνδr,−s

(6.13)

with all other anti-commutators vanishing.
One important consequence of supersymmetry is that the algebra of constraints

generated by Ln is enhanced to a super-Virasoro algebra with odd generators Gr and
Fn (depending on whether or not one is in the NS or R sector respectively). The super-
Virasoro algebra turns our to be (see the references)

[Lm, Ln] = (m− n)Lm+n +
D

8
m(m2 − 1)δm,−n

[Lm, Gr] =
(
m

2
− r

)
Gm+r

{Gr, Gs} = 2Lr+s +
D

2

(
r2 − 1

4

)
δr,−s (6.14)

in the NS sector and

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm,−n

[Lm, Fn] =
(
m

2
− n

)
Fm+n

{Fn, Fm} = 2Lm+n +
D

2
m2δm,−n (6.15)

in the R sector. Here all operators are normal ordered. Just as before this only affects
L0 and F0 however there is no associated intercept a for F0 since it is Fermionic (and in
addition this is not allowed by the {F0, F0} anti-commutator). Note that the Fermionic
generators are in effect the ‘square-root’ of Ln, as we expect in a supersymmetric theory.
We won’t go into more details here but we must impose the physical constraints for the
positive modded generators. Just as L0 gives a spacetime Klein-Gordon equation, F0

gives a spacetime Dirac equation.
Let us compute the intercept a. As before we go to light-cone gauge where we fix

two of the coordinates Xµ and their superpartners ψµ. We then compute the vacuum
energy of the remaining D − 2 Bosonic and Fermionic oscillators. The result depends
on the boundary conditions we use. Noting that the sign of the Fermionic contribution
is opposite to that of a Boson one finds

aR = −D − 2

2

∞∑
n=1

n+
D − 2

2

∞∑
n=1

n

= −D − 2

2

(
− 1

12
+

1

12

)
= 0

(6.16)
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The vanishing of aR is a direct consequence of the fact that there is a Bose-Fermi
degeneracy in the R-sector. In particular each periodic Fermion contributes − 1

24
to a.

In the NS sector we find

aNS = −D − 2

2

∞∑
n=1

n+
D − 2

2

∞∑
r=0

(
r +

1

2

)

= −D − 2

2

∞∑
n=1

n+
D − 2

4

∞∑
n=odd

n

= −D − 2

2

∞∑
n=1

n+
D − 2

4

( ∞∑
n=1

n−
∞∑

n=even

n

)

= −D − 2

2

∞∑
n=1

n+
D − 2

4

( ∞∑
n=1

n−
∞∑

m=1

2m

)

= −D − 2

2

∞∑
n=1

n− D − 2

4

∞∑
n=1

n

= (D − 2)
(

1

24
+

1

48

)
=

D − 2

16
(6.17)

Note that this shows that each anti-periodic Fermion contributes 1
48

to a. Having de-
termined the incepts we can now go out of Light cone gauge and consider the covariant
theory.

Let us now look at the lightest states. There is a different ground state for each sector
which we denote by |R; p > and |NS; p > where pµ labels the spacetime momentum.
As before we assume that these states are annihilated by any oscillator with positive
frequency.

We see that |R; p > is massless and hence all the higher level states created from
it by the action of a creation operator will be massive with a mass of order the string
scale. However the Ramond ground state |R; p > is degenerate. In particular we see
that there are Fermion zero-modes dµ

0 which satisfy {dµ
0 , d

ν
0} = ηµν , µ, ν = 0, ..., D − 1

in light cone gauge. This is a Clifford algebra and it is known that there is a unique
representation and it is 2[D

2
]-dimensional. Thus the Ramond ground state is in fact a

spinor with 2[D
2

] independent components.
Let us look at the Neveu-Schwarz ground state |NS, p >. It is clear that since

aNS > 0 this state is a tachyon. We can then consider the higher level states (for
simplicity we just consider open strings)

aµ
−1|NS, p > M2 = 1− D − 2

16

bµ− 1
2

|NS, p > M2 =
1

2
− D − 2

16

41



Thus the next lightest state is bµ− 1
2

|NS, p > and its mass-squared is M2 = −D−10
16

. Thus

if D < 10 then these states are also tachyonic. However as before the magic (that is
gauge symmetries from null states) happens when these states are massless, i.e. D = 10.
In this case the states aµ

−1|NS, p > are massive. Thus we take D = 10 and aNS = 1/2.
Indeed as before this is forced upon us if we want the SO(1, D − 1) Lorentz symmetry
of spacetime to be preserved in the quantum theory.

Nevertheless we are still left with some bad features. For one the Neveu-Schwarz
ground state is still a tachyon. There is also another puzzling feature: |NS, p > is a
spacetime scalar and hence it must be a Boson. We can then construct the spacetime
vector bµ− 1

2

|NS, p >. From the spacetime point of view this state should be a Boson

since it transforms under Lorentz transformations as a vector. However it is created
from |NS, p > by a Fermionic operator and thus will obey Fermi-statistics. This is
contradictory.

The solution to both these problems is to project out the odd states and in particular
|NS, p >. This is known as the GSO projection. More specifically we declare that
|NS, p > is a Fermionic state. Mathematically we introduce the operator (−1)F which
acts as (−1)F |NS, p >= −|NS, p > and {ψµ, (−1)F} = 0, [Xµ, (−1)F ] = 0. We then
project out all Fermionic states, i.e. states in the eigenspace (−1)F = −1. Thus |NS, p >
and aµ

−1|NS, p > are removed from the spectrum but the massless states bµ− 1
2

|NS, p >
remain.

Let us now consider the Ramond sector states. We already saw that the ground
state here is massless but degenerate. Indeed it is a spinor of SO(1, 9), that is to say
it can be represented by a vector in the 32-dimensional vector space that furnishes a
representation of the Clifford algebra relation {dµ

0 , d
ν
0} = ηµν , µ, ν = 0, ..., 9. We need

to discuss how (−1)F acts here. There is a natural candidate where we take (−1)F =
±Γ11 = ±Γ0Γ1...Γ9, the chirality operator in the 10-dimensional Clifford algebra. Thus
after the GSO projection |R, p > is a chiral spinor with 16 independent components.
More generally in the Ramond sector we project out states with (−1)F = −1. The GSO
projection is also required to ensure modular invariance.

In the Ramond sector of the open superstring either choice of sign is equivalent to
the other, it is just a convention. Thus for the open superstring the lightest states are
massless and consist of a spacetime vector (and hence a Boson) bµ− 1

2

|NS, p > along with

a spacetime Fermion |R, p > which can be identified with a chiral spinor. Note that
there is a Bose-Fermi degeneracy: onshell, and gauged fixed we find 8 Bosonic and 8
Fermionic states (Why? - you can see this in lightcone gauge).

Let us consider closed strings. Here the states are essentially obtained by taking a
tensor product of left and right moving modes and hence there are four possibilities:

|NS >L ⊗ |NS >R

|R >L ⊗ |R >R

|NS >L ⊗ |R >R

|R >L ⊗ |NS >L
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(6.18)

In this case the relative sign taken in the GSO projection is important. There are two
choices: either we chose the same chirality projector for the left and right moving modes
or the opposite. This leads to two distinction theories known as the type IIB and type
IIA superstring respectively. The states one find are of the form

|NS >L ⊗ |NS >R

|R+ >L ⊗ |R− >R

|NS >L ⊗ |R− >R

|R+ >L ⊗ |NS >L

(6.19)

for type IIA and

|NS >L ⊗ |NS >R

|R+ >L ⊗ |R+ >R

|NS >L ⊗ |R+ >R

|R+ >L ⊗ |NS >L

(6.20)

for type IIB. Here the ± sign corresponds to the different choice of GSO projector for
the left and right moving modes.

The spacetime Bosons come from either the NS-NS or R-R sectors whereas the
spacetime Fermions from the NS-R or R-NS sectors. One sees that in the type IIA
theory there are Fermionic states with both spacetime chiralities but in the type IIB
theory only one chirality appears.

Let us look more closely at the massless Bosonic states. The NS-NS sector is essen-
tially the same as the spectrum of the Bosonic string only now they are created from the
vacuum by bµ− 1

2

and b̃µ− 1
2

rather than aµ
−1 and ãµ

−1. In particular we still find a graviton,

Kalb-Ramond field and a dilaton. This sector is universal to all closed string theories.
However we also have R-R fields. These arise as a tensor product of a left and right

spinor ground state. As such they form a ‘bi-spinor’:

Fαβ = |R± >Lα ⊗ |R± >Rβ (6.21)

Any bi-spinor can be expanded in terms of the associated Γ-matrices:

Fαβ =
10∑

p=0

Fµ1...µp(Γ
µ1...µpΓ0)αβ (6.22)

Here we have used the fact that {1,Γµ,Γµ1µ2 , ...,Γµ1...µ10} form a basis of 32×32 matrices
and used C−1 = Γ0 to lower the spinor index. Next we note that

Γ11Γµ1...µp =
1

(10− p)!
εµ1...µpν1...ν10−pΓν1...ν10−p (6.23)
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Using the GSO projection on the left movers implies that (Γ11)γ
αFαβ = Fγβ and hence

we see that

F µ1...µp =
1

(10− p)!
εµ1...µpν1...ν10−pFν1...ν10−p (6.24)

This implies that only the fields with p ≤ 5 are independent of each other. In addi-
tion Fµ1...µ5 is self-dual. Finally the GSO projection on the right movers tells us that
Fαγ(Γ

11)γ
β = ±Fαβ where the sign is − for type IIA and + for type IIB. This implies

that p = even for type IIA and p = odd for type IIB. The physical state conditions, in
particular the vanishing of F0 and F̃0, imply that ∂[µp+1Fµ1...µp] = 0 and ∂µ1Fµ1...µp = 0.

We motivated superstrings by considering a worldsheet action that was supersym-
metric. However it turns out that, after the GSO projection, these theories also have
spacetime supersymmetry with 32 supersymmetry generators, the maximum possible.
In particular the massless Fermionic states arising from the NS-R and R-NS sectors give
two gravitini and a dilitino.

6.2 Type I and Heterotic String

There are three other possibilities. For example one can introduce open strings. Since
open strings can combine into a closed string this theory must also contain closed strings
but the presence of open strings leads to SO(32) gauge fields in spacetime. This is known
as the type I string. It is further complicated by the fact that the worldsheets of the
strings are not oriented. The resulting theory has half as much spacetime supersymmetry
as the type II theories. Indeed these days the type I string is generally viewed as an
‘orientifold’ of the type IIB string in the presence of so-called D9-branes. It is also
thought to be dual to the Heterotic SO(32) string.

A more bizarre construction is to exploit the fact the left and right moving modes
sectors of the string worldsheet do not talk to each other (in a closed string). Thus one
could take the left moving modes of a superstring living in 10 dimensions and tensor
them with the right moving modes of a Bosonic string, which live in 26 dimensions.
Remarkably this can be made to work and leads to two types of string theories known
as the Heterotic strings. These theories contain E8 × E8 or SO(32) spacetime gauge
fields.

Thus the right moving sector contains 16 extra Bosons. A fact about two-dimensions
is that a right moving Boson is the same as a pair of right moving Fermions (since the
Lorentz group in two dimension splits into two commuting, Abelian, parts that act
on left and right movers respectively). This is known as Bosonization (or sometimes
Fermionization, depending on your point of view). Since a right moving Fermion is
more natural than a right moving Boson we will work with 10 scalars Xµ and left-moving
Fermions ψµ

−, µ = 0, 1, ..., 9 along with 32 right moving Fermions λA
+, A = 1, ..., 32. In

this case left and right moving means:

γ01ψ
µ
− = −ψµ

− γ01λ
A
+ = λA

+ (6.25)
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The worldsheet action of a Heterotic string is now given by

S = − 1

4πα′

∫
d2σ∂αX

µ∂βXνηµν + iψ̄µ
−γ

α∂αψ
ν
−ηµν + iλ̄A

+γ
α∂αλ

B
+δAB (6.26)

This has (1, 0) supersymmetry:

Problem: Show that this action is invariant under

δXµ = iε̄+ψ
µ
−

δψµ
+ = γα∂αX

µε+

δλA
− = 0 (6.27)

provided that γ01ε+ = ε+.

Problem: Show that the action can be written as

S = − 1

4πα′

∫
d2σ∂αX

µ∂βXνηµν +i(ψµ
−)T (∂τ−∂σ)ψν

−ηµν +i(λA
+)T (∂τ +∂σ)λB

+δAB (6.28)

So that ψµ
− and λA

+ are indeed left and right-moving respectively.

Quantization proceeds much as before, but with all the bells and whistles turned on.
The scalars are expanded in terms left and right moving oscillators aµ

n and ãµ
n. The ψµ

−
have NS and R sectors with left moving oscillators bµr and dµ

n. And λA
+ has an expansion

in terms of right moving oscillators b̃Ar and d̃A
n for NS and R sectors respectively. In the

left moving sector we have aNS = 1/2 and aR = 0, just as for the type II superstrings.
In the right moving sector we have (going to light cone gauge removes two Xµ fields but
none of the λA

+ fields)

ãNS = 8 · 1

24
+ 32 · 1

48
= 1

ãR = 8 · 1

24
− 32 · 1

24
= −1 (6.29)

In particular we see that the right moving Ramond vacuum is massive.
Again the GSO projection is need to give modular invariance and to get rid of the

tachyons. Let us look at the massless modes. For the left moving sector again we must
take states of the form bµ− 1

2

|NS >L and |R >L, where again |R >L is a degenerate spinor

ground state with 8 physical states. However in the right moving sector we need only
consider the NS states of the form ãµ

−1|NS >R and bA− 1
2

bB− 1
2

|NS >R.

Looking at the massless spacetime Bosons we find the metric, dilaton and Kalb-
Ramond field from bµ− 1

2

|NS >L ⊗ãµ
−1|NS >R. However we also obtain a vector state

bµ− 1
2

|NS >L ⊗bA− 1
2

bB− 1
2

|NS >R. This vector state has index structure Aµ
AB and can

indeed be identified with a 10-dimensional gauge field. The Fermionic states then give
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gravitini, dilitino and gauginos. The resulting theory has 16 spacetime supersymmetries:
half of the maximum of 32 that the type II theories enjoy.

Finally modular invariance and anomaly cancelation (the spacetime spectrum is
chiral and for a general gauge group has anomalies) fixes the possible gauge groups to
be either E8 × E8 or SO(32).

6.3 The Spacetime Effective Action

The superstrings have a spacetime supersymmetry and include gravity. Therefore their
low energy effective actions are those of a supergravity. Such theories are so tightly
constrained by their symmetries that, at least to lowest order in derivatives, their action
is unique and known. In particular the Bosonic section of these theories is given by

SIIA =
1

α′4

∫
d10x

√
−g

(
e−2φ(R + 4(∂φ)2 − 1

12
H2

3 )− 1

4
F 2

2 −
1

48
F 2

4

)
+ . . .

SIIB =
1

α′4

∫
d10x

√
−g

(
e−2φ(R + 4(∂φ)2 − 1

12
H2

3 )− 1

2
F 2

1 −
1

12
F 2

3 −
1

240
F 2

5

)
+ . . .

where the ellipsis denotes additional terms (known as Chern-Simons terms) and the
subscript n = 1, 2, 3, 4, 5 indicates the number of anti-symmetric indices of the field
strength Fn = Fµ1...µn . Note that in the SIIB case there is field strength Fµ = ∂µa which
can be thought of as arising from an additional scalar. In addition the equation of motion
that arises from SIIB must be supplemented by the constraint that the five-index field
strength Fµ1µ2µ3µ4µ5 is self-dual:

Fµ1µ2µ3µ4µ5 =
1

5!

√
−gεµ1µ2µ3µ4µ5ν1ν2ν3ν4ν5F

ν1ν2ν3ν4ν5 (6.30)

We can also construct (in limited detail) the effective action for the Heterotic and
type I superstrings. These are fixed by supersymmetry and gauge symmetry to be of
the form

SI =
1

α′4

∫
d10x

√
−ge−2φ

(
R + 4(∂φ)2 − 1

12
H2

3 −
1

4
tr(F )2 + . . .

)
(6.31)

where again the ellipsis denotes Fermionic and Green-Schwarz terms that are crucial for
anomaly cancelation.

When compactified on a circle the Bosonic string admits a new duality known as
T-duality. In the superstring case one finds that type IIA string theory on a circle of
radius R is equivalent to type IIB string theory on a circle of radius α′/R. However
one finds more remarkable dualities. It turns out that the type IIB supergravity has
a symmetry φ ↔ −φ.1 From the point of view of the string theory this is suggests a

1This is simplifying things if the R-R-scalar a is not zero but a more general statement is true in
that case.
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duality between strongly coupled strings with gs large and weakly coupled stings with
gs small. This self-duality of the type IIB string is known as S-duality.

What happens in the strong coupling limit, gs → ∞ of the type IIA superstring?
Well is it conjectured that

√
α′e2φ/3 can be interpreted as the radius of an extra, eleventh,

dimension. There is a unique supergravity theory in eleven dimensions and indeed the
type IIA string effective action comes from dimensional reduction of this theory on a
circle. However there is now a great deal of evidence that the whole of type IIA string
theory arises as an expansion of an eleven-dimensional theory about zero-radius (in on
of its dimensions). This theory is known as M-theory and is rather poorly understood.
However it’s existence does seem be justified. The lowest order term is in a derivative
expansion is fixed by supersymmetry to be

SM =
1

κ9

∫
d11x

√
−g(R− 1
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4) + . . . (6.32)

where again the ellipsis denotes Chern-Simons and Fermionic terms. One also finds the
Heterotic E8 × E8 string by compactification of M-theory on a line interval.

Furthermore it promises to be very powerful as it controls not only the strong cou-
pling limit of the type IIA string but, as a consequence of duality, the strong coupling
limit of all the five known string theories. Thus one no longer thinks of there being
five separate string theories but instead one unique theory, M-theory, which contains
five different perturbative descriptions depending on what one considers to be a small
parameter.
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