
Chapter 6

Boundary Conformal Field
Theory

In the previous chapters, we have discussed Conformal Field Theories defined on
(compact) Riemann-surfaces such as the sphere or the torus. In String Theory,
these CFTs are relevant for the sector of closed strings. However, String Theory
also contains open strings whose world-sheets have boundaries. Therefore, in
order to describe the dynamics of open strings, it is necessary to study so-called
Boundary Conformal Field Theories (BCFTs). Again in String Theory, bound-
aries have the interpretation of defects in the target space where open strings
can end, and such objects are called D-branes (see figure 6.1). Furthermore, the
concept of D-branes can be generalised to abstract CFTs, which are neither free
bosons nor free fermions.

In this chapter, we give an introduction to the field of BCFT which is still an
active field of research. To do so, we focus on the example of the free boson and
then generalise the appearing structure to more general CFTs.

6.1 The Free Boson with Boundaries

6.1.1 Boundary Conditions

We start by discussing the Boundary Conformal Field Theory of the free bo-
son theory introduced in section 2.9.1 in order to illustrate the appearance of
boundaries from a Lagrangian and geometrical point of view.

Conditions for the Fields

The two-dimensional action for a free boson X(τ, σ) was given in equation (2.73)
which we recall for convenience

S =
1

4π

∫
dσ dτ

((
∂σX

)2
+

(
∂τX

)2
)

. (6.1)
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τ

σ

Figure 6.1: Two-dimensional surface with boundaries which can be interpreted
as an open string world-sheet stretched between two D-branes.

Note that we fixed the overall normalisation constant and we slightly changed
our notation such that τ ∈ (−∞, +∞) denotes the two-dimensional time coor-
dinate and σ ∈ [0, π] is the coordinate parametrising the distance between the
boundaries.

The variation of the action (6.1) is obtained similarly as in section 2.9.1, but
now with the boundary terms taken into account. More specifically, we compute
the variation as follows

δX S =
1

π

∫
dσ dτ

( (
∂σX

) (
∂σδX

)
+

(
∂τX

) (
∂τδX

) )

=
1

π

∫
dσ dτ

(
−

(
∂2

σ + ∂2
τ

)
X · δX + ∂τ

(
∂τX · δX

)
+ ∂σ

(
∂σX · δX

))
.

(6.2)

The equation of motion is obtained by requiring this expression to vanish for all
variations δX. The vanishing of the first term in the last line leads to !X = 0
which we already obtained previously. The remaining two terms can be written
as follows

1

π

∫
dσ dτ

(
∂τ

(
∂τX · δX

)
+ ∂σ

(
∂σX · δX

))

=
1

π

∫
dσ dτ &∇ •

(
&∇X δX

)

=
1

π

∫

B
dlB

(
&∇X • &n

)
δX

where we introduced &∇ = (∂τ , ∂σ)T and used Stokes theorem to rewrite the
integral

∫
dσdτ as an integral over the boundary B. Furthermore, dlB denotes
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the line element along the boundary and &n is a unit vector normal to B. In our
case, the boundary is specified by σ = 0 and σ = π so that &n = (0,±1)T as
well as dlB = dτ . The vanishing of the last two terms in (6.2) can therefore be
expressed as

0 =
1

π

∫
dτ

(
∂σX

)
δX

∣∣∣
σ=π

σ=0
.

This equation allows for two different solutions and hence for two different bound-
ary conditions. The first possibility is a Neumann boundary condition given by
∂σX|σ=0,π = 0. The second possibility is a Dirichlet condition δX|σ=0,π = 0
for all τ which implies ∂τX|σ=0,π = 0. In summary, the two different boundary
condition for the free boson theory read as follows

∂σX|σ=0,π = 0 Neumann condition,

δX|σ=0,π = 0 = ∂τX|σ=0,π Dirichlet condition.
(6.3)

Remark

Let us remark that in String Theory, a hypersurface in space-time where open
strings can end is called a D-brane. In order to explain this point, let us consider
a theory of N free bosons Xµ(τ, σ) with µ = 0, . . . , N − 1 which describe the
motion of a string in an N -dimensional space-time. We organise the fields in the
following way

(
X0, X1, . . . , Xr−1

︸ ︷︷ ︸
Neumann conditions

, Xr, . . . , XN−1

︸ ︷︷ ︸
Dirichlet conditions

)
,

where r denotes the number of bosons with Neumann boundary conditions leaving
(N − r) bosons with Dirichlet conditions.

Let us now focus on one endpoint of the open string, say at σ = 0. A Dirichlet
boundary condition for Xµ reads δXµ|σ=0 = 0 which means that the endpoint
of the open string is fixed to a particular value xµ

0 = const. However, in case
of Neumann boundary conditions, there is no restriction on the position of the
string endpoint which can therefore take any value. Clearly, since the string
moves in time, there are Neumann conditions for the time coordinate X0. Then,
the r-dimensional hypersurface in space-time described by Xµ = xµ

0 = const. for
µ = r, . . . , N − 1 is called a D(r − 1)-brane where D stands for Dirichlet.

As an example, take N = 3 and consider figure 6.1 where we see a world-sheet
of an open string stretched between two D1-branes.

Conditions for the Laurent Modes

Above, we have considered the BCFT in terms of the real variables (τ, σ) which
was convenient in order to arrive at (6.3). However, as we have seen in all the
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Figure 6.2: Illustration of the map z = exp(τ + iσ) from the infinite strip to the
complex upper half plane H+.

previous chapters, for more advanced studies a description in terms of complex
variables is very useful. Similarly as before, a mapping from the infinite strip
described by the real variables (τ, σ) to the complex upper half plane H+ is
achieved by z = exp(τ + iσ). Note in particular, as illustrated in figure 6.2, the
boundary σ = 0, π is mapped to the real axis z = z.

Having this map in mind, we can express the boundary conditions (6.3) for
the field X(σ, τ) in terms of the corresponding Laurent modes. Recalling that
j(z) = i ∂X(z, z), we find

∂σX = i
(
∂ − ∂

)
X = j(z)− j(z) =

∑

n∈Z

(
jn z−n−1 − jn z−n−1

)
,

i · ∂τX = i
(
∂ + ∂

)
X = j(z) + j(z) =

∑

n∈Z

(
jn z−n−1 + jn z−n−1

)
,

where we used the explicit expressions for ∂ and ∂ from page 16. For transforming
the right-hand side of these equations as z &→ ew with w = τ + iσ, we employ
that j(z) is a primary field of conformal dimension h = 1. In particular, recalling

equation (2.17), we have j(z) =
(

∂z
∂w

)1
j(w) = z j(w) leading to

∂σX =
∑

n∈Z

(
jn e−n(τ+iσ) − jn e−n(τ−iσ)

)
,

i · ∂τX =
∑

n∈Z

(
jn e−n(τ+iσ) + jn e−n(τ−iσ)

)
.

(6.4)

The Neumann as well as the Dirichlet boundary conditions at σ = 0 are then
easily obtained as

∂σX
∣∣
σ=0

=
∑

n∈Z

(
jn − jn

)
e−n τ = 0 ,

∂τX
∣∣
σ=0

=
∑

n∈Z

(
jn + jn

)
e−n τ = 0 .
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Since for generic τ the summands above are linearly independent, these two
equations are respectively solved by jn ± jn = 0 for all n. In summary, we note
that boundaries introduce relations between the chiral and anti-chiral modes of
the conformal fields which read

jn − jn = 0 Neumann condition,

jn + jn = 0 , (π0 = 0) Dirichlet condition.
(6.5)

From a String Theory point of view, (6.5) implies that an open string has only
half the degrees of freedom of a closed string.

Let us now recall from equation (2.89) our computation of the centre of mass
momentum of a closed string. Since for open strings we have σ ∈ [0, π] instead
of σ ∈ [0, 2π), we obtain in the present case that

π0 =
1

2
j0 =

1

2
j0 . (6.6)

In view of (6.5), we thus see that there are no restrictions on π0 for Neumann
boundary conditions and so the endpoints of the string are free to move along the
D-brane. For Dirichlet conditions on the other hand, we have π0 = 0 implying
that the endpoints are fixed.

Combined Boundary Condition

In the previous paragraph, we have considered the boundary at σ = 0. Let
us now turn to the other boundary at σ = π. Performing the same steps as
before, we see that Neumann-Neumann as well as Dirichlet-Dirichlet conditions
are characterised by the constraints found in (6.5).

However, mixed boundary conditions, e.g. Neumann-Dirichlet, require a mod-
ification. In particular, jn − jn = 0 at σ = 0 and jn + jne

−2inσ = 0 at σ = π can
only be solved for n ∈ Z + 1

2 . All possible combinations of boundary conditions
are then summarised as

jn − jn = 0 , n ∈ Z Neumann-Neumann,

jn − jn = 0 , n ∈ Z + 1
2 Neumann-Dirichlet,

jn + jn = 0 , n ∈ Z + 1
2 Dirichlet-Neumann,

jn + jn = 0 , n ∈ Z Dirichlet-Dirichlet.

Solutions to the Boundary Condition

Next, let us determine the solutions to the boundary conditions stated above.
First, we integrate equations (6.4) to obtain X(τ, σ) in the closed sector

X
(
τ, σ

)
= x0 − i

(
τ + iσ

)
j0 − i

(
τ − iσ

)
j0 +

∑

n#=0

i

n

(
jne

−n(τ+iσ) + jne
−n(τ−iσ)

)

(6.7)
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where x0 is an integration constant. We then implement the boundary conditions
to project onto the open sector. For the Neumann-Neumann case we find

X(N,N)
(
τ, σ

)
= x0 − 2 i τ j0 + 2 i

∑

n#=0

jn

n
e−n τ cos

(
nσ

)
,

and for the Dirichlet-Dirichlet case we obtain along the same lines

X(D,D)
(
τ, σ

)
= x0 + 2 σ j0 + 2

∑

n#=0

jn

n
e−n τ sin

(
nσ

)
.

Having arrived at this solution, we can become more concrete about the Dirichlet-
Dirichlet boundary conditions. We impose that X(τ, σ = 0) = xa

0 and X(τ, σ =
π) = xb

0, which means that the endpoints of the string are fixed at positions xa
0

and xb
0. Using the explicit solution for X(D,D)(τ, σ), we obtain the relation

j0 =
xb

0 − xa
0

2π
. (6.8)

Finally, for completeness, the solutions for the case of mixed Neumann-Dirichlet
boundary conditions read as follows

X(N,D)
(
τ, σ

)
= x0 + 2 i

∑

n∈Z+ 1
2

jn

n
e−n τ cos

(
nσ

)
,

X(D,N)
(
τ, σ

)
= x0 + 2

∑

n∈Z+ 1
2

jn

n
e−n τ sin

(
nσ

)
.

Note that the index of the Laurent modes in this sector is the same as for the
twisted sector of the free boson Z2-orbifold discussed in section 4.2.5.

Conformal Symmetry

Let us remark that equations (6.5) apply to the Laurent modes of the two U(1)
currents j(z) and j(z) of the free boson theory leaving only a diagonal U(1) sym-
metry. However, in addition there is always the conformal symmetry generated
by the energy-momentum tensor. Since boundaries in general break certain sym-
metries, we expect also restrictions on the Laurent modes of energy-momentum
tensor.

Indeed, recalling that T (z) and T (z) can be expressed in terms of the currents
j(z) and j(z) in the following way

T (z) =
1

2
N

(
j j

)
(z) , T (z) =

1

2
N

(
j j

)
(z) ,
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we find that the Neumann as well as the Dirichlet boundary conditions (6.5)
imply for Ln = 1

2N(j j)n that

Ln − Ln = 0 . (6.9)

Let us emphasise that this condition can be expressed as T (z) = T (z) which in
particular means the central charges of the holomorphic and anti-holomorphic
theories have to be equal, i.e. c = c. For String Theory, this observation has the
immediate implication that boundaries, that is D-branes, can only be defined for
the Type II Superstring Theories, as opposed to the heterotic string theories.

6.1.2 Partition Function

Definition

Let us now consider the one-loop partition function for BCFTs. To do so, we
first review the construction for the case without boundaries and then compare
to the present situation.

• In section 4.1, we defined the one-loop partition function for CFTs without
boundaries as follows. We started from a theory defined on the infinite
cylinder described by (τ, σ) where σ was periodic and τ ∈ (−∞, +∞). Next,
we imposed periodicity conditions also on the time coordinate τ yielding
the topology of a torus.

• In the present case, the space coordinate σ is not periodic and thus we
start from a theory defined on the infinite strip given by σ ∈ [0, π] and
τ ∈ (−∞, +∞). For the definition of the one-loop partition function, we
again make the time coordinate τ periodic leaving us with the topology of
a cylinder instead of a torus. This is illustrated in figure 6.3.

• Similarly to the modular parameter of the torus, there is a modular param-
eter t with 0 ≤ t < ∞ parametrising different cylinders. The inequivalent
cylinders are described by {(τ, σ) : 0 ≤ σ ≤ π, 0 ≤ τ ≤ t}.

For the partition function, we need to determine the operator generating
translations in time circling the cylinder once along the τ direction. Because
boundaries lead to an identification of the left- and right-moving sector as required
by (6.9), we see that this operator is the Hamiltonian say in the open sector

Hopen = (Lcyl.)0 = L0 −
c

24
,

which we inferred from the closed sector Hamiltonian Hclosed = (Lcyl.)0 + (Lcyl.)0.
In analogy to the case of the torus partition function, we then define the cylinder
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Figure 6.3: Illustration how the cylinder partition function is obtained from the
infinite strip by cutting out a finite piece and identifying the ends.

partition function as Z = Tr exp(−2π tHopen) which can be brought into the
following form

ZC(t
)

= TrHB

(
qL0− c

24

)
where q = e−2πt .

Here, the superscript C on Z indicates the cylinder partition function and HB
denotes the Hilbert space of all states satisfying one of the boundary conditions
(6.5). Clearly, from a String Theory point of view, this is just the Hilbert space
of an open string.

Free Boson I : Cylinder Partition Function (Loop-Channel)

We close this section by determining the cylinder partition function for the free
boson. Recalling our calculation from page 123 and setting τ = it, we obtain

TrHB

(
qL0− c

24

)∣∣∣∣
without j0

=
1

η (it)
.

However, there we have assumed the action of j0 on the vacuum to vanish which
in the case of String Theory is in general not applicable. Taking into account
the effect of j0, we now study the three different cases of boundary conditions in
turn.

• For the case of Neumann-Neumann boundary conditions, the momentum
mode π0 = 1

2 j0 is unconstrained and in principle contributes to the trace.
Since it is a continuous variable, the sum is replaced by an integral

TrHB

(
q

1
2 j2

0

)
=

∑

n0

〈
n0

∣∣ e−πt j2
0
∣∣n0

〉
=

∑

n0

e−πt n2
0 −→

∫ ∞

−∞
dπ0 e−4πt π2

0 ,
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where we utilised n0 = 2π0. Evaluating this Gaussian integral leads to the
following additional factor for the partition function

1

2
√

t
. (6.10)

• For the Dirichlet-Dirichlet case, we have seen in equation (6.8) that j0

is related to the positions of the string endpoints. Therefore, we have a
contribution to the partition function of the form

q
1
2 j2

0 = exp

(
−2πt

1

2

(
xb

0 − xa
0

2π

)2)
= exp

(
− t

4π

(
xb

0 − xa
0

)2
)

.

• Finally, for the case of mixed Neumann-Dirichlet boundary conditions, we
saw that the Laurent modes jn take half-integer values for n. We do not
present a detailed calculation for this case but recall our discussion of the
free boson orbifold from section 4.2.5. There, we encountered the twisted
sector where the Laurent modes jn also took half-integer values for n. From
equation (4.51), we can then extract Trn∈Z+ 1

2

(
qL0− c

24

)
giving us the parti-

tion function in the present case.

In summary, the cylinder partition functions for the example of the free boson
read

ZC(D,D)
bos. (t) = exp

(
− t

4π

(
xb

0 − xa
0

)2
) 1

η (it)
,

ZC(N,N)
bos. (t) =

1

2
√

t

1

η (it)
, (6.11)

ZC(mixed)
bos. (t) =

√
η (it)

ϑ4(it)
.

6.2 Boundary States for the Free Boson

In the last section, we have described the boundaries for the free boson CFT
implicitly via the boundary conditions for the fields. However, in an abstract CFT
usually there is no Lagrangian formulation available and no boundary terms will
arise from a variational principle. Therefore, to proceed, we need a more inherent
formulation of a boundary.

In the following, we first illustrate the construction of so-called boundary
states for the example of the free boson and in the next section, we generalise
the structure to Rational Conformal Field Theories with boundaries.
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τσ

τ

σ

⇐⇒

Figure 6.4: Illustration of world-sheet duality relating the cylinder amplitude in
the open and closed sector.

6.2.1 Boundary Conditions

Boundary States

Let us start with the following observation. As it is illustrated in figure 6.4, by
interchanging τ and σ, we can interpret the cylinder partition function of the
Boundary Conformal Field Theory on the left-hand side as a tree-level amplitude
of the underlying theory shown on the right-hand side. From a String Theory
point of view, the tree-level amplitude describes the emission of a closed string
at boundary A which propagates to boundary B and is absorbed there. Thus, a
boundary can be interpreted as an object, which couples to closed strings. Note
that in order to simplify our notation, we call the sector of the BCFT open and
the sector of the underlying CFT closed. The relation above then reads

(σ, τ)open ←→ (τ, σ)closed , (6.12)

which in String Theory is known as the world-sheet duality between open and
closed strings.

The boundary for the closed sector can be described by a coherent state in
the Hilbert space H⊗H which takes the general form

∣∣B
〉

=
∑

i,j∈H⊗H

αij

∣∣i, j
〉

.

Here i, j label the states in the holomorphic and anti-holomorphic sector ofH⊗H,
and the coefficients αij encode the strength of how the closed string mode |i, j〉
couples to the boundary |B〉. Such a coherent state is called a boundary state
and provides the CFT description of a D-brane in String Theory.
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Boundary Conditions

Let us now translate the boundary conditions (6.3) into the picture of boundary
states. By using relation (6.12), we readily obtain

∂τXclosed|τ=0

∣∣BN

〉
= 0 Neumann condition,

∂σXclosed|τ=0

∣∣BD

〉
= 0 Dirichlet condition.

(6.13)

Next, for the free boson theory we would like to express the boundary con-
ditions (6.13) of a boundary state in terms of the Laurent modes. To do so, we
recall (6.4) and set τ = 0 to obtain

i · ∂τXclosed

∣∣
τ=0

=
∑

n∈Z

(
jn e−inσ + jn e+inσ

)
,

∂σXclosed

∣∣
τ=0

=
∑

n∈Z

(
jn e−inσ − jn e+inσ

)
.

(6.14)

We then relabel n → −n in the second term of each line and observe again that
for generic σ, the summands are linearly independent. Therefore, the boundary
conditions (6.13) expressed in terms of the Laurent modes read

(
jn + j−n

) ∣∣BN

〉
= 0 ,

(
π0 |BN〉 = 0

)
Neumann condition,

(
jn − j−n

) ∣∣BD

〉
= 0 Dirichlet condition,

(6.15)

for each n. Such conditions relating the chiral and anti-chiral modes acting on the
boundary state are called gluing conditions. Note that for the case of Neumann
boundary conditions, in the String Theory picture the relation π0 = 0 means that
there is no momentum transfer through the boundary. On the other hand, for
Dirichlet conditions there is no restriction on π0.

Solutions to the Gluing Conditions

Next, we are going to state the solutions for the gluing conditions for the example
of the free boson and verify them thereafter. For now, let us ignore the constraints
on j0. We will come back to this issue later.

The boundary states for Neumann and Dirichlet conditions in terms of the
Laurent modes jn and jn read

∣∣BN

〉
=

1

NN
exp

(
−

∞∑

k=1

1

k
j−k j−k

)∣∣ 0
〉

Neumann condition,

∣∣BD

〉
=

1

ND
exp

(
+

∞∑

k=1

1

k
j−k j−k

)∣∣ 0
〉

Dirichlet condition,

(6.16)
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where NN and ND are normalisation constants to be fixed later. One possibility
to verify the boundary states is to straightforwardly evaluate the gluing condi-
tions (6.15) for the solutions (6.16) explicitly. However, in order to highlight the
underlying structure, we will take a slightly different approach.

Construction of Boundary States

In the following, we focus on a boundary state with Neumann conditions but
comment on the Dirichlet case at the end. To start, we rewrite the Neumann
boundary state in (6.16) as

∣∣BN

〉
=

1

NN
exp

(
−

∞∑

k=1

1

k
j−k j−k

)∣∣0
〉

=
1

NN

∞∏

k=1

∞∑

m=0

1√
m!

(
j−k√

k

)m∣∣0
〉
⊗ 1√

m!

(
−j−k√

k

)m∣∣0
〉

=
1

NN

∞∑

m1=0

∞∑

m2=0

. . .
∞∏

k=1

1√
mk!

(
j−k√

k

)mk∣∣0
〉
⊗ 1√

mk!

(
−j−k√

k

)mk∣∣0
〉

,

(6.17)

where we first have written the sum in the exponential as a product and then we
expressed the exponential as an infinite series. Next, we note that the following
states form a complete orthonormal basis for all states constructed out of the
Laurent modes j−k

∣∣&m
〉

=
∣∣m1, m2, . . .

〉
=

∞∏

k=1

1√
mk!

(
j−k√

k

)mk∣∣0
〉

. (6.18)

The orthonormal property can be seen by computing

〈
&n

∣∣ &m
〉

=
∞∏

k=1

1√
nk! mk!

1
√

k
nk+mk

〈
0
∣∣ jnk

+k jmk
−k

∣∣0
〉

k
=

∞∏

k=1

δnk,mk
,

where we used that
〈
0
∣∣ jn

+k jm
−k

∣∣0
〉

= k n
〈
0
∣∣ jn−1

+k jm−1
−k

∣∣0
〉

= δm,n kn n! .

We now introduce an operator U mapping the chiral Hilbert space to its charge
conjugate U : H → H+ and similarly for the anti-chiral sector. In particular, the
action of U reads

U jk U−1 = −jk = −
(
j−k

)†
, U jk U−1 = −jk = −

(
j−k

)†
, U c U−1 = c∗ ,

where c is a constant and * denotes complex conjugation. In the present example,
the ground state |0〉 is non-degenerate and is left invariant by U .1 Knowing these

1For degenerate ground states, appearing for instance for CFTs with extended symmetries
studied in chapter 3, a non-trivial action on the ground state might need to be defined.



6.2. BOUNDARY STATES FOR THE FREE BOSON 217

properties, we can show that U is anti-unitary. For this purpose, we expand a
general state as |a〉 =

∑
%m A%m|&m〉 and compute

U
∣∣a

〉
=

∑

%m

U A%m U−1
∞∏

k=1

1√
mk!

(
U j−k U−1

√
k

)mk

U
∣∣0

〉

=
∑

%m

A∗
%m

∞∏

k=1

(
−1

)mk
∣∣&m

〉
,

(6.19)

where &m denotes the multi-index {m1, m2, . . .}. By using that |&m〉 and |&n〉 form
an orthonormal basis, we can now show that U is anti-unitary

〈
Ub

∣∣ Ua
〉

=
∑

%n,%m

〈
&n

∣∣ B%n

∞∏

k=1

(
−1

)nk+mk A∗
%m

∣∣&m
〉

=
∑

%m

A∗
%m B%m =

〈
a

∣∣ b
〉

.

After introducing an orthonormal basis and the anti-unitary operator U , we
now express (6.17) in a more general way which will simplify and generalise the
following calculations

∣∣B
〉

=
1

N
∑

%m

∣∣&m
〉
⊗

∣∣U &m
〉

.

Verification of the Gluing Conditions

In order to verify the gluing conditions (6.15) for Neumann boundary states, we
note that these have to be satisfied also when an arbitrary state 〈 a | ⊗ 〈 b | is
multiplied from the left. We then calculate
〈
a

∣∣⊗
〈
b
∣∣ jn + j−n

∣∣B
〉

=
1

N
∑

%m

〈
a

∣∣⊗
〈
b
∣∣ jn + j−n

∣∣&m
〉
⊗

∣∣U &m
〉

=
1

N
∑

%m

〈
b
∣∣ jn

∣∣&m
〉 〈

a
∣∣U &m

〉
+

〈
b
∣∣&m

〉 〈
a

∣∣ j−n

∣∣U &m
〉

.

Next, due to the identifications on the boundary, the holomorphic and the anti-
holomorphic algebra are identical. We can therefore replace matrix elements in
the anti-holomorphic sector by those in the holomorphic sector. Using finally the
anti-unitarity of U and that

∑
%m|&m〉〈&m| = 1, we find

〈
a

∣∣⊗
〈
b
∣∣ jn + j−n

∣∣B
〉

=
1

N
∑

%m

〈
b
∣∣ jn

∣∣&m
〉 〈

a
∣∣U &m

〉
+

〈
b
∣∣&m

〉 〈
a

∣∣ j−n

∣∣U &m
〉

=
1

N
∑

%m

〈
b
∣∣ jn

∣∣&m
〉 〈

&m
∣∣U−1a

〉
+

〈
b
∣∣&m

〉 〈
&m

∣∣ (
−jn

) ∣∣U−1a
〉

=
1

N

(〈
b
∣∣ jn

∣∣U−1a
〉
−

〈
b
∣∣ jn

∣∣U−1a
〉)

= 0 .
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Therefore, we have verified that the Neumann boundary state in (6.16) is indeed
a solution to the corresponding gluing condition in (6.15).

For the case of Dirichlet boundary conditions, the action of U on the Laurent
modes jn and jn is chosen with a + sign while we still require U to be anti-
unitary, i.e. U c U−1 = c∗. The calculation is then very similar to the Neumann
case presented here. Note furthermore, the construction of boundary states and
the verification of the gluing conditions is also applicable for more general CFTs,
for instance RCFTs, which we will consider in section 6.3.

Momentum Dependence of Boundary States

In equation (2.89), we have computed the momentum π0 the closed sector which
is related to j0 and j0 as π0 = j0 = j0. This is in contrast to the result in the
open sector which we obtained in (6.6). In the following, the relation between j0,
j0 and π0 should be clear from the context, but let us summarise that

(
π0

)
closed

= j0 = j0 ,
(
π0

)
open

=
1

2
j0 =

1

2
j0 . (6.20)

From a String Theory point of view, in addition to the boundary conditions
(6.15) there is a further natural constraint on a boundary state with Dirichlet
conditions. Namely, the closed string at time τ = 0 is located at the boundary
at position xa

0. We therefore impose

Xclosed

(
τ = 0, σ

) ∣∣BD

〉
= xa

0

∣∣BD

〉

and similarly for τ = π. An easy way to realise this constraint is to perform
a Fourier transformation from momentum space |BD, π0〉 to the position space.
Concretely, this reads

∣∣BD, xa
0

〉
=

∫
dπ0 eiπ0xa

0
∣∣BD, π0

〉
.

For the boundary state with Neumann conditions, we have π0 = 0 and in position
space, there is no definite value for x0. We thus omit this label.

Conformal Symmetry

In studying the example of the free boson, we have expressed all important quan-
tities in terms of the U(1) current modes jn and jn. However, in more general
CFTs such additional symmetries may not be present but the conformal symme-
try generated by the energy-momentum tensors always is. In view of generalisa-
tions of our present example, let us therefore determine the boundary conditions
of the boundary states in terms of the Laurent modes Ln and Ln.
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Mainly guided by the final result, let us compute the following expression
by employing that T (z) = 1

2N(jj)(z) which implies Ln = 1
2

∑
k>−1 jn−kjk +

1
2

∑
k≤−1 jkjn−k

(
Ln − L−n

) ∣∣BN,D

〉

=
1

2

(
∑

k>−1

(
jn−kjk − j−n−kjk

)
+

∑

k≤−1

(
jkjn−k − jkj−n−k

)
)

∣∣BN,D

〉

=
1

2

(
jnj0 − j−nj0 +

∑

k≥1

(
jn−kjk − j−n−kjk + j−kjn+k − j−kj−n+k

)
)

∣∣BN,D

〉
.

Note that here we changed the summation index k → −k in the second sum.
Next, we recall (6.15) and j0 = j0 to observe that the terms involving j0 and j0

vanish when applied to |BN,D〉. The remaining terms can be rewritten as

1

2

∑

k≥1

(
jn−k

(
jk ± j−k

)
∓ jn−kj−k ∓ j−n−k

(
j−k ± jk

)
± j−n−kj−k

+ j−k

(
jn+k ± j−n−k

)
∓ j−kj−n−k ∓ j−k

(
jn−k ± j−n+k

)
± j−kjn−k

)∣∣BN,D

〉
.

By again employing the boundary conditions (6.15), we see that half of these
terms vanish when acting on the boundary state while the other half cancels
among themselves. In summary, we have shown that

(
Ln − L−n

) ∣∣BN,D

〉
= 0 .

6.2.2 Tree-Level Amplitudes

Cylinder Diagram in General

We now turn to the cylinder diagram which we compute in the closed sector.
Referring again to figure 6.4, in String Theory we can interpret this diagram as
a closed string which is emitted at the boundary A, propagating via the closed
sector Hamiltonian Hclosed = L0 + L0 − c+c

24 for a time τ = l until it reaches the
boundary B where it gets absorbed. In analogy to Quantum Mechanics, such an
amplitude is given by the overlap

Z̃C(l) = 〈ΘB| e−2πl (L0+L0− c+c
24 ) |B〉 , (6.21)

where the tilde indicates that the computation is performed in the closed sector
(or at tree-level) and l is the length of the cylinder connecting the two boundaries.

Let us now explain the notation 〈ΘB|. This bra-vector is understood in the
sense of section 2.8 as the hermitian conjugate of the ket-vector |ΘB〉. Further-
more, we have introduced the CPT operator Θ which acts as charge conjugation
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(C) defined in (4.31), parity transformation (P) σ &→ −σ and time reversal (T)
τ &→ −τ for the two-dimensional CFT. The reason for considering this opera-
tor can roughly be explained by the fact that the orientation of the boundary a
closed string is emitted at is opposite to the orientation of the boundary where
the closed string gets absorbed. For the momentum dependence of a boundary
state |B, π0〉, this implies in particular that

〈
πa

0

∣∣ πb
0

〉
= δ

(
πa

0 + πb
0

)
. (6.22)

Without a detailed derivation, we finally note that the theory of the free boson
is CPT invariant and so the action of Θ on the boundary states (6.16) of the free
boson theory (and on ordinary numbers c ∈ C) reads

Θ
∣∣B, π0

〉
=

1

N ∗

∣∣B, π0

〉
, Θ c Θ−1 = c∗ , (6.23)

where * denotes complex conjugation.

Free Boson II : Cylinder Diagram (Tree-Channel)

Let us now be more concrete and compute the overlap of two boundary states
(6.21) for the example of the free boson. To do so, we note that for the free boson
CFT we have c = c = 1 and we recall from section 4.2.1 that

L0 =
1

2
j0 j0 +

∑

k≥1

j−k jk ,

and similarly for L0. Next, we perform the following calculation in order to eval-
uate (6.21). In particular, we use j−kjk jmk

−k |0〉 = mk k jmk
−k |0〉 which we obtained

from equation (4.13) to find

q
P

k≥1 j−kjk
∣∣&m

〉
=

∞∏

k=1

∞∑

p=0

(
−2πiτ

)p

p!

(
j−kjk

)p
∞∏

l=1

1√
ml!

(
j−l√

l

)ml∣∣0
〉

=
∞∏

k=1

∞∑

p=0

(
−2πiτ

)p

p!

(
mk k

)p
∞∏

l=1

1√
ml!

(
j−l√

l

)ml∣∣0
〉

=
∞∏

k=1

q mk k
∣∣&m

〉
.

(6.24)

The cylinder diagram for the three possible combinations of boundary conditions
is then computed as follows.

• For the case of Neumann-Neumann boundary conditions, we have j0|BN〉 =
j0|BN〉 = 0 and so the momentum contribution vanishes. For the remaining
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part, we calculate using (6.24) and (6.19)

Z̃C(N,N)
bos. (l) =

e−2πl(− 2
24)

N 2
N

∑

%m

〈
&m

∣∣ e−2πl
P

k≥1 j−kjk
∣∣&m

〉
×

×
〈
U &m

∣∣ e−2πl
P

k≥1 j−kjk
∣∣U &m

〉

=
e−2πl(− 2

24)

N 2
N

∑

%m

∞∏

k=1

e−2πl mkk
(
−1

)P∞
l=1 ml e−2πl mkk

(
−1

)P∞
l=1 ml

=
e

πl
6

N 2
N

∞∏

k=1

∞∑

mk=0

(
e−4πl k

)mk

=
1

N 2
N

e
πl
6

∞∏

k=1

1

1− e−4πl k

where in the last step we performed a summation of the geometric series.
Let us emphasise that due to the action of the CPT operator Θ shown
in (6.23), N 2 is just the square of N and not the absolute value squared.
Then, with q = e2πiτ , τ = 2il and η(τ) the Dedekind η-function defined
in section 4.2.1, we find that the cylinder diagram for Neumann-Neumann
boundary conditions is expressed as

Z̃C(N,N)
bos. (l) =

1

N 2
N

1

η
(
2il

) . (6.25)

• Next, we consider the case of Dirichlet-Dirichlet boundary conditions. Not-
ing that U now acts trivially on the basis states, we see that apart from
the momentum contribution the calculation is similar to the case with
Neumann-Neumann conditions. However, for the momentum dependence
we compute using (6.22) and (6.23)

∫ ∞

−∞
dπa

0 dπb
0 e+ixa

0πa
0 e+ixb

0πb
0
〈
πa

0

∣∣e−2πl(j0)2
∣∣πb

0

〉

=

∫ ∞

−∞
dπa

0 dπb
0 e+ixa

0πa
0 e+ixb

0πb
0 e−2πl(πb

0)
2

δ
(
πa

0 + πb
0

)

=

∫ ∞

−∞
dπa

0 e
−2πl

„
πa
0+i

xb
0−xa

0
4πl

«2

e−
(xb

0−xa
0)

2

8πl =
1√
2l

e−
(xb

0−xa
0)

2

8πl

where we completed a perfect square and performed the Gaussian integra-
tion. In order to arrive at the result above, we also employed that in the
closed sector π0 = j0 = j0. The cylinder diagram with Dirichlet-Dirichlet
boundary conditions therefore reads

Z̃C(D,D)
bos. (l) =

1

N 2
D

exp

(
−

(
xb

0 − xa
0

)2

8πl

)
1√
2l

1

η
(
2il

) .
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• Finally, for mixed Neumann-Dirichlet conditions, the boundary state satis-
fies j0|BD〉 = j0|BD〉 = π0|BD〉 which leads us to

∫
dπ0 ei π0x0

〈
π0 = 0

∣∣ e−2πl j2
0
∣∣π0

〉
=

∫
dπ0 ei π0x0e−2πl π2

0 δ
(
π0

)
= 1 .

In the anti-holomorphic sector of the Dirichlet boundary state, the action
of U on the basis states |&m〉 is trivial and so we obtain a single factor of
(−1)

P
k mk . For the full cylinder diagram, this implies

Z̃C(mixed)
bos. (l) =

e
πl
6

NNND

∞∏

k=1

∞∑

mk=0

(
−e−4πl k

)mk

=
e

πl
6

NNND

∞∏

k=1

1

1 + e−4πl k
.

Recalling then the definitions of ϑ-functions from page 138, we see that we
can express the cylinder diagram for mixed boundary conditions as

Z̃C(mixed)
bos. (l) =

√
2

NNND

√
η (2il)

ϑ2(2il)
.

Loop-Channel – Tree-Channel Equivalence

Let us come back to figure 6.4. As it is illustrated there and motivated at the
beginning of this section, we expect the cylinder diagram in the closed and open
sector to be related. More specifically, this relation is established by (σ, τ)open ↔
(τ, σ)closed where σ is the world-sheet space coordinate and τ is world-sheet time.
However, this mapping does not change the cylinder, in particular, it does not
change the modular parameter τ . In the open sector, the cylinder has length 1

2
and circumference t when measured in units of 2π, while in the closed sector we
have length l and circumference 1. Referring then to equation (4.6) in chapter 4,
we find for the modular parameter in the open and closed sector that

τopen =
α2

α1
=

it

1/2
= 2it , τclosed =

α2

α1
=

i

l
.

As we have emphasised, the modular parameters in the open and closed sector
have to be equal which leads us to the relation

t =
1

2l
.

This is the formal expression for the pictorial loop-channel – tree-channel equiv-
alence of the cylinder diagram illustrated in figure 6.4.

We now verify this relation for the example of the free boson explicitly which
will allow us to fix the normalisation constants ND and NN of the boundary
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states. Recalling the cylinder partition function (6.11) in the open sector, we
compute

ZC(N,N)
bos.

(
t
)

=
1

2
√

t

1

η(it)

t= 1
2l−−−−→

√
l

2

1

η
(
− 1

2il

) =
1

2 η(2il)
=
N 2

N

2
Z̃C(N,N)

bos.

(
l
)

,

where we used the modular properties of the Dedekind η function summarised in
equation (4.15). Therefore, requiring the results in the loop- and tree-channel to
be related, we can fix

NN =
√

2 . (6.26)

Next, for Dirichlet-Dirichlet boundary conditions, we find

ZC(D,D)
bos.

(
t
)

= exp
(
− t

4π

(
xb

0 − xa
0

)2
) 1

η (it)
t= 1

2l−−−−→ exp
(
− 1

8πl

(
xb

0 − xa
0

)2
) 1

η
(
− 1

2il

) = N 2
D Z̃

C(D,D)
bos.

(
l
)

,

which allows us to fix the normalisation constant as

ND = 1 .

Finally, the loop-channel – tree-channel equivalence for mixed Neumann-Dirichlet
boundary conditions can be verified along similar lines. This discussion shows
that indeed the cylinder partition function for the free boson in the open and
closed sector are related via a modular transformation, more concretely via a
modular S-transformation.

Summary and Remark

Let us now briefly summarise our findings of this section and close with some
remarks.

• By performing the so-called world-sheet duality (σ, τ)open ↔ (τ, σ)closed, we
translated the Neumann and Dirichlet boundary conditions from the open
sector to the closed sector. In String Theory, the boundary in the closed
sector is interpreted as an object which absorbs or emits closed strings.

• Working out the boundary conditions in terms of the Laurent modes of the
free boson theory, we obtained the gluing conditions

(
jn ± j−n

)∣∣BN,D

〉
= 0

which imply that the two U(1) symmetries generated by j(z) and j(z) are
broken to a diagonal U(1).
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• For the example of the free boson theory, we stated the solution |B〉 to the
gluing conditions and verified them. Along the way, we also outlined the
idea for constructing boundary states for more general theories.

• The cylinder amplitude in the closed sector (tree-level) is computed from
the overlap of two boundary states

Z̃C(l) = 〈ΘB| e−2πl (L0+L0− c+c
24 ) |B〉 .

We performed this calculation for the free boson and checked that it is
related to the cylinder partition function in the open sector via world-sheet
duality. In particular, this transformation is a modular S-transformation.

• Finally, the BCFT also has to preserve the conformal symmetry generated
by T (z). The boundary states respect this symmetry in the sense that the
following conditions have to be satisfied

(
Ln − L−n

)∣∣BN,D

〉
= 0 ,

which we checked for the example of the free boson theory.

• Very similarly, one can generalise the concept of boundaries and boundary
states to the CFT of a free fermion which is very important for applications
in Superstring Theory.
As we mentioned already, in String Theory boundary states are called D-
branes to emphasise the space-time point of view of such objects. They are
higher dimensional generalisations of strings and membranes, and indeed
they play a very important role in understanding the non-perturbative sec-
tor of String Theory. It was one of the big insights at the end of the last
millennium that such higher dimensional objects are naturally contained in
String Theory (which started as a theory of only one-dimensional objects)
and gave rise to various surprising dualities, the most famous surely being
the celebrated AdS/CFT correspondence.

6.3 Boundary States for RCFTs

After having studied the Boundary CFT of the free boson in great detail, let
us now generalise our findings to theories without a Lagrangian description. In
particular, we focus on RCFTs and we will formulate the corresponding Boundary
RCFT just in terms of gluing conditions for the theory on the sphere.
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Boundary Conditions

We consider Rational Conformal Field Theories with chiral and anti-chiral sym-
metry algebras A respectively A. As we have seen in chapter 2, for the theory on
the sphere the Hilbert space splits into irreducible representations of A⊗A as

H =
⊕

i,j

Mij Hi ⊗Hj

where Mij are the same multiplicities of the highest weight representation ap-
pearing in the modular invariant torus partition function. Note that for the case
of RCFTs we are considering, there is only a finite number of irreducible repre-
sentations and that the modular invariant torus partition function is given by a
combination of chiral and anti-chiral characters as follows (4.61)

Z(τ, τ) =
∑

i,j

Mij χi(τ) χj(τ) .

Generalising the results from the free boson theory, we state without deriva-
tion that a boundary state |B〉 in the RCFT preserving the symmetry algebra
A = A has to satisfy the following gluing conditions

(
Ln − L−n

) ∣∣B
〉

= 0 conformal symmetry,
(
W i

n − (−1)hi
W

i
−n

) ∣∣B
〉

= 0 extended symmetries,
(6.27)

where W i
n is the holomorphic Laurent mode of the extended symmetry generator

W i with conformal weight hi = h(W i), and W
i
denotes the generator in the anti-

holomorphic sector. However, the condition for the extended symmetries can be
relaxed, so that also Dirichlet boundary conditions similar to the example of a
free boson are included

(
W i

n − (−1)hi
Ω

(
W

i
−n

)) ∣∣B
〉

= 0 ,

where Ω : A →A is an automorphism of the chiral algebra A. Such an auto-
morphism Ω is also called a gluing automorphism and for our example of the free
boson with Dirichlet boundary conditions, it simply is Ω : W n &→ −W n.

Ishibashi States

Next, let us recall from (4.31) that the charge conjugation matrix C maps highest
weight representations i to their charge conjugate i+. Denoting then the Hilbert
space built upon the charge conjugate represention by H+

i , we can state the
important result of Ishibashi:



226 CHAPTER 6. BOUNDARY CONFORMAL FIELD THEORY

For A = A and Hi = H+
i , to each highest weight representation φi of

A one can associate an up to a constant unique state |Bi〉〉 such that
the gluing conditions are satisfied.

Note that since the CFTs we are considering are rational, there is only a finite
number of highest weight states and thus only a finite number of such so-called
Ishibashi states |Bi〉〉.

We now construct the Ishibashi states in analogy to the boundary states of
the free boson. Denoting by |φi, &m〉 an orthonormal basis for Hi, the Ishibashi
states are written as

∣∣Bi

〉〉
=

∑

%m

∣∣φi, &m
〉
⊗ U

∣∣φi, &m
〉

, (6.28)

where U : H → H+
is an anti-unitary operator acting on the symmetry generators

W
i
as follows

U W
i
n U−1 = (−1)hi (

W
i
−n

)†
.

The proof that the Ishibashi states are solutions to the gluing conditions (6.27) is
completely analogous to the example of the free boson and so we will not present
it here.

The Cardy Condition

For later purpose, let us now compute the following overlap of two Ishibashi states

〈〈
Bj

∣∣ e−2πl
(

L0+L0− c+c
24

) ∣∣Bi

〉〉
. (6.29)

Utilising the gluing conditions for the conformal symmetry generator (6.27), we
see that we can replace L0 by L0 and c by c. Next, because the Hilbert spaces of
two different HWRs φi and φj are independent of each other, the overlap above
is only nonzero for i = j+. Note that here we have written the charge conjugate
j+ of the highest weight φj because the hermitian conjugation also acts as charge
conjugation. We then obtain

〈〈
Bj

∣∣ e−2πl
(

L0+L0− c+c
24

) ∣∣Bi

〉〉
= δij+

〈〈
Bi

∣∣ e2πi (2il)
(

L0− c
24

) ∣∣Bi

〉〉

= δij+ TrHi

(
qL0− c

24

)

= δij+ χi

(
2il

)
(6.30)

with χi the character of the highest weight φi defined on page 129. Performing a
modular S-transformation for this overlap, by the same reasoning as for the free
boson, we expect to obtain a partition function in the boundary sector. However,
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because the S-transform of a character χi(2il) in general does not give non-
negative integer coefficients in the loop-channel, it is not clear whether to interpret
such a quantity as a partition function counting states of a given excitation level.

As it turns out, the Ishibashi states are not the boundary states itself but
only building blocks guaranteed to satisfy the gluing conditions. A true boundary
state in general can be expressed as a linear combination of Ishibashi states in
the following way

∣∣Bα

〉
=

∑

i

Bi
α

∣∣Bi

〉〉
. (6.31)

The complex coefficients Bi
α in (6.31) are called reflection coefficients and are very

constrained by the so-called Cardy condition. This condition essentially ensures
the loop-channel – tree-channel equivalence. Indeed, using relation (6.30) and
choosing normalisations such that the action of the CPT operator Θ introduced
in (6.23) reads

Θ
∣∣Bα

〉
=

∑

i

(
Bi

α

)∗ ∣∣Bi+
〉〉

, (6.32)

the cylinder amplitude between two boundary states of the form (6.31) can be
expressed as follows

Z̃αβ(l) = 〈ΘBα| e−2πl
(

L0+L0− c+c
24

)
|Bβ〉

=
∑

i,j

Bj
α Bi

β

〈〈
Bj+

∣∣ e−2πl
(

L0+L0− c+c
24

) ∣∣Bi

〉〉

=
∑

i

Bi
α Bi

β χi

(
2il

)
.

Performing a modular S-transformation l &→ 1
2t on the characters χi, this closed

sector cylinder diagram is transformed to the following expression in the open
sector

Z̃αβ

(
l
)
→ Z̃αβ

(
1
2t

)
=

∑

i,j

Bi
α Bi

β Sij χj

(
it

)
=

∑

j

nj
αβ χj

(
it

)
= Zαβ(t) ,

where Sij is the modular S-matrix and where we introduced the new coefficients
ni

αβ. Now, the Cardy condition is the requirement that this expression can be
interpreted as a partition function in the open sector. That is, for all pairs of
boundary states |Bα〉 and |Bβ〉 in a RCFT the following combinations have to be
non-negative integers

nj
αβ =

∑

i

Bi
α Bi

β Sij ∈ Z+
0 .
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Construction of Boundary States

The Cardy condition just illustrated is very reminiscent of the Verlinde formula,
where a similar combination of complex numbers leads to non-negative fusion
rule coefficients. For the case of a charge conjugate modular invariant partition
function, that is when the characters χi(τ) are combined with χi+(τ) as Z =∑

i χi(τ) χi+(τ), we can construct a generic solution to the Cardy condition by
choosing the reflection coefficients in the following way

Bi
α =

Sα i√
S0 i

.

Note, for each highest weight representation φi in the RCFT, there not only exists
an Ishibashi state but also a boundary state, i.e. the index α in |Bα〉 also runs
from one to the number of HWRs. Employing then the Verlinde formula (4.55)
and denoting the non-negative, integer fusion coefficients by Nα

jβ, we find that

the Cardy condition for the coefficients nj
αβ is always satisfied

nj
αβ =

∑

i

Sαi Sβi Sij

S0i
=

∑

i

Sαi Sβi S∗ij+

S0i
= N j+

αβ ∈ Z+
0 .

Note that here we employed S∗ij = Sij+ which is verified by noting that S−1 = S∗

as well as that S2 = C with C the charge conjugation matrix Cij = δij+ introduced
in (4.31).

Remark

For more general modular invariant partition functions, it is still an active area of
research to construct the boundary states. Again the concept of simple currents
is very helpful to find new solutions.

Without proof, we state one important result. If J is an orbit simple current of
length L in a RCFT with charge conjugate modular invariant partition function,
then the orbits of boundary states

∣∣BJ
α

〉
=

L∑

k=1

∣∣ JkBα

〉

of the original RCFT define new boundary states for the simple current extension.
In this manner, one can construct boundary states for Gepner models which, as
presented in section 5.6, are simple current extensions of certain tensor products
of N = 2 SCFTs. For further simple current extensions of Gepner models, these
techniques are also applicable and lead to a plethora of boundary states of Gepner
models.
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6.4 CFTs on Non-Orientable Surfaces

Up to this point, we have studied Conformal Field Theories defined on the Rie-
mann sphere respectively the complex plane, and on the torus. For Boundary
CFTs, the corresponding surfaces are the upper half-plane and the cylinder. We
note that all these surfaces are orientable, that is an orientation can be chosen
globally.

However, in String Theory it is necessary to also define CFTs on non-orient-
able surfaces. One such surface is the so-called crosscap RP2 which can be viewed
as the two-sphere with opposite points identified. Other non-orientable surfaces
are the Möbius strip and the Klein bottle, and a summary of all surfaces relevant
for the following is shown in figure 6.5.

Orientifolds

Before formulating CFTs on non-orientable surfaces, let us briefly explain the
String Theory origin of such theories. Recalling the action for a free boson (6.1),
we observe that this theory has a discrete symmetry denoted as Ω which takes
the form

Ω : X
(
τ, σ

)
&→ X̃

(
τ, σ

)
= X

(
τ,−σ

)
, (6.33)

with τ and σ again world-sheet time and space coordinates. To see that the
action (6.1) is invariant under Ω, observe that

Ω
(
∂σX

)
(τ, σ) Ω−1 = −

(
∂σX

)
(τ,−σ) ,

Ω
(
∂τX

)
(τ, σ) Ω−1 = +

(
∂τX

)
(τ,−σ) .

(6.34)

Next, let us note that from the mapping (6.33), we see that Ω acts as a world-
sheet parity operator. In the String Theory picture, this means that Ω changes
the orientation of a closed string. As with any other symmetry, we can study the
quotient of the original theory by the symmetry. We have already considered a
quotient CFT in section 4.2.5, where we studied a Z2-orbifold of the free boson
compactified on a circle. Since Ω changes orientation, in analogy to orbifolds,
such a quotient is called an orientifold.

The Example of the Free Boson in More Detail

Let us further elaborate on the action of the orientifold projection Ω for the
free boson. We first note that −σ has to be interpreted properly because we
normalised the world-sheet space coordinate as σ ∈ [0, 2π) for the closed sector
and as σ ∈ [0, π] in the open sector. The correct identification for −σ then reads

−σclosed ∼ 2π − σclosed , −σopen ∼ π − σopen .
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Complex Plane

Upper Half-Plane

Cylinder

Torus

Möbius Strip
(non-orientable)

Klein Bottle
(non-orientable)

Crosscap
(non-orientable)

Figure 6.5: Two-dimensional orientable and non-orientable surfaces. On the left-
hand side, the fundamental domain can be found and it is indicated how opposite
edges are identified leading to the surfaces illustrated on the right-hand side. Note
that for the identification of opposite edges the orientation given by the arrows
is crucial.
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Next, we consider the free boson in the closed sector and express ∂σX in (6.34)
in terms of the Laurent modes jn and jn using (6.4)

Ω
(
∂σX

)
(τ, σ) Ω−1 = −

(
∂σX

)
(τ,−σ)

∑

n∈Z

(
Ω jn Ω−1 e−n(τ+iσ) − Ω jn Ω−1 e−n(τ−iσ)

)

=
∑

n∈Z

(
−jn e−n(τ+i(2π−σ)) + jn e−n(τ−i(2π−σ))

)
.

(6.35)

From this relation we can determine the action of Ω on the modes in the closed
sector as follows

Ω jn Ω−1 = jn , Ω jn Ω−1 = jn . (6.36)

For the open sector, we have to replace 2π on the right-hand side in (6.35) by π
which leads to an additional factor of (−1)n. Using then the boundary conditions
of an open string (6.5) which relate the Laurent modes as jn = ±jn, we obtain
the action of Ω in the open sector as

Ω jn Ω−1 = ±(−1)n jn (6.37)

where the two signs correspond to Neumann-Neumann respectively Dirichlet-
Dirichlet boundary conditions. For the case of mixed boundary conditions, we
recall that the Laurent modes have labels n ∈ Z + 1

2 and we note that Ω inter-
changes the endpoints of an open string as well as the boundary conditions. In
particular, we find

Ω j(N,D)
n Ω−1 = −(−1)n j(D,N)

n , Ω j(D,N)
n Ω−1 = +(−1)n j(N,D)

n . (6.38)

Partition Function: Klein Bottle

Let us now consider partition functions for general orientifold theories. We start
with the usual form of a modular invariant partition function in a CFT

Z(τ, τ) = TrH×H

(
qL0− c

24 qL0− c
24

)
, (6.39)

where we indicated the trace over the combined Hilbert space H×H explicitly.
Next, we generalise our findings from the example of the free boson and define
the action of the world-sheet parity operator Ω on the Hilbert space as follows

Ω | i, j 〉 = ± | Ω(j), Ω(i) 〉 , (6.40)
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where i denotes a state in the holomorphic sector of the theory and j stands
for the anti-holomorphic sector. The two different signs originate from the two
possibilities of Ω acting on the vacuum |0〉 compatible with the requirement that
Ω2 = 1. The simplest choice for Ω(i) is Ω(i) = i, but also more general Z2 invo-
lutions are possible, for instance Ω(i) = i+ where + denotes charge conjugation
introduced in (4.31).

Since orientifold constructions are very similar to orbifolds, we can employ the
same techniques already introduced in section 4.2.5 and summarised in equation
(4.52). More concretely, we project the entire Hilbert space H × H onto those
states which are invariant under Ω, i.e. we introduce the projection operator
1
2(1 + Ω) into the partition function (6.39). In analogy to (4.52), we therefore
obtain

ZΩ(τ, τ) = TrH×H

(
1 + Ω

2
qL0− c

24 qL0− c
24

)

=
1

2
Z(τ, τ) +

1

2
TrH×H

(
Ω qL0− c

24 qL0− c
24

)
.

The first term is just one-half of the torus partition function which we already
studied. Let us therefore turn to the second term

ZK(τ, τ) = TrH×H

(
Ω qL0− c

24 qL0− c
24

)
. (6.41)

The insertion of Ω into the trace has the effect that by looping once around the
direction τ of a torus, the closed string comes back to itself up to the action of
Ω, that is up to a change of orientation. Geometrically, such a diagram is not
a torus but a Klein bottle illustrated in figure 6.5. This is also the reason for
the superscript K of the partition function and for its name: the Klein bottle
partition function.

We will now specify the action of Ω as Ω(i) = i and Ω |0〉 = +|0〉 in order to
make (6.41) more explicit. For this choice we obtain

〈
i, j

∣∣ Ω
∣∣ i, j

〉
=

〈
i, j

∣∣ j, i
〉

= δij , (6.42)

where we used equation (6.40). Therefore, only left-right symmetric states |i, i〉
contribute to the trace in (6.41) and we can simplify the partition function as
follows

ZK(τ, τ) = TrH×H

(
Ω qL0− c

24 qL0− c
24

)

=
∑

i,j

〈
i, j

∣∣ Ω qL0− c
24 Ω−1 Ω qL0− c

24 Ω−1 Ω
∣∣ i, j

〉

=
∑

i

〈
i, i

∣∣ Ω qL0− c
24 Ω−1 Ω qL0− c

24 Ω−1
∣∣ i, i

〉
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where we employed (6.42). Since only the diagonal subset will contribute to the
trace, we see from this expression that effectively L0 and L0 as well as c and c
can be identified. Observing finally that qq = e−4πτ2 , we arrive at

ZK(τ, τ) =
∑

i

〈
i, i

∣∣ (
q q

)L0− c
24

∣∣ i, i
〉

= TrHsym.

(
e−4πt(L0− c

24)
)

, (6.43)

with t = τ2 and Hsym. denoting the states
∣∣ i, i

〉
in the Hilbert space which are

combined in a left-right symmetric way.

Free Boson III : Klein Bottle Partition Function (Loop-Channel)

Let us now determine the Klein bottle partition function for the example of the
free boson. As it is evident from (6.43), this partition function is the character
of the free boson theory with modular parameter τ = 2it. However, for the
momentum contribution, we need to perform a calculation similar to the one in
the open sector shown on page 212. In particular, from (6.43) we extract the j0

part, replace the sum by an integral and compute

TrHsym.

(
e−4πt 1

2 j2
0

)
−→

∫ +∞

−∞
dπ0 e−4πt 1

2 π2
0 =

1√
2t

,

where we observed that in the closed sector j0 = π0. Combining this result with
the character of the free boson theory, we obtain the following expression for the
full Klein bottle partition function

ZK
bos.(τ, τ) =

1√
2t

1

η
(
2it

) . (6.44)

Partition Function: Möbius Strip

After having studied CFTs on non-orientable surfaces in the closed sector, let us
now turn to the open sector. Again, the partition function has to be projected
onto states invariant under the orientifold action Ω. Following the same steps as
for the closed sector, we find

ZΩ(t) = TrHB

(
1 + Ω

2
e−2πt(L0− c

24)
)

=
1

2
ZC(t) +

1

2
TrHB

(
Ω e−2πt(L0− c

24)
)

.

The first term is the cylinder amplitude, but the second term

ZM(t) = TrHB

(
Ω e−2πt(L0− c

24)
)

(6.45)

describes an open string whose orientation changes when looping along the t
direction. The geometry of such a surface is that of a Möbius strip also shown
in figure 6.5. The corresponding partition function is called the Möbius strip
partition function and hence the superscript M.
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Free Boson IV : Möbius Strip Partition Function (Loop-Channel)

We now calculate the Möbius strip partition function for the free boson. Recalling
our notation (4.12) from the beginning of section 4.2.1 and the mapping (6.37),
we see that the action of Ω on a state is

Ω
∣∣n1, n2, n3, . . .

〉
=

∞∏

k=1

(±1)nk (−1)k nk
∣∣n1, n2, n3, . . .

〉
.

Performing then the same steps as in the calculation on page 123 with the action
of Ω on the states taken into account, we arrive at

TrHB

(
Ω qL0− c

24

)∣∣∣∣
without j0

= q−
1
24

∞∏

k=1

∞∑

nk=0

(±1)nk (−1)k nk qk nk

= e
πi
24

(
−q

)− 1
24

∞∏

k=1

1

1∓
(
−q

)k .

(6.46)

We also note that −q with modular parameter τ can be expressed as +q with
modular parameter τ + 1

2 .
For Neumann-Neumann boundary conditions, i.e. for the upper sign in the

expression above, we employ the definition of the Dedekind η-function. However,
since the momentum π0 is unconstrained, we compute

TrHB

(
Ω e−2πt 1

2 j2
0

)
−→

∫ +∞

−∞
dπ0 e−2πt 1

2 (2π0)2 =
1

2
√

t
,

where we used that j0 is invariant under Ω as well as that in the open sector
j0 = 2π0. The full Möbius strip partition function in the Neumann-Neumann
sector then reads

ZM(N,N)
bos. (t) = e

πi
24

1

2
√

t

1

η
(

1
2 + it

) . (6.47)

For Dirichlet-Dirichlet conditions, that means the lower sign in (6.46), we find
for instance from (6.37) that j0 = 0 so that there is no additional factor from the
momentum integration. Recalling the definition of the ϑ2-function summarised
on page 138, we obtain

ZM(D,D)
bos. (t) = e

πi
24

√
2

√
η
(

1
2 + it

)

ϑ2

(
1
2 + it

) . (6.48)

For mixed boundary conditions, the Möbius strip partition function vanishes as
Ω exchanges Neumann-Dirichlet with Dirichlet-Neumann conditions and so there
is no contribution to the trace.
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Loop-Channel – Tree-Channel Equivalence

For the cylinder partition function, we have seen that the result in the open and
closed sector are related via a modular S-transformation. One might therefore
suspect that this equivalence between partition functions and overlaps of bound-
ary states can also be found for non-orientable surfaces.

This is indeed the case which we illustrate in figures 6.6 for the Klein bottle
partition function.

1. The fundamental domain of the Klein bottle shown in figure 6.6(a) is that
of a torus up to a change of orientation. However, as opposed to the torus,
the modular parameter of the Klein bottle is purely imaginary.

2. In figure 6.6(b), the fundamental domain is halved and the identification of
segments and points is indicated explicitly by arrows and symbols.

3. Next, we shift one half of the fundamental domain as shown in figure 6.6(c).

4. In figure 6.6(d), the shifted part has been flipped and the appropriate edges
have been identified.

5. A fundamental domain of this form can be interpreted as a cylinder between
two crosscaps as illustrated in 6.6(e).

Analogous to the cylinder diagram (6.21), we expect now that the Klein bottle
amplitude can be computed as the overlap of two so-called crosscap states |C〉 in
the following way

Z̃K(l) = 〈Θ C| e−2πl(L0+L0− c+c
24 ) |C〉 . (6.49)

Considering then again figure 6.6(d) and equation (4.6) from chapter 4, we de-
termine the modular parameter in the tree- and loop-channel as

τopen =
α2

α1
=

2it
1
2

= 4it , τclosed =
α2

α1
=

i

l
,

and because of the tree-channel – loop-channel equivalence, they have to be equal.
This implies that the length of the cylinder in figure 6.6(e) and equation (6.49)
can be expressed as l = 1

4t . We will elaborate on these crosscap states in more
detail in the next section.

For the Möbius strip amplitude, we can apply the same cuts and shifts as
for the Klein bottle amplitude. As it is illustrated in figure 6.7, the resulting
tree-channel diagram is a cylinder between an ordinary boundary and a crosscap.
We thus expect that in the tree-channel, we can calculate the Möbius strip in the
following way

Z̃M(l) = 〈Θ C| e−2πl(L0+L0− c+c
24 ) |B〉 . (6.50)
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Finally, for the modular parameters in the tree- and loop-channel, we obtain

τopen =
α2

α1
=

4it
1
2

= 8it , τclosed =
α2

α1
=

i

l
,

which leads us to l = 1
8t .

Remarks

• A summary of the various loop-channel and tree-channel expressions to-
gether with their modular parameters can be found in table 6.1.

• Almost all Ω projected CFTs in the closed sector are inconsistent and re-
quire the introduction of appropriate boundaries with corresponding bound-
ary states. In String Theory, these conditions are known as the tadpole
cancellation conditions which we will discuss in the final section 6.7.

6.5 Crosscap States for the Free Boson

Similarly to boundary states which describe the coupling of the closed sector of
a CFT to a boundary, for orientifold theories there should exist a coherent state
describing the coupling of the closed sector to the crosscap. In particular, anal-
ogous to the observation that a world-sheet boundary defines (or is confined to)
a space-time D-brane, we say that a world-sheet crosscap defines (or is confined
to) a space-time orientifold plane.

In this section, we will discuss crosscap states for the example of the free
boson, and in the next section we are going to generalise the appearing structure
to RCFTs.

Crosscap Conditions

We start our study of crosscap states by recalling the transformation of the Klein
bottle respectively Möbius strip amplitude from the open to the closed sector
shown in figures 6.6 and 6.7. There, we encountered a new type of boundary,
the so-called crosscap, where opposite points are identified. For the construction
of the crosscap state, we will employ this geometric intuition, however, later we
also compute the tree-channel Klein bottle and Möbius strip amplitudes to check
that they are indeed related via a modular transformation to the result in the
loop-channel.

As it is illustrated in figure 6.8, in an appropriate coordinate system on a
crosscap, we observe that points x on a circle are identified with −x. Parametris-
ing this circle by σ ∈ [0, 2π), we see that the identification x ∼ −x corresponds
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Figure 6.6: Transformation of the fundamental domain of the Klein bottle to a
tree-channel diagram between two crosscaps.
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Figure 6.7: Transformation of the fundamental domain of the Möbius strip to a
tree-channel diagram between an ordinary boundary and a crosscap.
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x ↔ σ

−x ↔ σ+π

(a) Identification of points on
a crosscap

(b) Closed string at a
crosscap

Figure 6.8: Illustration of how points are identified on a crosscap, and how a
closed string couples to a crosscap.

to σ ∼ σ + π. For a closed string on a crosscap, we thus infer that the field X
at (τ, σ) should be identified with the field X at (τ, σ + π). More concretely, this
reads

X
(
τ, σ

) ∣∣C
〉

= X
(
τ, σ + π

) ∣∣C
〉

, (6.51)

and for the derivatives with respect to τ and σ, we impose
(
∂σX

)
(τ, σ)

∣∣C
〉

= +
(
∂σX

)
(τ, σ + π)

∣∣C
〉

,
(
∂τX

)
(τ, σ)

∣∣C
〉

= −
(
∂τX

)
(τ, σ + π)

∣∣C
〉

.
(6.52)

Let us now choose coordinates such that τ = 0 describes the field X(τ, σ) at the
crosscap |C〉. Using then the Laurent mode expansions (6.4) as well as (6.52)
with τ = 0, we obtain that

(
jn − j−n

) ∣∣C
〉

= +(−1)n
(
jn − j−n

) ∣∣C
〉

,
(
jn + j−n

) ∣∣C
〉

= −(−1)n
(
jn + j−n

) ∣∣C
〉

,

where, similarly as in the computation for the boundary states, we performed a
change in the summation index n → −n. By adding or subtracting these two
expressions, we arrive at the gluing conditions for crosscap states

(
jn + (−1)n j−n

) ∣∣CO1

〉
= 0 . (6.53)

Note that we added the label O1 which stands for orientifold one-plane. The
reason is that by inserting the expansion (6.7) of X(τ, σ) into (6.51), we see that
the center of mass coordinate x0 of the closed string is unconstrained. In the
target space, the location of the crosscap is called an orientifold plane which in
the present case fills out one dimension because there is no constraint on x0. This
explains the notation above.
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Construction of Crosscap States

Apart from the factor (−1)n, the gluing conditions (6.53) are very similar to those
of a boundary state (6.15) with Neumann conditions. The solution to the gluing
conditions is therefore also similar to the Neumann boundary state and reads

∣∣CO1

〉
=

κ√
2

exp

(
−

∞∑

k=1

(−1)k

k
j−k j−k

)∣∣ 0
〉

(6.54)

where we employed (6.26) and allowed for a relative normalisation factor κ be-
tween the boundary state with Neumann conditions |BN〉 and the crosscap state
|CO1〉.

The proof that (6.54) is a solution to the gluing conditions (6.53) is analogous
to the one shown on page 217. Note in particular, the crosscap state can be
written as

∣∣CO1

〉
=

κ√
2

∑

%m

|&m〉 ⊗ |U &m〉 (6.55)

with the anti-unitary operator U acting in the following way

U jn U−1 = −(−1)n
(
j−n

)†
. (6.56)

Remark

Let us make the following remark. In equation (6.33), we have chosen a specific
orientifold action Ω for the fields X(τ, σ) which leaves the action (6.1) invari-
ant. However, we can also accompany Ω by another operation, for instance
R : X(τ, σ) &→ −X(τ, σ), which also leaves (6.1) invariant. The combined action
then reads

ΩR : X
(
τ, σ

)
&→ X̃

(
τ, σ

)
= −X

(
τ,−σ

)
.

Note that this orientifold action describes a different theory and that there is no
direct relation to the results obtained previously.

Performing the same steps as before, we arrive at the following expressions
for the combined action ΩR on the Laurent modes jn and jn

closed sector ΩR jn

(
ΩR

)−1
= −jn , ΩR jn

(
ΩR

)−1
= −jn ,

open sector ΩR jn

(
ΩR

)−1
= ∓(−1)n jn .

For the action of R on the states, we find

R
∣∣&m

〉
=

(
−1

)P
k mk

∣∣&m
〉

,
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which results in additional factors of (−1) in various loop-channel amplitudes.
Concerning the construction of crosscap states, also the identification (6.51) re-
ceives an factor of (−1) which results in gluing conditions of the form

(
jn − (−1)n j−n

) ∣∣CO0

〉
= 0 ,

which is similar to the Dirichlet conditions for boundary states. The notation
O0 indicates that the orientifold plane does not extend in one dimension but is
only a point. And indeed, using the expansion (6.7) of X(τ, σ) for X(τ, σ)|C〉 =
−X(τ, σ)|C〉, we see that the center of mass coordinate x0 is constrained to
x0 = 0. Finally, we note that the solution to the gluing conditions in the present
case reads

∣∣CO0

〉
= κ exp

(
+

∞∑

k=1

(−1)k

k
j−k j−k

)∣∣ 0
〉

.

After this remark about a different possibility for an orientifold projection, let
us continue our studies with our original choice (6.33) which leads to O1 crosscap
states |CO1〉.

Free Boson V : Klein Bottle Amplitude (Tree-Channel)

As we have argued in the previous section, from the overlap of two crosscap states
we can compute the Klein bottle amplitude (6.49) in the closed sector, that is in
the tree-channel. In order to do so, we recall the crosscap state (6.55) with the
action of U given in (6.56). Noting for a basis state (6.18) that

U
∣∣&m

〉
=

∞∏

k=1

(
−1

)mk
(
−1

)mkk ∣∣&m
〉

, (6.57)

and following the same calculation as on page 220 for the overlap of two boundary
states in the Neumann-Neumann sector, we obtain

Z̃K(O1,O1)
bos.

(
l
)

=
〈
Θ CO1

∣∣ e−2πl(L0+L0− c+c
24 )

∣∣CO1

〉
=

κ2

2 η(2il)
. (6.58)

Note that Θ is again the CPT operator introduced in equation (6.23) which,
in particular, acts as complex conjugation on numbers. Finally, recalling from
table 6.1 the relation l = 1

4t between the tree-channel and loop-channel modular
parameters, we find the loop-channel amplitude to be of the form

Z̃K(O1,O1)
bos.

(
l
)

=
κ2

2 η(2il)

l= 1
4t−−−−→ κ2

2 η
(
− 1

2it

) =
κ2

2
√

2t

1

η(2it)
,

where we employed the modular properties of the Dedekind η-function shown in
equations (4.15). By comparing with the loop-channel result (6.44), we can now
fix

κ =
√

2 .
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Free Boson VI : Möbius-Strip Amplitude (Tree-Channel)

Eventually, we compute the overlap of a crosscap state and a boundary state
giving the tree-level Möbius strip amplitude. Employing equation (6.57) and
performing a similar calculation as on page 220, we find for the Möbius strip
diagram in the Neumann sector that

Z̃M(O1,N)
bos.

(
l
)

=
〈
Θ CO1

∣∣ e−2πl(L0+L0− c+c
24 )

∣∣BN

〉

=
1√
2

e
πl
6

∞∏

k=1

1

1−
(
−e−4πl

)k

=
1√
2

e
πi
24

1

η
(

1
2 + 2il

)

(6.59)

where we expressed (−1) as eπi and absorbed the additional factor into the defini-
tion of the modular parameter. The computation of the Möbius strip amplitude
in the Dirichlet sector is very similar to the Neumann sector. We find

Z̃M(O1,D)
bos.

(
l
)

=
〈
Θ CO1

∣∣ e−2πl(L0+L0− c+c
24 )

∣∣BD

〉

= e
πl
6

∞∏

k=1

1

1 +
(
−e−4πl

)k

=
√

2 e
πi
24

√
η

(
1
2 + 2il

)

ϑ2

(
1
2 + 2il

)

where we used again the definition of the ϑ-functions. The momentum integration
in this sector is trivial since j0 acting on the crosscap state vanishes. This is
again similar to the computation of the cylinder amplitude for mixed boundary
conditions shown on page 222.

Modular Transformations

After having computed the tree-channel Möbius strip amplitudes, we would like
to transform these results to the loop-channel via the relation l = 1

8t . However,
by comparing with the loop-channel results (6.47) and (6.48), we see that this
cannot be achieved by a modular S-transformation. Instead, we have to perform
the following combination of T - and S-transformations

P = T S T 2 S . (6.60)
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For the η-function with shifted argument, this transformation reads

η
(

1
2 + 2il

) S−−−−→ η

(
− 1

1
2 + 2il

) √
i

1
2 + 2il

T 2

−−−−→ η

(
+

4il
1
2 + 2il

) √
i

1
2 + 2il

e−
πi
6

S−−−−→ η

(
−

1
2 + 2il

4il

) √
i

1
2 + 2il

√
1
2 + 2il

4l
e−

πi
6

T−−−−→ η

(
1

2
+

i

8l

)
1√
4l

√
i e−

πi
6 e−

πi
12

= η

(
1

2
+

i

8l

)
1√
4l

where in the last step we employed that
√

i = e
πi
4 . For the Möbius strip amplitude

with Neumann boundary conditions, we then compute the transformation from
the tree-channel to the loop-channel as follows

Z̃M(O1,N)
bos.

(
l
)

=
e

πi
24

√
2

1

η
(

1
2 + 2il

) P−−−−→
l= 1

8t

e
πi
24

1

2
√

t

1

η
(

1
2 + it

) .

By comparing with the loop-channel result (6.47), we have verified the loop-
channel – tree-channel equivalence for the Möbius strip amplitude in the Neu-
mann sector.

In passing, we note that the Möbius strip loop- and tree-channel amplitudes
for the Dirichlet sector are also related via a modular P-transformation. In the
same manner as above, one can then establish the loop-channel – tree-channel
equivalence

New Characters

In the last paragraph of this section, let us introduce a more general notation
for the Möbius strip characters. We define hatted characters χ̂(τ) in terms of the
usual characters χ(τ) as follows

χ̂
(
τ
)

= e−πi (h− c
24) χ

(
τ + 1

2

)
. (6.61)

The action of the P-transformation (6.60) for the new characters χ̂(τ) can be
deduced as follows. From the mapping of the modular parameter τ = 2il under
the combination of S- and T -transformations

2il
T

1
2−−−−−→ 2il + 1

2

TST 2S−−−−−−−→ i
8l + 1

2

T−
1
2−−−−−−→ i

8l ,
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we can infer the transformation of the hatted characters χ̂(τ) as

χ̂i

(
i
8l

)
=

∑

j

Pij χ̂j

(
2il

)
with P = T

1
2 S T 2 S T

1
2 ,

where T
1
2 is defined as the square root of the entries in the diagonal matrix Tij

shown in equation (4.56). Note that the P -transformation corresponds to the S-
transformation of the usual characters, in particular, P realises the loop-channel
– tree-channel equivalence.

Finally, using the properties of the S-matrix (4.54) as well as the relation
S2 = (ST )3 = C with C the charge conjugation matrix introduced in (4.31), we
can show that

P2 = C , P 2 = C , PP † = P †P = 1 , P T = P . (6.62)

6.6 Crosscap States for RCFTs

Let us now generalise the construction of crosscap states to Conformal Field
Theories without a Lagrangian description. In particular, we focus on RCFTs
and we mainly state the general structure without explicit derivation.

Construction of Crosscap States

The crosscap gluing conditions for the generators of a symmetry algebra A⊗A
are in analogy to the conditions (6.53) for the example of the free boson and read

(
Ln − (−1)n L−n

) ∣∣C
〉

= 0 conformal symmetry,
(
W i

n − (−1)n (−1)hi
W

i
−n

) ∣∣C
〉

= 0 extended symmetries,
(6.63)

with again hi = h(W i). For A = A and Hi = H+
i , we can define crosscap

Ishibashi states |Ci〉〉 satisfying the crosscap gluing conditions. A crosscap state
|C〉 can then be expressed as a linear combination of the crosscap Ishibashi states
in the following way

∣∣C
〉

=
∑

i

Γi | Ci〉〉 . (6.64)

In fact, the crosscap Ishibashi states and the boundary Ishibashi states are related
via

| Ci〉〉 = eπ i(L0−h(φi)) |Bi〉〉 . (6.65)
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Indeed, knowing that the boundary Ishibashi states |Bi〉〉 satisfy the gluing con-
ditions (6.27), we can show that the (6.65) satisfy the crosscap gluing conditions.
To do so, we compute

e−π i L0 Ln e+π i L0 = (−1)n Ln , e−π i L0 W i
n e+π i L0 = (−1)n W i

n ,

where we used that W i is a primary field. For the generators of the conformal
symmetry, we can then calculate

e−π i(L0−h(φi))
(
Ln − (−1)n L−n

)
| Ci〉〉

= e−π i(L0−h(φi))
(
Ln − (−1)n L−n

)
eπ i(L0−h(φi)) |Bi〉〉

= (−1)n
(
Ln − L−n

)
|Bi〉〉

= 0 ,

and the condition for the extended symmetry generators is obtained along the
same lines. Therefore, the crosscap Ishibashi states (6.65) satisfy the gluing
conditions (6.63).

The Cardy Condition

Similarly to the boundary states, we expect generalisations of the Cardy condition
arising from the loop-channel – tree-channel equivalences of the Klein bottle and
Möbius strip amplitudes. In order to study this point, we compute the Klein
bottle amplitude in the following way

Z̃K(l) =
〈
Θ C

∣∣e−2πl(L0+L0− c+c
24 )∣∣ C

〉

=
∑

i,j

Γi Γj 〈〈Bi+| eπ i(L0−h(φi)) e2πi(2il)(L0− c
24) eπ i(L0−h(φj)) |Bj〉〉

=
∑

i,j

Γi Γj δij e−2πi(h(φj)− c
24) 〈〈Bj| e2πi(2il+1)(L0− c

24) |Bj〉〉

=
∑

i

(
Γi

)2
e−2πi(h(φi)− c

24) χi(2il + 1)

=
∑

i

(
Γi

)2
e−2πi(h(φi)− c

24)
∑

j

Tij χj(2il) =
∑

i

(
Γi

)2
χi(2il) ,

where Θ is again the CPT operator shown for instance in (6.32), and where we
employed equation (6.30) as well as the modular T -matrix given in (4.56). In
the next step, we perform a modular S-transformation to obtain the result in the
loop-channel

Z̃K(l) =
∑

i

(
Γi

)2
χi(2il) =

∑

i,j

(
Γi

)2
Sij χj(2it) .
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Now, the Cardy condition is again the requirement that the expression above can
be interpreted as a partition function. Since this partition function includes the
action of the orientifold projection Ω, the coefficient in front of the character has
to be integer but does not need to be non-negative

∑

i

(
Γi

)2
Sij = κj ∈ Z .

For the Möbius strip amplitude, we compute along similar lines

Z̃M(l) =
〈
Θ C

∣∣e−2πl(L0+L0− c+c
24 )∣∣Bα

〉

=
∑

i,j

Γi Bj
α 〈〈Bi+| eπ i(L0−h(φi)) e2πi(2il)(L0− c

24) |Bj〉〉

=
∑

i,j

Γi Bj
α δij e−πi(h(φi)− c

24) 〈〈Bj| e2πi(2il+ 1
2)(L0− c

24) |Bj〉〉

=
∑

i

Γi Bi
α e−πi(h(φi)− c

24) χi

(
2il + 1

2

)

=
∑

i

Γi Bi
α χ̂i(2il) =

∑

i,j

Γi Bi
α Pij χ̂j

(
it

)
,

where we employed the hatted characters (6.61) together with their modular
transformation. Interpreting this expression as a loop-channel partition function,
we see that the coefficients have to be integer

∑

i

Γi Bi
α Pij = mαj ∈ Z .

Similar to the Cardy boundary states, for the charge conjugate modular in-
variant partition function explained on page 228, one can show that these integer
conditions are satisfied for the reflection coefficients of the form

Γi =
P0i√
S0i

, Bi
α =

Sα i√
S0i

.

The Klein bottle and Möbius strip coefficients can then be written as two Verlinde
type formulas

κj =
∑

i

P0i P0i Sij

S0i
= Y 0

j0 , mαj =
∑

i

Sαi P0i Pij

S0i
= Y 0

αj .

From the relations (6.62), we can deduce P ∗
ij = Pij+ and in particular P ∗

0i = P0i,
which allows us to establish the connection to the general coefficients

Y k
ij =

∑

l

Sil Pjl P ∗
kl

S0l
.

As it turns out, the coefficients Y k
ij are integer, guaranteeing that the loop-channel

Klein bottle and Möbius strip amplitudes contain only integer coefficients.
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Remark

With the techniques presented in this section, it is possible to construct many
orientifolds of Conformal Field Theories. However, one set of essential consistency
conditions for the co-existence of crosscap and boundary states is still missing.
These are the so-called tadpole cancellation conditions which we are going to
discuss in a simple example in the final section of these lecture notes.

6.7 The Orientifold of the Bosonic String

We finally apply the techniques developed in this chapter to orientifold theories
with boundaries and crosscaps. In particular, we are going to consider a String
Theory motivated but still sufficiently simple orientifold model which is the Ω
projection of the bosonic string. More interestingly, this theory is actually anal-
ogous to the orientifold construction of the Type IIB superstring leading to the
so-called Type I superstring. However, this needs a more detailed treatment of
free fermions which we have not presented here and which is not necessary to
understand the mathematical structure of such theories.

Details on the String Theory Construction

We have mentioned already on page 72 that the bosonic string is only consistent
in 26 flat space-time dimensions and is thus described by 26 free bosons Xµ(σ, τ)
with µ = 0, . . . , 25. The quantisation of String Theory in this description, the
covariant quantisation, is slightly involved. However, by defining

X+ =
1√
2

(
X0(σ, τ) + X1(σ, τ)

)
, X− =

1√
2

(
X0(σ, τ)−X1(σ, τ)

)
, (6.66)

imposing so-called light-cone gauge and using constraint equations, we are left
only left with the momentum p+ as a degree of freedom. For the computation of
the characters, we can therefore simply ignore the contribution from X0(σ, τ) and
X1(σ, τ) so that we are left with the Conformal Field Theory of 24 free bosons
XI(τ, σ) where I = 2, . . . , 25. Since the bosonic string is made out of 24 copies
of the free boson CFT, for the computation of the partition functions we can use
our previous results. These have been summarized in table 6.2 for later reference.

In our previous definition of the open and closed sector partition functions,
we employed the notion common to Conformal Field Theory. However, for the
relevant quantities in String Theory, we have to integrate over the modular pa-
rameter of the torus, Klein bottle, cylinder and Möbius strip. After performing
the integration over the light-cone momentum p+, the expressions relevant for



248 CHAPTER 6. BOUNDARY CONFORMAL FIELD THEORY

Loop-Channel Tree-Channel

ZT
bos.(τ, τ) =

1
√

τ2

1
∣∣η(τ)

∣∣2

ZK
bos.(t) =

1√
2t

1

η
(
2it

) Z̃K(O1,O1)
bos.

(
l
)

=
1

η(2il)

ZC(N,N)
bos. (t) =

1

2
√

t

1

η (it)
Z̃C(N,N)

bos. (l) =
1

2 η
(
2il

)

ZC(D,D)
bos. (t) =

1

η (it)
e−

t
4π (xb

0−xa
0)

2

Z̃C(D,D)
bos. (l) =

1√
2l

1

η
(
2il

) e−
1

8πl(xb
0−xa

0)
2

ZC(mixed)
bos. (t) =

√
η (it)

ϑ4(it)
Z̃C(mixed)

bos. (l) =

√
η (2il)

ϑ2(2il)

ZM(N,N)
bos. (t) =

1

2
√

t

1

η
(

1
2 + it

) e
πi
24 Z̃M(O1,N)

bos.

(
l
)

=
1√
2

1

η
(

1
2 + 2il

) e
πi
24

ZM(D,D)
bos. (t) =

√
2

√
η
(

1
2 + it

)

ϑ2

(
1
2 + it

) e
πi
24 Z̃M(O1,D)

bos.

(
l
)

=
√

2

√
η

(
1
2 + 2il

)

ϑ2

(
1
2 + 2il

) e
πi
24

Table 6.2: Summary of all loop- and tree-channel amplitudes for the example of
the free boson with orientifold projection (6.33).
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the following are

ZT =

∫

Teich

d2τ

τ 2
2

ZT (τ, τ) , ZC =

∫ ∞

0

dt

4 t2
ZC(t) ,

ZK =

∫ ∞

0

dt

2 t2
ZK(t) , ZM =

∫ ∞

0

dt

4 t2
ZM(t) .

(6.67)

The domain of integration for the torus amplitude ZT is the so-called Teichmüller
space. It is the space of all complex structures τ of a torus T2 which are not related
via the SL(2, Z)/Z2 symmetry. An illustration can be found in figure 6.9 and the
precise definition reads

Teich =
{

τ ∈ C : −1
2 < τ1 ≤ +1

2 ,
∣∣τ

∣∣ ≥ 1
}

. (6.68)

+1−1

+i

Figure 6.9: The shaded region in this figure corresponds to the Teichmüller space
of the two-torus T2.

Torus Partition Function for the Bosonic String

Let us now become more concrete and determine the torus partition function
for the bosonic string in light-cone gauge. Since this theory is a copy of 24 free
bosons, we recall from table 6.2 the form of ZT

bos. and combine it into

ZT =

∫

Teich

d2τ

τ 2
2

(
ZT

bos.(τ, τ)
)24

=

∫

Teich

d2τ

τ 2
2

1

τ 12
2

1
∣∣η24(τ)

∣∣2 . (6.69)

In order to become more explicit, let us expand the Dedekind η-function in the
following way

1

η24(τ)
= q−1

(
1 + 24 q + 324 q2 + . . .

)
. (6.70)
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Using this expansion in (6.69) together with the string theoretical level-matching
condition which leaves only equal powers of q and q, we arrive at

ZT =

∫

Teich

d2τ

τ 14
2

e+4πτ2
∣∣∣ 1 + 24 e2πiτ + . . .

∣∣∣
2

−→
∫

Teich

d2τ

τ 14
2

e+4πτ2
(

1 +
(
24

)2
e−4πτ2 + . . .

)
.

(6.71)

Let us now study the divergent behaviour of this integral.

• Although the integrand in (6.71) diverges for τ2 → 0 due to the factor of
τ−14
2 , the whole integral is finite because the domain of integration (6.68)

does not include τ2 = 0. Therefore, this expression is not divergent in the
infrared, i.e. there is no singularity for small τ2. Let us emphasize that
the finiteness in this parameter region is due to the modular invariance of
the torus partition function which restricts the domain of integration to the
Teichmüller space.

• Next, we turn to the behaviour of (6.71) for large τ2. We see that the first
term gives rise to a divergence in the region τ2 → ∞ which corresponds
to a state with negative mass squared, i.e. a tachyon. Thus, the theory
of the bosonic string is unstable. In more realistic theories, for instance
the superstring, such a tachyon should be absent and we do not expect
problems due to divergences in the ultraviolet.

• In summary, the torus partition function of the bosonic string is finite in
the infrared due to modular invariance. In the ultraviolet, the partition
function is divergent due to a tachyon which renders the theory unstable.

Klein Bottle Partition Function for the Bosonic String

As the title of this section suggests, we want to study the orientifold of the bosonic
string and so we have to determine the Klein bottle amplitude. Following the
same steps as for the torus, we arrive at

ZK(t) =
1

2

∫ ∞

0

dt

t2

(
ZK

bos.(t)
)24

=
1

213

∫ ∞

0

dt

t14
1

η24(2it)
.

In order to simplify the integrand, we perform a transformation to the tree-
channel with modular parameter t = 1

4l by employing the modular properties of
the Dedekind η-function (4.15)

ZK(t)
t= 1

4l−−−−→ Z̃K(O25,O25)(l) =
1

213

∫ ∞

0

dl

4 l2
(4l)14 1

η24
(
− 1

2il

)

= 2

∫ ∞

0

dl
1

η24(2il)
.
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The notation O25 deserves some explanation. Since we are studying the bosonic
string in a 26-dimensional space-time, the orientifold projection naturally acts
also on the light-cone coordinates (6.66). By choosing the orientifold projection
(6.33), we have an orientifold plane extending over all 26 dimensions. How-
ever, the convention in String Theory is such that only the space dimensions are
counted which explains the term O25.

Similarly as for the torus partition function, let us now expand the tree-
channel Klein bottle amplitude. Using equation (6.70), we obtain

Z̃K(O25,O25)(l) = 2

∫ ∞

0

dl
(
e4π l + 24 + 324 e−4π l + . . .

)
. (6.72)

The first term in (6.72) corresponds again to the tachyon and should be absent in
more realistic theories. We therefore ignore this problematic behaviour. However,
the second terms corresponds to massless states and gives rise to a divergence
since in the present case, the domain of integration includes t = 1

4l = 0. This term
will not be absent in more refined theories and so at this point, the orientifold of
the bosonic string is not consistent at a more severe level.

A Stack of D-Branes

As it turns out, the divergence of the Klein bottle diagram can be cancelled by
introducing a to be determined number N of D25 branes. The notation D25
means that these D-branes fill out 25 spatial dimensions and it is understood
that they always fill the time direction.

If we put a certain number of D-branes on top of each other, we call it a
stack of D-branes. However, since there are now multiple branes, we can have
new kinds of open strings. In particular, there are strings starting at D-brane
i of our stack and ending on D-brane j. We thus include new labels, so-called
Chan-Paton labels, to our open string states

∣∣&m , i, j
〉

=
∣∣&m

〉
⊗

∣∣i, j
〉

,

where |&m〉 denotes the states for a single string and i, j = 1, . . . , N label the start-
ing respectively ending points. We furthermore construct the hermitian conjugate
〈i, j| in the usual way such that

〈
i, j

∣∣ i′, j′
〉

= δii′δjj′ . (6.73)

Next, we define the action of the orientifold projection acting on the Chan-
Paton labels. Since Ω changes the orientation of the world-sheet, it clearly in-
terchanges starting and ending points of open strings. But we can also allow for
rotations among the D-branes and so a general orientifold action reads

Ω
∣∣ i, j

〉
=

N∑

i′,j′=1

γjj′
∣∣ j′, i′

〉(
γ−1

)
i′i

, (6.74)
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where γ is a N ×N matrix. Without presenting the detailed argument, we now
require that the action of Ω on the Chan-Paton labels squares to the identity.
For this we calculate

Ω2
∣∣ i, j

〉
=

N∑

i′′,j′′=1

γii′′

[
Ω

∣∣ i, j
〉T

]

i′′,j′′

(
γ−1

)
j′′j

=
N∑

i′,j′,i′′,j′′=1

γii′′
(
γ−1

)T

i′′i′

∣∣ i′, j′
〉

γT
j′j′′

(
γ−1

)
j′′j

=
N∑

i′,j′=1

[
γ
(
γ−1

)T
]

ii′

∣∣ i′, j′
〉 [

γT γ−1
]

j′j
,

from which we infer the constraint on the matrices γ to be symmetric or anti-
symmetric

γT = ±γ . (6.75)

In String Theory, the two different signs correspond to gauge groups SO(N) and
SP (N) living on the stack of D-branes.

Let us now come to the final part of this paragraph which is to determine the
contribution of the Chan-Paton labels to the partition function. For the Cylinder
partition function, we calculate with the help of (6.73)

ZC(t
)

= TrHB

(
qL0− c

24

)
=

∑

n

〈
n

∣∣ qL0− c
24

∣∣ n
〉
×

N∑

i,j=1

〈
i, j

∣∣ i, j
〉

=
∑

n

〈
n

∣∣ qL0− c
24

∣∣ n
〉
× N2 .

Therefore, the effect of N D-branes is taken care of by including the factor N2

for the cylinder partition function. Let us next turn to the Möbius strip partition
function. Concentrating only on the Chan-Paton part, we find using (6.73) and
(6.74) that

N∑

i,j=1

〈
i, j

∣∣ Ω
∣∣ i, j

〉
=

N∑

i,j,i′,j′=1

〈
i, j

∣∣ γjj′
∣∣ j′, i′

〉(
γ−1

)
i′i

=
N∑

i,j,i′,j′=1

δij′ δji′ γjj′
(
γ−1

)
i′i

= Tr
(

γT γ−1
)

= ±N ,

where in the final step we also employed (6.75). In summary, by including a
factor of ±N in the Möbius strip partition function, we can account for a stack
of N D-branes.
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Cylinder and Möbius-Strip Partition Function for the Bosonic String

After this discussion about stacks of D-branes, let us now compute the cylinder
and Möbius strip partition functions for a stack of N D25-branes. Since the
D-branes fill out the 26-dimensional space-time, the open strings always have
Neumann-Neumann boundary conditions.

For the cylinder, we recall from table 6.2 the form of a single cylinder partition
function and combine it with the relevant expression from (6.67) to obtain

ZC(N,N)(t) =
N2

4

∫ ∞

0

dt

t2

(
ZC(N,N)

bos. (t)
)24

=
N2

226

∫ ∞

0

dt

t14
1

η24(it)
,

where we included the factor N2 as explained above. In order to extract the
divergences, we perform a transformation from the loop- to the tree-channel via
t = 1

2l to find

ZC(N,N)(t)
t= 1

2l−−−−→ Z̃C(N,N)(l) =
N2

226

∫ ∞

0

dl

2 l2
(2l)14 1

η24
(
− 1

2il

)

=
N2

225

∫ ∞

0

dl
1

η24(2il)
.

With the help of (6.70), we can again expand this expression. The first terms
read as follows

Z̃C(N,N)(l) =
N2

225

∫ ∞

0

dl
(
e4π l + 24 + 324 e−4π l + . . .

)
.

Next, we turn to the Möbius strip contribution. Along similar lines as above,
we recall from table 6.2 the expression for the partition function of a single free
boson and combine 24 copies of it into the Möbius partition function

ZM(N,N)(t) = ± N

4

∫ ∞

0

dt

t2

(
ZM(N,N)

bos. (t)
)24

= ± N

226

∫ ∞

0

dt

t14
eπi

η24(1
2 + it)

.

In order to extract the divergences more easily, we transform this expression into
the tree-channel via the relation t = 1

8t and the modular P transformation (6.60)

ZM(N,N)(t)
t= 1

8l−−−−→ Z̃M(N,N)(l) = ± N

226

∫ ∞

0

dl

8 l2
(8l)14 eπi

η24
(

1
2 + i

8l

)

= ± N

211

∫ ∞

0

dl
eπi

η24(1
2 + 2il)

.

Expanding this expression with the help of (6.70), we find

Z̃M(N,N)(l) = ± N

211

∫ ∞

0

dl
(
e4π l − 24 + 324 e−4π l − . . .

)
.
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Tadpole Cancellation Condition

After having determined the divergent contributions of the one-loop amplitudes,
we can now combine them into the full expression. Leaving out the torus ampli-
tude, we find

1

2

(
Z̃K(O25,O25)(l) + Z̃C(N,N)(l) + Z̃M(N,N)(l)

)

= 2−26

∫ ∞

0

dl

(
e4πl

(
226 ± 2 · 213N + N2

)

+24
(

226 ∓ 2 · 213N + N2
)

+324 e−4πl
(

226 ± 2 · 213N + N2
)

+ . . .

)
.

(6.76)

The first terms with prefactor e4πl stem again from the tachyon which in a more
realistic theory, e.g. Superstring Theory, should be absent. We will therefore
ignore this divergence. The next line with prefactor 24 corresponds to massless
states which will not be absent in more refined theories. However, we can simplify
this expression by noting that

(
226 ∓ 2 · 213N + N2

)
=

(
213 ∓N

)2

.

We thus see that by taking N = 213 = 8192 D25-branes and choosing the mi-
nus sign corresponding to SO(N) gauge groups, the divergence is cancelled. In
summary, we have found that

For the orientifold of the bosonic string with N = 8192 D25-branes
and gauge group SO(8192), the divergence due to massless states is
cancelled. This is the famous tadpole cancellation condition for the
bosonic string.

Finally, it is easy to see that the proceeding terms in (6.76) with prefactors e−4πl

and powers thereof do not give rise to divergences in the integral.

Remarks

• Here we have discussed a very simple example for a CFT with boundaries.
The next step is to generalise these methods for the superstring, in which
case we have to define boundary and crosscap states for the CFT of the free
fermion. The orientifold of the Type IIB superstring defines the so-called
Type I string living in ten-dimensions and carrying gauge group SO(32)
instead of SO(8192).
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• Many examples of such orientifold models have been discussed for compact-
ified dimensions. These include orientifolds on toroidal orbifolds and also
orientifolds of Gepner models. For this purpose, one first has to find classes
of boundary and crosscap states for the N = 2 unitary models and then for
Gepner models, in which the simple current construction is utilised in an
essential way. Finally, one has to derive and solve the tadpole cancellation
conditions. All this is a feasible exercise but beyond the scope of these
lecture notes.
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Concluding Remarks

Let us conclude these lecture notes with some remarks. Although we have covered
many aspects of Conformal Field Theory, we could only scratch the surface and
provide an introduction to a collection of CFT issues. For further reading and
study, we have provided a list of essential references at the end of these notes.

However, coming back to our introduction, this course was meant to accom-
pany a String Theory lecture as part of the 2007 newly established “Theoretical
and Mathematical Physics” master programme at the LMU Munich. As a con-
sequence, we put special emphasis on computational techniques in CFT which
are important for String Theory and had to neglect directions in CFT which are
also important but have their roots in Statistical Physics or pure Mathematical
Physics. For the interested reader, let us give a (incomplete) list of developments
not covered in these notes

• We have focused on unitary CFTs, as they are important for String The-
ory, though, it is well known that non-unitary CFTs with negative cen-
tral charge play a very important role for statistical integrable models in
two-dimensions. These issues are discussed for instance in the book by di
Franceso, Matthieu, Sénéchal.

• We have only mentioned the basics about symmetry algebras in CFT. In
particular, the field of Kač-Moody algebras would have deserved a much
more detailed discussion, as they also play a very important role in mathe-
matics. Their generalisation to ê10 and ê11 might turn out to be essential for
a non-perturbative formulation of String respectively M-Theory. Similarly,
the vast field of W algebras could only be touched.

• We have discussed some aspects of free field CFT, however, interacting
CFTs can be constructed from free fields by allowing for a non-vanishing
background charge. This is the celebrated Feigin-Fuks construction which
we also did not cover.

• Again related to non-unitary CFTs, we did not touch the very much dis-
cussed Logarithmic Conformal Field Theories.

• There exist a number of interesting attempts to develop an axiomatic ap-
proach to CFT which we did not mention, since our emphasis was on ap-
plications of CFT techniques to String Theory.
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Möbius strip partition function, 252
tadpole cancellation, 253
torus partition function, 247

bosonic string map, 191, 192, 197
bosonisation, 69, 133
boundary condition

conformal symmetry, 217
crosscap, 238
Dirichlet, 205, 207, 213

free boson, 205, 213
Laurent modes, 207
Neumann, 205, 207, 213
solution for free boson, 208
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N = 1 super OPE, 172
N = 1 superfield, 172
on the cylinder, 115
quotient theory, 104
Sugawara, 92
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Kač-Moody primary, 100, 103
N = 1 super, 172
N = 1 super primary, 172
N = 1 super quasi-primary, 172
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quasi-primary, 22
secondary, 22

fixed point of simple current, 156
free boson, 47

action, 48
boundary condition, 205, 207, 213
boundary condition crosscap, 238
boundary state, 214
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gluing automorphism, 224
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boundary state, 213
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RCFT, 223
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minimal model, see unitary series
model

Ising, 77, 106, 136
three states Potts, 77, 110, 150
tri-critical Ising, 77, 173

modular group, 117–119, 171
modular parameter

cylinder, 209
Klein bottle, 233
Möbius strip, 235
torus, 116, 117

modular transformation
S-transformation, 117, 221
T -transformation, 117
U -transformation, 117
Dedekind η-function, 122, 138
invariance under S, 129
P-transformation, 242
P -transformation, 243
Θ-function, 127, 128
ϑ-function, 137

momentum operator, 25, 119, 216
monodromy charge, 156, 157
multiplet

BPS, 181
gravity, 200
hyper, 200
vector, 200

N = 1
coset construction unitary series, 107,

173
energy-momentum tensor, 172
extension free boson, 168
SCFT, 167
super OPE, 172
super primary field, 172
super quasi-primary, 172
super Virasoro algebra, 171
superfield, 172
unitary series, 173

N = 2
coset construction unitary series, 186
extension free boson, 174
SCFT, 174
super chiral field, 179
super primary field, 179, 180
super Virasoro algebra, 176
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unitary series, 177, 182, 185
unitary series, S-matrix, 188
unitary series, character, 187
unitary series, fusion rules, 188

Neveu-Schwarz sector, 61, 62, 115, 183,
191

Noether’s theorem, 23
normal ordered product, 42

quasi-primary, 44
normal ordering, 41

operator
annihilation, 41
anti-unitary, 224
Casimir, 95
CPT, 218, 225
creation, 41
fermion number, 134
spectral flow, 185
world-sheet parity, 227

operator product expansion, 29
energy-momentum tensor, 29, 172
free fermion, 62
general form, 37
ghost system (b, c), 70
Kač-Moody currents, 90
N = 1 super primary field, 172
non-chiral fields, 84
primary field, 29
simple current, 157

orbifold, 138
fixed point, 140
partition function, 141
twisted sector, 139

ordering
normal ordering, 41
radial ordering, 28, 61

orientifold, 227
action, 227, 240
plane, 235, 239, 240
projection of bosonic string, 246

P -matrix, 243

parafermion, 151, 153
partition function, 118, 119

bosonic string, 197
charge conjugate, 226
cylinder, 209, 210
free boson, 121, 122, 211
free boson on a circle, 124
free boson, N = 2 extension, 177
free fermion, 135
Gepner model, 198
Klein bottle, 230
Möbius strip, 232
simple current, 160
summary, 154
torus, 119
û(1)k, 129
Z2-orbifold of free boson, 140

pentagon identity, 87
perturbation theory

one-loop, 114
tree-level, 113

Poisson resummation formula, 124
propagator, 49, 70

radial quantisation, 24
Ramond sector, 61, 62, 115, 135, 183,

191
reflection coefficient, 225, 246
Rogers di-logarithm, 165

S-matrix, 142, 226
for û(1)k, 128
for ŝo(10)1, 191
for ŝo(2)1, 178
for ŝu(2)k, 146
for Virc, 149
N = 2 unitary series, 188
parafermion, 152
simple current, 158
summary, 154

scale factor, 10, 13, 16
Schwarzian derivative, 31, 115
simple current
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boundary state, 226
definition, 156
Gepner model, 194, 195
N = 2 unitary series, 188
OPE with primary field, 157
orbit, 157
partition function, 160
S-matrix, 158

special conformal transformation, 13
spectral flow, 182, 195
state

asymptotic, 26
boundary, 212, 213
crosscap, 233
crosscap Ishibashi, 244
highest weight, 72
Ishibashi, 224
norm, 39
null, 73, 74

String Theory
bosonic string, 246
Calabi-Yau manifold, 189, 201
central charges, 189, 247
compactification, 189, 201
gauge group, 251
heterotic string, 189, 201
space-time supersymmetry, 193, 195
tachyon, 249
Type I, 246, 254
Type IIB, 199, 209, 254

string-function, 99, 152, 187
Sugawara construction, 90
superspace, 171

T-duality, 125, 141
T -matrix, 142
tadpole cancellation condition, 253
Teichmüller space, 247
Θ-function, 126–128, 145, 177, 187
ϑ-function, 136–137, 177
torus, 228

compactification, 116
complex structure, 116

fundamental domain, 116
lattice, 116
modular group, 117
modular parameter, 116, 117
partition function, 119, 237
partition function bosonic string, 247

unitary representation, 75
unitary series

N = 1 super Virasoro, 107, 173
N = 2 super Virasoro, 177, 182,

185
Virasoro, 76, 82, 105
W(2, 3), 110

Verlinde formula, 87, 142, 143, 226
Verma module, 45, 72
vertex operator, 53, 68

charge, 54, 56
conformal dimension, 55
current, 56
free boson on a circle, 125
states in Hilbert space, 132
two-point function, 56

Ward identity, 33, 101
world-sheet duality, see loop-channel –

tree-channel equivalence
world-sheet parity operator, 227


