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Summary so far



Summary so far:

(a)  A sufficiently squeezed star will collapse to a black hole

pressure will diverge somewhere 
if radius of ball is 

p = 0

R <
9

4
M

R = 2M

(b) Once we have a horizon, we cannot modify the solution by
adding hair.

 Thus the quantum state at the horizon is the local vacuum



(c)  The vacuum state around the horizon will create entangled pairs.

This is a low energy process, not needing details of quantum gravity

(d) 

(a) Black hole evaporates away completely

vacuum

(b) A planck sized remnant is left

Violates quantum theory

Difficult to understand,
also not consistent with 
AdS/CFT

Two possibilities:



Sent

emission steps

Hawking 
process

entanglement

emission steps

entanglement normal
body

small
corrections 

??

vacuum

entangled

Can small corrections
may disentangle the radiation
from the remnant ?
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not have, until recently, a construction of this hair, but many of them were still not worried
about Hawking’s paradox. The reason was based on the following misconception. Suppose the
horizon was a place with ‘normal physics’, and let us include a small correction, order � ⇧ 1
to the state of each created pair. The number of pairs N is very large, so it might be that
suitable choices of these small corrections would lead to a situation where Sent does decrease
in the manner expected of a normal body.

A priori, it is not wrong to think that small corrections might cause Sent to decrease.
Suppose the entangled pair at the first step is 1⇥

2
(|0⌃b1 |0⌃c1 + |1⌃b1 |1⌃c1). At the next step we

can have the state

|�⌃ =
1

2

�
|0⌃b1 |0⌃c1 [(1 + �1)|0⌃b2 |0⌃c2 + (1� �1)|1⌃b2 |1⌃c2 ]

+|1⌃b1 |1⌃c1 [(1 + ��1)|0⌃b2 |0⌃c2 + (1� ��1)|1⌃b2 |1⌃c2 ]
⇥

(2.1)

Note that the correction at each step can depend on everything in the hole at all earlier steps;
the only requirement is that the correction be small: |�1| < �, |��1| < �. We have ⌅ 2N correction
terms in general after N steps. Since N ⌅ ( M

mp
)2 for a 3+1 dimensional black hole, it appears

a priori possible for small corrections to pile up to make Sent decrease after the halfway point
of evaporation.

In [?] it was proved, using strong subadditivity, that such small corrections cannot lead to
a decrease in Sent. AMPS invoked this argument in their analysis, so let us outline the steps in
[?]. Let {b1, . . . bN} ⇥ {bi} be the quanta radiated in the first N steps, and {ci} their entangled
partners. The entanglement entropy at step N is Sent(N) = S({bi}). The created quanta at
the next step are are bN+1, cN+1. We then have [?]:

(i) By direct computation, one obtains

S(bN+1 + cN+1) < � . (2.2)

(ii) Similarly, by direct computation one obtains

S(cN+1) > ln 2� � . (2.3)

(iii) The unitary evolution of the hole does not a⇥ect quanta already emitted (we have
assumed that nonlocal e⇥ects, if any extend only to distances of order r0, and thus do not a⇥ect
quanta that have been emitted from the hole long ago). Thus we have

S({(bi}) = SN . (2.4)

(iv) The strong subadditivity inequality gives

S({bi}+ bN+1) + S(bN+1 + cN+1) ⇤ S(bN+1) + S(cN+1) . (2.5)

Using (i)-(iii) above we find that the entanglement entropy of the radiation after the (N +1)-th
time step, SN+1 ⇥ S({bi}+ bN+1), satisfies

SN+1 > SN + ln 2� 2� . (2.6)
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Suppose that at the first step of emission we have no change

At the second step of emission, suppose that if we had 00 at the first step 
then a 00 is slightly more likely, and if we had a 11 at the first step, then a 11 
is slightly more likely

Overall state after two emissions

After     steps of emission, there are             correction terms⇠ 2NN



Small corrections theorem:  No, the smallness of     cannot be traded against 
the largeness of      to resolve the problem 

✏
N

This result should be distinguished from the theorem by Page
(In a sense the two theorems address opposite issues)

emission steps

entanglement normal
body

Page 93: For generic states of a system,  any subsystem (of size less than half 
the system) is almost maximally entangled with the remainder

S(A) ⇡ logM � M

2N



Hawking radiation creates a particular (nongeneric) state

same intrinsic geometry as on the first slice). The stretching is gentle and smooth, with all
lengthscales and timescales associated to the stretching being of order ⇤ M . This stretching
thus creates pairs of quanta on the slice, with wavelengths of order ⇤ M . Decomposing this
state into quanta that emerge from the hole (labelled b) and quanta that stay inside (labelled
c), we get a state that is schematically of the form Exp[�b†c†]|0⌅b � |0⌅c for each step of the
evolution. The explicit form of the state can be found for example in [9] for the 2-d black hole.
For our purposes we only need to note that this state is entangled between the inner and outer
members of the pair, and so for simplicity we break up the evolution into a set of discrete steps
(with time lapse �t ⇤ M), and take a simple form of the entangled state having just two terms

|⇥⌅pair =
1⇧
2
|0⌅c|0⌅b +

1⇧
2
|1⌅c|1⌅b (2.2)

(Nothing in the argument below should be a⇤ected by this simplification, or the simplification
of taking discrete timesteps. If we had a fermionic field we would in fact have just two terms
in the sum.)

At the initial timestep we have on our spacelike slice only the shell that has passed through
its horizon radius, denoted by a state |⇥⌅M . At the next time step we have, in the leading order
Hawking computation, the state

|⇥⌅ = |⇥⌅M ⇥
� 1⇧

2
|0⌅c1 |0⌅b1 +

1⇧
2
|1⌅c1 |1⌅b1

⇥
(2.3)

If we compute the entanglement of b1 with {M, c1} we obtain

Sent = ln 2 (2.4)

At the next step of evolution the slice stretches so that the quanta |b⌅1, |c⌅1 move away from
the middle of the ‘connector region’ C, and a new pair is pulled out of the vacuum near the
center of C. The full state is

|⇥⌅ = |⇥⌅M ⇥
� 1⇧

2
|0⌅c1 |0⌅b1 +

1⇧
2
|1⌅c1 |1⌅b1

⇥

⇥
� 1⇧

2
|0⌅c2 |0⌅b2 +

1⇧
2
|1⌅c2 |1⌅b2

⇥
(2.5)

If we compute the entanglement of the set {b1, b2} with {M, c1, c2}, we find

Sent = 2 ln 2 (2.6)

Continuing this process, after N steps we get, in the leading order Hawking computation,

|⇥⌅ = |⇥⌅M ⇥
� 1⇧

2
|0⌅c1 |0⌅b1 +

1⇧
2
|1⌅c1 |1⌅b1

⇥

⇥
� 1⇧

2
|0⌅c2 |0⌅b2 +

1⇧
2
|1⌅c2 |1⌅b2

⇥

. . .

⇥
� 1⇧

2
|0⌅cN |0⌅bN +

1⇧
2
|1⌅cN |1⌅bN

⇥
(2.7)

The entanglement entropy of the {bi} with the M, {ci} is

Sent = N ln 2 (2.8)

Since this entanglement keeps growing with N , we get the Hawking problem mentioned above.

6

...
Sent

emission steps

Hawking 
process

entanglement
For this state, the entanglement 
keeps growing
(so not like the generic case of 
Page)

The small corrections theorem says that this result is stable against small 
corrections to the Hawking radiation process

SN+1 > SN + ln 2� (�1 + �2)



Kip 
Thorne

John 
Preskill

Stephen 
Hawking

But Kip Thorne did not agree to 
surrender the bet ...

The small correction theorem says that Kip Thorne was correct here ....
we need order unity corrections to the state of the emitted pair to resolve 
the problem

In 2004, Stephen Hawking surrendered his bet to John Preskill ...



Black holes in string theory



How can strings help to solve our puzzle ?

Hawking’s paradox is so strong because it does not use
any details of quantum  gravity

In graviton-graviton scattering, there is no sign of string behavior if 
energies are below the string scale

Q: How does string theory manage to violate the semiclassical 
approximation that is expected to hold around the horizon? 



(a) Elementary objects in IIB string theory

graviton string (NS1) NS 5-brane

D1, D3, D5, D7, D9
branes

Kaluza-Klein
monopole

Any one of these objects can be mapped to any other by S,T dualities,
which are exact symmetries of the theory



(b) The string coupling is a field g = e�

Thus we can take the coupling to be small or large

(c) The theory lives in 9+1 dimensions.

So we have to compactify some directions to get black holes in lower 
dimensions

(d) The theory is unique:  The set of elementary objects, their tensions,
interactions etc. are all fixed



We have to make a black hole using the objects in the theory

We can wrap a string around a compact circle

If we just use many gravitons, they will disperse, at least at weak 
coupling



To get a large mass, we should take many strings

For an observer who 
cannot resolve the
compact dimension:

This suggests many separate tiny black holes …. we should instead look 
for one heavy object 

Mass M QWinding charge M = |Q|



What geometry does this object create?

Weak coupling Strong coupling

Horizon area 
vanishes

Sbek =
A

4G
= 0

Unique state
(actually        dimensional
supermultiplet)

256

Smicro = log[256] ⇡ 0

Entropy does not grow with
winding number 

n1

n1



The energy of the string is lowered when the length of the radius of
the circle is reduced

Thus the circle gets pinched, and the horizon area goes to zero

To fix this problem, we should add something whose energy grows
when the radius of the circle is reduced



E = P =
2⇡np

L

We take a graviton running around the compact circle

L

We want a bound state of       units of string winding charge 
and        units of momentum charge

n1
np



The bound state of a string and momentum is described by a string 
carrying travelling waves

L =
⇥

dx[�1
4
F a

µ⇥Fµ⇥a +
i

2
⇥̄⌅⇥ + . . .]

P =
2�np

L
=

2�(n1np)
LT

p =
2�k

LT

�

k

knk = n1np

e2⇤
�

2
�

n1np

S = 2�
⇤

2⇤n1np

LT = n1L

L

1

S ⇥ E ⇥
⇤

E
⇤

E (81)

n1 n̄1 np n̄p (82)

S = 2⇥
⇤

2(
⇤

n1 +
⇤

n̄1)(
⇤

np +
⇤

n̄p) ⇥
⇤

E
⇤

E ⇥ E (83)

S = 2⇥(
⇤

n1 +
⇤

n̄1)(
⇤

n5 +
⇤

n̄5)(
⇤

np +
⇤

n̄p) ⇥ E
3
2 (84)

S = 2⇥(
⇤

n1 +
⇤

n̄1)(
⇤

n2 +
⇤

n̄2)(
⇤

n3 +
⇤

n̄3)(
⇤

n4 +
⇤

n̄4) ⇥ E2 (85)

S = AN

N⇥

i=1

(
⇤

ni +
⇤

n̄i) ⇥ E
N
2 (86)

ds2 = �dt2 +
�

i

a2
i (t)dxidxi (87)

S = 2⇥(
⇤

n1 +
⇤

n̄1)(
⇤

n2 +
⇤

n̄2)(
⇤

n3 +
⇤

n̄3)(
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n4 +
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n̄4) (88)

S = 2⇥(
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n1 +
⇤

n̄1)(
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n2 +
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n̄2)(
⇤

n3 +
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n4 = n̄4 � 1 (90)
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2
⇤
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E =
�

i

(ni + n̄i) mi (99)

S = C
N⇥

i=1

(
⇤

ni +
⇤

n̄i) (100)

Pa =
�

i

(ni + n̄i) pi
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R [n1, n5, np, �
�, g, LS1 , VT 4 ] (102)

⇥ Rs (103)

P =
2⇥np

L
(104)
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L

But there are many ways to partition the total momentum among different 
harmonics .... entropy !
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nkLet there be       units of excitations in harmonic k

We can partition these           units among different harmonics in 
different ways.  

n1np

Then we need n1 + 2n2 + 3n3 + · · · = n1np

The number of solutions to this relation is called the Partitions of 
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We have to also take into account the
8 different transverse directions of
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Also, there are as many fermions as 
bosons, and 2 fermions are equivalent to 
1 boson
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(Heterotic)

We now have an entropy that grows with the charges in the bound 
state …



What geometry does this object create?
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Weak coupling Strong coupling
A

Horizon area 

IIB: A = 0

Heterotic:  With first order stringy corrections, for 3+1 dims noncompact

Sbek�wald =
A

4G
+

A

4G
=

A

2G
4⇡

p
n1n5 = Smicro

But higher level stringy corrections are of the same order …

Also, numerical coefficient does not match for 4+1 dimensions

(Cano, Ramirez, 
Ruiperez 18)

(Dabholkar, Kallosh, 
Maloney 04)



3-charge states



A graviton has energy E =
2⇡k

L

Thus the minimum energy excitation with no net charge is

If we excite a singly wound string we get the same gap �E =
4⇡k

L
But for a string of winding      the gap isn1

L

�E =
2⇡

L
+

2⇡

L
=

4⇡

L

�E =
2⇡

n1L
+

2⇡

n1L
=

4⇡

n1L



This looks like a normal phenomenon, but what makes it interesting
in string theory is that we can apply dualities

A graviton by itself comes in integral units of    
     
But when it is bound to       strings it gets ‘fractionated’. 

We get       ‘fractional gravitons’ of energy             each     

2⇡

L

2⇡

n1L

n1

n1

NS1

P

D5

D1

NS1-P  bound state D1-D5 bound state



When graviton binds to
      strings, it breaks into
      fractional units
n1
n1

n0
5

When a D1 binds to
       D5 branes, it should
break into        fractional
units

n0
5

n0
5

n0
5

n0
5       fractional

  D1 branes



n0
5

n0
1          fractional

  D1 branes
n0
1n

0
5

We can join these             fractional D1 branes into one multiwound
‘effective string’

n0
1n

0
5

We can add a momentum P
along this effective string

3-charge D1-D5-P extremal hole



n0
5

S1

T 4

We have      D1 branes wrapped on an      of length n0
1 LS1

n0
1

We have      units of momentum P along the S1

We have       D5 branes wrapped on       times a       of volume S1 T 4n0
5 V

The string coupling is g

The string tension is T =
1

2⇡↵0

Noncompact dimensions  4+1

n0
p

n0
p



Microscopic entropy

L

The effective string has winding number n0
1n

0
5

The momentum is P =
2⇡n0

p

L
=

2⇡n0
1n

0
5n

0
p

LT

LT = n0
1n

0
5LThus its total length is

nkLet there be       units of excitations in harmonic k
X

k

k nk = n0
1n

0
5n

0
pCount partitions

2�k

LT
A quantum of the harmonic     has momentum k



Counting partitions

Here     is the ‘central charge’, which is the number of effective directions of 
vibration of the ‘effective string’

c

A D1 string bound to the D5 
brane can vibrate only inside the
D5 brane, so it has 4 transverse 
directions of vibration 

By supersymmetry, there are 
4 fermionic directions, so c = 4 +

4

2
= 6

Partitions [N ] ⇠ e2⇡
p

c
6N

Number of different possible vibrations on effective string

N ⇠ e2⇡
p

n0
1n

0
5n

0
p



Microscopic entropy Smicro = log[N ] = 2⇡
q
n0
1n

0
5n

0
p

(Strominger and Vafa 96)

Weak coupling Strong coupling
A

Horizon area n0
1, n

0
5, n

0
p

Sbek =
A

4G
= 2⇡

q
n0
1n

0
5n

0
p = Smicro



Extremal black holes (Mass=Charge) do not radiate

Near-extremal black holes
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We again find



Radiation from near-extremal holes

radiated graviton

Number of gravitons 
emitted per unit time

coupling
flux of left 
movers

flux of right
movers

�micro = |V |2⇢L ⇢R

(weak coupling)



(Strong coupling)

Compute Hawking 
radiation
from the black hole with 
the same mass and charges

We find

�Hawking = �micro

(Das+SDM 96,  
Maldacena and Strominger 96)
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2-charges

3-charges

4-charges

2 charges
+ nonextremality

3-charges
+ nonextremality

All black holes have similar expressions for entropy

The radiation agreement also works out for different holes ...

�Hawking = �micro



But all this does not help us with the information paradox …

(Strong coupling) Entangled pairs;
Entanglement keeps
growing

Radiates like a
normal body;
no problem of 
growing entanglement

(weak coupling)

The average rate of radiation is the same in both cases, but the detailed 
mechanism of radiation is very different



Q: If string theory changes physics at the string scale, what can it do at 
the horizon? 



The size of a bound state



(Das+SDM 96)

The minimum energy excitation (with no net charge) is

L

Fractionation

But when the gravitons are bound to a string of winding     they come in 
fractional units  

n1
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n1L
+
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(The total momentum must be an integer multiple of       ) 
2⇡

L

(single fractionation)



n0
5

n0
5       fractional

  D1 branes
Duality

T =
1

2⇡↵0g T =
1

2⇡↵0g

1

n0
5

Low tension objects can stretch easily …. thus they generate physics at
longer length scales



n0
5
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5       fractional

  D1 branes
Duality

n0
5

n0
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         fractional
  D1 branes
n0
1n

0
5

Momentum comes in 
fractional units:
(double fractionation)

(Maldacena+Susskind 96)

2⇡

n0
1n

0
5L



Momentum comes in 
fractional units:
(triple fractionation)

4-charge hole in 3+1 noncompact directions:  D1-D5-KK-P charges

2⇡

n0
1n

0
5n

0
KKL

General heuristic picture: 

(a) Make a bound state of any set of objects that are mutually 
supersymmetric

(b) Let the number of these objects be 

(c) Add some extra energy

(d) This will create pairs of branes in fractional units 
     The brane pairs created correspond to the 
     lightest fractional branes

n1, n2, . . . nk

1

n1n2 . . . nk�1



What is the size of a 3-charge bound state (say D1-D5-P)    

What is the distance to which the fractional branes stretch (in the 
noncompact directions)?

D

D

(a) Start with a 3-charge bound state

(b) Compactify one transverse direction
 to a circle of radius 

(c) Add the minimum allowed energy 
for the box

(d) Ask if brane pairs can use thus energy to
wrap around the box. 

D

�E ⇠ 1

D



The 3-charge extremal bound state had an entropy 

S = 2⇡
p
n1n2n3

Adding the extra energy                     creates brane pairs so that the
entropy becomes 

�E ⇠ 1

D

S = 2⇡
p
n1n2n3 +�S

We want the brane pair creation to be not just possible, but probable

D

D

�S = 1We require
old phase 
space

new phase 
spacePhase space with brane pairs is 2.7 

times larger than phase space 
without brane pairs

= 2⇡
p
n1n2n3(

p
n4 +

p
n̄4)



We find
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4
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pg
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V L

3

5

1
3

D

RH =

2

4
(2⇡)5

q
n0
1n

0
5n

0
p
g2↵04

V L

3

5

1
3

The horizon radius of the 
D1-D5-P hole is

D ⇠ RH

(SDM 97
SDM 0510180)
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?? ??

Suppose we make a bound state with a large number of branes

Does the size of the bound state grow with the number of branes?

D ⇠ RH

Horizon will
not form

In this case bound states in string theory will behave like normal bodies, that 
radiate from their surface (rather than through pair creation at a horizon). 

Then there will be no information paradox



The fuzzball construction
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All black holes have similar expressions for entropy
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L

2-charge NS1-P extremal hole

M9,1 ! M4,1 ⇥ S1 ⇥ T 4IIB:

covering space

A NS1 string carrying the momentum P in the form of travelling waves



The elementary string (NS1) does not have any LONGITUDINAL 
vibration modes

This is because it is not made up of
‘more elementary particles’ Not a mode for the 

elementary string

Thus only transverse oscillations are
permitted

This causes the string to spread over
a nonzero transverse area

Momentum is 
carried by 
transverse
oscillations

A key point
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‘Naive
geometry’

An ‘actual 
geometry’

‘singular
horizon’



We know the metric of one straight strand 
of string 

We know the metric of a string
carrying a wave --  ‘Vachaspati transform’

We get the metric for many 
strands by superposing harmonic 
functions from each strand

(Dabholkar, Gauntlett,Harvey, Waldram 
’95, Callan,Maldacena,Peet ’95)

In our present case, we have a large
number of strands, so we ‘smear over
them to make a
continuous ‘strip’ (Lunin+SDM ’01)

Making the geometry



In this case neighboring strands give very similar contributions to the harmonic functions in
(??), and we may replace the sum by an integral

n1�

s=1

⇥
⇥ n1

s=0
ds =

⇥ 2�Rn1

y=0

ds

dy
dy (5.15)

Since the length of the compacification circle is 2�R we have
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Also, since the vibration profile is a function of v = t� y we can replace the integral over y by
an integral over v. Thus we have
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LT = 2�Rn1 (5.18)

is the total range of the y coordinate on the multiwound string. Finally, note that
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We can then write the NS1-P solution as
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5.1 Obtaining the NS1-NS5 geometries

From (??) we see that we can perform S,T dualities to map the above NS1-P solutions to
NS1-NS5 solutions. For a detailed presentation of the steps (for a specific �F (v)) see [?]. The
computations are straightforward, except for one step where we need to perform an electric-
magnetic duality. Recall that under T-duality a Ramond-Ramond gauge field form C(p) can
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Lessons:

(a) We do not find a horizon; we just 
get a distributed string source

L =
⇥

dx[�1
4
F a

µ⇥Fµ⇥a +
i

2
⇥̄⌅⇥ + . . .]

P =
2�np

L
=

2�(n1np)
LT

p =
2�k

LT

�

k

knk = n1np

e2⇤
�

2
�

n1np

S = 2�
⇤

2⇤n1np

LT = n1L

L

1

(b) The traditional approach to black
   holes looked for metric with a 
   spherically symmetric ansatz. 
   But the actual microstates are not
   spherically symmetric

(c) Different microstates have different
   structures. Thus they carry the
   information of the state (hair).



Two useful tools:

In general black hole microstates are expected to have structure at the 
planck scale

Sbek =
A

4G
⇠ A

l2p

Since quantum gravity is difficult to study at the plank scale, in most
theories it is hard to understand what is going on in a black hole

(A) In string theory, we have a coupling     which can be taken from small to 
large.  Black hole states are at large effective coupling, but
the weak coupling picture can be a useful guide.

g



??

g = 0
g ⌧ 1

g ⇠ 1

Extremal states

Unless there is a phase transition, we cannot get the infinite throat
of the traditional extremal hole



(B) The weak coupling brane picture gives an overall picture of all states

We then look for states ordered by SIMPLICITY

The simplest states are those where 'all excitations are in the same mode'
These generate coherent states, which can be studied by writing metrics

We then move to more complicated states etc.
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Then we move to more generic states:  Use more and more higher 
harmonics.  We do not find a horizon for any profile of the string.

Generic state has harmonic k ⇠ p
n1np

Such a state will have structure at the string scale, but we can estimate
the size of the region over which the metric deformations are nontrivial

A

G
⇠ p

n1np ⇠ Smicro

D ⇠ Rh



Evolution of wavemodes:

Hawking radiation arises from evolution of modes near the hole, on both 
sides of the horizon

We find that this evolution is altered by order unity, and the evolution
of modes departs more and more from evolution in the vacuum as we 
move towards generic states

Geodesics bend by order unity
as they pass near curve



r = 0

Horizon

Traditional picture Simple fuzzball
state

More complicated 
fuzzball state

Evolution of modes in a fuzzball


