I Preliminaries
Concept (fired point):
Let $O: X \rightarrow X$ be a map on a set X.

Black Holes are Quantum Complete

ASC -Lecture 2018

A point $x \in X$ for which $O X=X$ is called a fixed point of O.

Concept (contraction):
Let (M, d) be a metric space.
A map $\sigma: M \rightarrow M$ for which

$$
d\left(O_{x}, O_{y}\right) \leq d(x, y) \quad \forall x, y \in M
$$

is called a contraction.
If there is a $C<1$ such that

$$
d\left(O_{x}, O_{y}\right) \leq C d(x, y) \quad \forall x, y \in M,
$$

then O is called a strict contraction.

Statement (contraction mapping principle): / A strict contraction on a complete metric pose has a nuique fixed point.

Sketch:
Uniqueness: //
Assume $\quad \sigma_{x}=x, G_{y}=y \quad(x, y \in M)$.
Then $d(x, y)=d\left(G_{x}, \sigma_{y}\right) \leqq C d(x, y)$.
Since $d \leqq C<1$ it follows that

$$
d(x, y)=0 \Longrightarrow x=y
$$

Existence: //
First mote: O is automatically continuous since $d(x, y)<C^{-1} \varepsilon$ implies $d\left(O_{x}, \sigma_{y}\right)<\varepsilon$.

2
Next, let $x_{0} \in M$ be arbitrary. Consider $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with $x_{n}=\sigma^{n} x_{0}=\frac{\text { dr }}{\left(\sigma_{0} \ldots \circ G\right)} x_{n}$

* We noil shows that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy:

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & =d\left(O x_{n-1}, O x_{n}\right) \\
& \leqq C d\left(x_{n-1}, x_{n}\right) \\
d\left(x_{n-1}, x_{n}\right) & =d\left(O x_{n-2}, O x_{n-1}\right) \\
& \leqq C_{1}^{1} d\left(x_{n-2}, x_{n-1}\right) \quad d
\end{aligned}
$$

$$
d\left(x_{n}, x_{n+1}\right) \leqq C^{2} d\left(x_{n-1}, x_{n-1}\right)
$$

:

$$
d\left(x_{n}, x_{n+1}\right) \leqq C^{n} d\left(x_{0}, x_{1}\right)
$$

For $m>m$

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leqq \sum_{a=m+1}^{m} d\left(x_{a}, x_{a-1}\right) \\
& \leqq C^{m}(1-C)^{-1} d\left(x_{0}, x_{1}\right) \xrightarrow{m \rightarrow \infty} \delta .
\end{aligned}
$$

Hence $\left\{0^{n} x .\right\}_{n \in \mathbb{N}}$ is Cauchy. Since M is complete there is a $x \in M$ so that

$$
0^{n} x_{0} \xrightarrow{n \rightarrow \infty} x .
$$

By continuity of 0 ,

$$
O x=\lim _{n \rightarrow \infty} O x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=x
$$

Application:
Let $f: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous.
We are interested in solving

$$
\dot{y}(t)=f(t, y(t)), y(d)=y_{0} .
$$

Contraction arguments give the existence of local solutions, ie. given Y_{0} we roil find

$$
y:(-\delta, \delta) \rightarrow \mathbb{R}^{n}
$$

satisfying

1) $y(\partial)=y_{0}$
2) $\dot{y}(t)=f(t, y(t))$ for all $|t|<\delta$.

Note: The question whether local solutions can be extended to global solutions is much touchier.

Differentiation maker functions less smooth, rules we ausidor only C^{∞} - function.
this motivates to rewrite the equation of motion in integral form:

$$
\begin{equation*}
y(t)=y_{0}+\int_{0}^{t} d s f(s, y(s)) . \tag{*}
\end{equation*}
$$

Given y_{0} and δ, we cusider the map

$$
\varepsilon: C[-\delta, \delta] \longrightarrow C[-\delta, \delta] \quad \text { to l. } R^{n} \text {. }{ }^{n}
$$

defined b

$$
(\varepsilon(t, 0))(g) \stackrel{d f}{=} y_{0}+\int_{0}^{t} d s f(s, g(s)) .
$$

Solving $(*)$ is equivalent to finding a fixed point of ε !

6
For simplicity we cusider only the are where f is Lipschitz continuous, see.
given Y_{3},
there is a K, δ and \in so that

$$
\left\|y-y_{0}\right\|<\epsilon,|t|<\delta
$$

implies

$$
\begin{aligned}
& \|f(t, y)-f(t, z)\| \leq K\|y-z\| \\
& \text { if }\left\|z-y_{0}\right\|<\epsilon .
\end{aligned}
$$

Let

$$
y \stackrel{d f}{=}\left\{g \in C[-\delta, \delta]:\left\|g(t)-y_{0}\right\| \leqq \frac{1}{2} \varepsilon \forall t \in(-\delta, \delta)\right\}
$$

What is the relearance of \mathcal{G} ?

First// if $g \in \mathcal{G}$ then $\varepsilon(g) \in \mathcal{G}$ since

$$
\begin{aligned}
&\left\|\varepsilon(g)-y_{0}\right\|=\left\|\int_{\delta}^{\delta} d s f(s, g(s))\right\| \\
& \leqq \int_{\delta}^{\delta} d s\|f(s, g(s))\| \\
& \leqq \delta \cdot \max _{|\leqslant|<\delta}\|f(s, g(s))\| \\
&\left\|g(0)-y_{0}\right\|<\epsilon
\end{aligned}
$$

Shrinking δ we can be sure that

$$
\left\|\varepsilon(g)-y_{0}\right\| \leqq \frac{\epsilon}{2}
$$

Second // φ is a complete metric space under the supremum norm $\|\cdot\|_{\infty}$.
For $g_{1}, g_{2} \in \mathcal{G}$ cusider

$$
\begin{aligned}
& \left\|\varepsilon\left(g_{A}\right)-\varepsilon\left(g_{2}\right)\right\|_{\infty}=\left\|\int_{0}^{t} d s[f(s, z)]_{g_{2}(s)}^{g_{1}(s)}\right\|_{\infty} \\
& \leqq \int_{0}^{t} d s\left\|[f(s, z)]_{g_{2}(s)}^{g_{1}(s)}\right\|_{\infty} \stackrel{\text { Lipscditz }}{ }_{\underline{=}}^{\leqq \int_{0}^{t} d s C\left\|g_{1}-g_{2}\right\|_{\infty} \quad(|t|<s)} \\
& \leqq C \delta\left\|g_{1}-g_{2}\right\|_{\infty}
\end{aligned}
$$

Shrinking δ are can be sere that

$$
\| \varepsilon\left(g_{1}\right)-\varepsilon\left(g_{2}\left\|_{\infty}<\frac{1}{2}\right\| g_{1}-g_{2} \|_{\infty}\right.
$$

Thus ε is a strict on traction on ξ.
The contraction mapping principle then grants a ruique $g \in \mathscr{G}$ nohich satisfies ($*$).

Conversely, any solution of $(*)$ must be in g for sufficiently small t and so must agree with the manque solution in 9 when t is small.

This prows bal existence \& uniqueness.

16
Consider a Hamiltonian system (\mathbb{P}, H) with phase pace $\mathbb{P}=(d, \infty) \times \mathbb{R}$ and Hamilton function
$H: \mathbb{P} \rightarrow \mathbb{R}$,

$$
(q, p) \longrightarrow H(q, p) \frac{d p}{\underline{\underline{1}}} \frac{p^{2}}{2 m}+V(q) .
$$

The equations of motion are

$$
\dot{q}(t)=\frac{1}{m} p(t), \quad \dot{P}(t)=-\operatorname{grad} V(q(1))
$$

For each $q_{0}>d, p_{0}, t_{0}>\delta$
the standard (by now) contraction argument gives a unique solution pair

$$
(q(t), p(t)) \text { for } t \in\left(t_{0}-\delta, t_{0}+\delta\right) \quad(\delta>\delta)
$$

satisfying $q\left(t_{0}\right)=q_{0}, P\left(t_{0}\right)=P_{0}$.

Statement:
12

Suppose a gbbal solution satisfying the musial conditions $q\left(t_{0}\right)=q_{0}>0, P\left(E_{0}\right)=P_{0}$
does not exist, ie.
the maximal interval on which the solution with these mitral conditions exists is $\left[t_{0}, \tau\right), \tau<\infty$.

Then either

$$
\lim _{t \uparrow \tau} q(t)=0 \text { or } \lim _{t \uparrow \tau} q(t)=\infty
$$

Sketch: / By the construction of leal solutions and the assumptions made on V : for any compact $K \subset \mathbb{P}=(0, \infty) \times \mathbb{R}$ there is a P^{2} :
($q(t), p(t)$) is a nuique solution
for $t \in\left(t_{1}-T^{x}, t_{\lambda}+T^{x}\right)$ with

$$
\left.q\left(t_{x}\right)=q_{1}, p t_{x}\right)=P_{1}
$$

${ }^{\wedge}$ specified τ
If we cannot extend the solution part $t=\tau$, then it cannot lie in \mathcal{K} for any $t>\tau-T K$.
The remaining task is to show that the statement " ($q(t), p(t)$) leaves K eventually" implies that the point mass eventually leaves any compact subset $C \subset(0, \infty)$.

At this stage energy ousernation is very useful:

$$
H(q(t), p(t))=H\left(q_{0}, p_{0}\right)=: E_{0} .
$$

If $q(t) \in C \subset(0, \infty)$, then

$$
\begin{aligned}
& (q(t), p(t)) \in \\
& \quad\left\{p(t):|p(t)| \leqq \sqrt{2 m\left(E_{0}-\inf _{q \in C} V(q)\right)}\right\}
\end{aligned}
$$

Thus for all $n \in \mathbb{N}$ there is a t_{n} such that

$$
q(t) \notin\left(\frac{1}{n}, n\right)
$$

for $t>t_{n}$.

14
Concept (complete):
The classical motion generated by V is called complete at zero (infinity) if there is no $\left(q_{0}, p_{0}\right) \in \mathbb{P}=(0, \infty) \times \mathbb{R}$ so that $q(t)$ runs off to zero (infinity) in a finite time. /

Statement:
The classical motion generated $b_{y} V$ is not complete at zero
if and only if $V(q)$ is bounded above near zero.

Sketch: / V is not bounded above at zero if and only if there is a sequence $\left\{q_{n}\right\}_{n \in \mathbb{N}}$ with $q_{n} \rightarrow \delta$ so that $V\left(q_{n}\right) \rightarrow \infty$.
1)// Assume : V is not bounded above at zero.

Shows: Wis complete
By conservation of energy

$$
\frac{\Phi^{2}(t)}{2 m}+V(q(t))=\frac{p_{0}^{2}}{2 m}+V\left(q_{0}\right)=E_{0}
$$

Hence $\quad V(q(t)) \leqq E_{0}$.
Thus $q(t)$ can never equal q_{n} for n sufficiently large.
So $q(t)$ can never go to zero.
Thus V is complete.
2) // Assume: $V(q) \leq M$ on $(0,1)$.

Show: V is incomplete.
Let $q\left(t_{0}\right)=q_{0}=1$ and choose $B<\delta$ and so that

$$
E_{0}=M+1 \text {. }
$$

By energy conservation

$$
\frac{p^{2}(t)}{2 m} \geqq 1
$$

for all t. So the point particle reacher zero in a finite time. Hence V is incomplete.

Remark: Geodesic completeness
$\operatorname{Let}(\mu, \delta)$ be a spacetime.
A curve in \mathcal{H} is a smooth mapping

$$
\underset{\substack{\boldsymbol{\gamma} \\ \text { open }}}{\boldsymbol{I} \subset \mathbb{R} \longrightarrow \mathcal{M}}
$$

I has a coordinate system ousisting of the identity map u of I. At each $t \in \mathbb{R}$ are can picture the coordinate vector $\left.\frac{d}{d u}\right|_{t} \in T_{t} \mathbb{R}$ as the quit vector at t in the positive u-direction.
Concept (Velocity sector) :/1
Let $\gamma: I \longrightarrow \mathcal{M}$ be a carve.
The velocity vector of γ at $t \in I$ is

$$
\dot{\gamma}(t) \frac{d f}{2} d \gamma\left(\left.\frac{d}{d u}\right|_{t}\right) \in T_{\gamma(t)} \mu
$$

Note that $\dot{\gamma}$ does not involve geometry!
The acceleration $\ddot{\gamma}$ does involve geometry: If $\ddot{\gamma}=\delta$, then $\dot{\gamma}$ is said to be parallel.
A geodesic in a spacetime \mathcal{H} is a curve

$$
\gamma: I \rightarrow \mathcal{H}
$$

whose vector field $\dot{\gamma}$ is parallel. Equivalent, geodesics are the curves of vosuishing acceleration.

Statement: // Given any tangent vector $\sigma \in T p e l$ there is a nuique geodesic γ_{σ} in ch sech that
a) $\dot{\gamma}_{v}(0)=v$
b) $\operatorname{dom}\left(\gamma_{\sigma}\right)$ is the largest possible: If $\alpha: J \longrightarrow \mu$ is a geodesic with $\dot{\alpha}(\sigma)=\sigma$, then $J \subset I$ and $\alpha=\gamma_{\sigma} \mid \partial$.

Because of b) γ_{v} is said to be maximal.
A spacetime for which every maximal geodesic is defined on the entire real line is said to be geodesically complete.

20
Concept (quantum-mecharially complete): /
The potential $V(q)$ is called qum-complete if $H=\frac{1}{2 m} p \cdot p+V(q)$ is essentially self-adjoint on $C_{0}^{\infty}(0, \infty)$. /

II Formal Constructions
Let (μ, g) be a globally hyperbolic spacetime.
Choose a time function t and a vector field or on d so that $\nabla_{v} t=-1$ and the pacelike surfaces $\left(\Sigma_{t}\right)_{t \in I \subset \mathbb{R}}$ are Cauchy hypersonfaces. g_{n} most cases $\left.I=J \partial, t_{i n}\right]$.

Let $C_{1}\left(\Sigma_{L}\right)$ be the set of instantanesus field configurations $\phi: \mathcal{M} \rightarrow \mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$.

Consider $\left(C,\left(\Pi_{k}\right), D \phi\right)$ to be a formal measure space.

22
Let $\mathcal{L}^{2}\left(C\left(K_{L}\right), D \phi\right)$ be the \mathbb{C} - vector space of wave functional

$$
\Psi_{L}: C\left(\Sigma_{i}\right) \longrightarrow \mathbb{C}
$$

which are measurable and $\int D \phi\left|\Psi_{t}[\phi]\right|^{2}$ exists.
$\mathcal{L}^{2}\left(C\left(\Sigma_{1}\right), D \phi\right)$ is equipped with the semi norm

$$
\left\|\Psi \Psi_{t}[\phi]\right\|=\left\{\int D \phi\left|\Psi_{2}[\phi]\right|^{2}\right\}^{1 / 2} .
$$

In order to promote this to a norm introduce

$$
\begin{aligned}
& \mathcal{N}(C(\Sigma), D \phi) \stackrel{d R}{=} \\
& \left\{\Psi_{4} \in \mathcal{L}^{2}\left(C\left(\Sigma_{L}\right), D \phi\right):\right. \\
& \\
& \left.\mathbb{\Psi}_{Z}[\phi]=\delta \text { D } D \text {-almost everywhere }\right\}
\end{aligned}
$$

The physical state pace is the quotient pace
24 $L^{2}(C(\Sigma), D \phi)=\mathcal{L}^{2}(C(\Sigma), D \phi) / \mathcal{N}(C(\Sigma), D \phi)$.

Interpretation: / If u is a measurable subset of $C_{1}\left(\Sigma_{t}\right)$ and X_{u} its indicator functional, then

$$
\left\|x_{u} \Psi_{t}[\phi]\right\|^{2}
$$

is the probability, for the field configuration on Σ to be given by some $\phi \in \mathcal{U}$.

Quantisation:

1) Smeared configuration field operator $\Phi[f]$ so just the operator for maltipliastion with $\phi[f]$. Its domain is characterized by demanding

$$
E_{\Psi_{t}}(\Phi[f])=\left\|\sqrt{\phi[f]} \Psi_{[}[\phi]\right\|^{2}
$$

to be well defined.
2) Conjugated momentum field aerator $\pi[C]$ is characterized by Heisenberg's fundamental uncertainty relation

$$
\left[\Phi\left[f_{1}\right], \pi\left[R_{2}\right]\right]=i\left(f_{1}, f_{2}\right)
$$

III QFT-Camplete
Concept (strongly continuous semigroup of crolution operators) /
A family $\left\{\varepsilon\left(t, t_{0}\right): t_{1} t_{0} \in I \subset \mathbb{R}^{+}\right\}$of
evolution operators

$$
\begin{gathered}
\varepsilon\left(t, t_{0}\right): L^{2}\left(C\left(\Sigma_{t_{0}}\right), D \phi\right) \rightarrow L^{2}\left(C\left(\Sigma_{t}\right), D \phi\right), \\
\bar{\Psi}_{t_{0}} \rightarrow \Psi_{L_{0}} \stackrel{d f}{=} \varepsilon\left(t, t_{0}\right) \Psi_{t_{0}}
\end{gathered}
$$

is a strongly continuous semigroup if
(1) $\varepsilon\left(t_{0}, t_{0}\right)=i d_{L^{2}}$
(2) $\varepsilon(t, s) \varepsilon\left(s, t_{0}\right)=\varepsilon\left(t, t_{0}\right)$
(3) $I \rightarrow L^{2}\left(C\left(\Sigma_{4}\right), D \phi\right), t \rightarrow \varepsilon\left(t_{1} t_{0}\right) \Psi_{L_{0}}$ is continuous for each $\Psi_{\Psi_{0}} \in L^{2}\left(C\left(\Sigma_{0}\right), D_{\phi}\right)$.

A probabilistic interpretation is only possible for a special class of evolution semigraps:

Concept (contractive evolution semigrap): /
A contractive evolution semigroup is a stray ${ }^{2}$ continuous evolution semigroup and moreover

$$
\inf \left\{C \equiv \delta:\left\|\varepsilon\left(t, t_{0}\right) \Psi_{\mathbf{H}_{0}}\right\| \leqq C_{1}\left\|\Psi_{0}\right\|\right.
$$

$$
\text { for all } \left.\Psi_{t_{0}} \in L^{2}\left(C\left(\Sigma_{0}\right), D \phi\right)\right\}
$$

for all $t \in I$.
We still have

$$
\begin{aligned}
& \mathcal{E}\left(t, t_{0}\right)=\exp \left\{-i \int_{t_{0}}^{t^{t}} d s H[\Phi, \pi ; g]\right\}, \\
& H\left[\Phi, \pi_{i} g\right]=\int_{z_{3}} d \mu \mathcal{H}\left(\Phi, \pi ; g_{2}\right) .
\end{aligned}
$$

Question:/gs there an analogue
(unitary, solf-adjoint) $\widehat{=}$ (contractive,.) ?/
Answer: / Yes:
Consider $S \in\left[L^{2}(C(z), \infty \phi)\right]^{*}$ with

$$
\|S\|=\left\|\mathbb{F}_{2}\right\|^{2}
$$

Formally, Hahn-Banach guarantees existence.
Concept (accretive) : // The generator H
is called accretive if

$$
g_{m}\left(S\left(H \Psi_{2}\right)\right) \leqq \delta
$$

for any $\Psi_{t} \in \operatorname{dom}(H)$ and for all $t \in I . \|$
(muitary, solf-adjoint) $\widehat{=}$ (contractive, accretive))

Concept (HPL -complete):
Let \sum_{0} be a spacelike geodesic boundary of (μ, g) located at $\longleftrightarrow 0$.
The spacetime (μ, g) is called $q P t$-complete if the evolution semigroup is contractive in (μ, σ) and if

$$
\left\|\varepsilon\left(t, t_{0}\right)\right\|_{\text {inf }} \xrightarrow{t \rightarrow \alpha} \delta
$$

Kernel method:
Consider a bilinear functional

If the BKL-conjecture holds then

$$
k_{t}(x, y)=k(t) \delta(x, y)
$$

in the vicinity of the groolesic bainday.
Ground state:

$$
\begin{aligned}
& \mathcal{F}_{t}[\phi]=\mathcal{N}_{t} \mathcal{G}_{t}[\phi] \\
& \mathcal{N}_{t}=\mathcal{N}_{t_{0}} \exp \left\{\frac{i}{2} \int_{t i n}^{k} d s \int_{2} \rho \alpha_{\mu} \frac{1}{2} \pi^{2} \mathcal{K}_{0}[\phi, \phi]\right\} \\
& \mathcal{G}_{t}[\phi]=\exp \left\{-\frac{1}{2} K_{t}[\phi, \phi]\right\}
\end{aligned}
$$

IV Black Holes
The kernel is of BKKL-type

$$
K_{t}(x, y) \approx \frac{i}{t^{2} \mid \ln \left(t \mid t \text { in }^{n}\right) \mid} \delta_{\alpha, y \mid}+\text { less sing. }
$$

in the vicinity of the geodesic border boated at $t \rightarrow 0$.
Hence,

$$
\Psi_{t} \approx \delta .
$$

So oft grants no probabilistic support to the geodesic border. Events cannot populate $\Sigma_{\text {. and therefore measurement canst }}$ probe the singularity.

