Energy levels of S=1/2 Ground states have low entanglement

Heisenberg chains

4 N2In2
12 site Heisenberg chain

N=12 Von Neumann Entanglement

l i T i i i i T T i i entropy S for every eigenstate
T (system divided in center)



Why is the entanglement of ground states small?

* The short answer: High entanglement doesn’t help reduce the
energy for a physical Hamiltonian

—Monogamy of entanglement: complicated, many-particle entanglement
reduces the simple entanglement minimizing the energy

 The Area Law: The entanglement entropy is proportional to the
area of the cut separating the two subsystems

— Originally just a general expectation which seems to capture the
leading behavior (and Fermi liquids have log corrections!)

—Now proven in some cases (e.g. | D and gapped, Hastings)
—VB/RVB argument:

Singlet bond, In 2
entanglement




DMRG for 2D systems

* Map a finite width cylinder (vertical pbc’s only) onto a
chain

“snake”

Key problems: 2D
system with a sign
problem: frustrated
magnetic systems;
doped fermion
systems

\ Cut S~Ly (Areca Law)
m ~ exp(a Ly)

Long range bonds

Calc time: Lx Ly? m?; allows m ~ 10000, Ly ~ 12



Tensor network methods for 2D systems

Traditional DMRG method (MPS state) PEPS tensor

projected entangled-pair state network

states
Bond dimension

AP P PP P P g
PP P PP PP
PP PP PP
PP PP P PP
_ PP PP P PP

- Jrrrrrss
Em Long range bonds * ’ ’ ? ? ? *

Verstraete and Cirac, cond-mat/0407066

Entropy S ~ Ly (“area law”)
Bond dimension m ~ exp(a Ly)

Naturally obeys Area Law

Calc time: Ly Ly? m3; Can work directly with Lx ,Ly — o
Practical calculations: m ~ 10000, Calc time: ~m'%;
Ly ~ 12 for S=1/2 Heisenberg Practical calculations: m ~ 15-207?,

(See Corboz’ impressive work...)

Crossover in accuracy as a function of width for DMRG, Ly ~ 10



Some Practical aspects of DMRG for hard
systems and Applications to 2D

* DMRG codes: ITensor,AutoMPO

* Extrapolation in truncation error for energy and
observables

* Tips for very efficient calculations

* Example systems:
—Square lattice

— Triangular lattice
—Kagome lattice

—t] model



The ITensor Iibrary (itensor.org; Miles Stoudenmire, Now at Simons)

ITensor started out based on the simple idea of autocontraction
of tensor: You should be able to contract tensors, including
vectors and matrices, with code that looks like: A=B * C* D *

E;

How can you do that? Each tensor knows its indices, and indices

have names, like “i”, or %", or “|oe”

Then used the Einstein summation convention and automatically
contract over repeated indices:

Cik = Aij Bjk can automatically become C =A * B; (or c=A*B)

It also has DMRG, standard MPS and MPO algorithms, Abelian
symmetries, fermions, long range interactions/MPO-compression,

sums of MPOs, time evolution, and AutoMPO



http://itensor.org

—;Lj— I TENSOR

Learn to Use ITensor

main / tutorlals / AutoMPO

How to use AutoMPO

Thomas E. Baker—August 18, 2015

Instead of programming an MPO by hand, [Tensor has AutoMPQ which allows for the automatic
generation of an MPO. This feature allows for the typing of a chain of input which AutoMFPO converts
into an MPO for the full system.

Hers is a code snippet for making an MPQO for the Heisenbarg model on a spin-half chain.

SpinHalf sites(N);

AutoMPO anpo(sites); This works just as well for a 2D
for(int j = 1; j < N;++j)

( cluster as for a chain
ampo += 0.5,"S+",j,"S-",j+1;

= 0.5,"5-",j,"S+", j+1;
e T You need to translate your 2D
ampo += sz",j,"Sz",j+1;

1 lattice to 1D for it.

auto H = MPC(ampe);

Let's go line by line through it and see what AutoMPQO is doing. Here, we are just showing the part

bt v blrrmes e AN Llibhimy t1oe toe herm svrmasd o Ffovvevsrhers thv e rmrrt rarestes llovewl 10irs rovttrnd tovadiomliamrm = wtarvsberer M



Square lattice: benchmark against

QMC
N N\ A l A\ A N\
S AD v Ty T %
X1 YT y Ty 1y
Xxxxxx xxxxxxx
y T¥ Ty DD S
X1 YT y Ty 1y
S AD v Ty T
X1 YT y Ty 1y
w1 y¥ Ty y Ty Ty
N7 \7 W v N7 \/
A os

* Cylindrical BCs: periodic in y, open in x
* Strong AF pinning fields on left and right edges
* 2| sweeps, up to m=3200 states, 80 hours
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Extrapolation of the energy

2000 site Heisenberg chain

Linear Fit

m=80

m=40

~886.095
—-886.100 |
~886.105 g ™
m=200
-886.110
0Oe+00

2e—07 4e—07

Truncation error

6e-0

Extrapolation
improves the energy
by a factor of 5-10
and provides an
error estimate.



-49.165

-49.17

-49.175

-49.18

-49.185

Energy extrapolation

12x6 square lattice Heisenberg

@)

Fit based on circles

Probability of states thrown away
= truncation error (function of m)

| |
0.0005 0.001
€

Assign error bars to result:
if the fit is this good, assign
(extrapolation from last
point)/5

(no derivation, just
experience that this works
on lots of systems)

If the fit looks worse,
increase the error bar
(substantially) or don’t use
that run/keep more states or
smaller size system.



Extrapolation of local observables(ref:white and
Chernyshev, PRL 99, 127004 (2007))

e Standard result for a variational state

) =[G) +18), (Gl8) =0,
A= (14 (618) " (Ag + 2(GIAI5) + (3] Als))

E = (1+(0]8))"(Eq + (5| H]8))
* Consequences:

—Variational calculations can have excellent energies but poor
properties

—Since DMRG truncation error € ~ (4]0), E ~ ¢,but
otherwise extrapolations vary as g . -1/2

* These /2 extrapolations have never worked well.



Typical extrapolation of magnetization

0.45 T T T T 0.315 I I I

i 12x6

0.31

0.4 - High accuracy

0.305 g approach!

<S (6,1)>

0.3

0.295

] ] ]
0 0.5 1 1.5 2 0 001 002 003
AE"? AE

Pinning AF fields applied to edges, cylindrical BCs

Now we understand why the local measurements converge
fast; see White & Chernyshev

0.



<S (6,1)>

Cubic fit to well-converged measurements

0.304

0.302

0.3

| |
0 0.005 0.01
AE



-135.1

-135.15

-135.2

M -135.25

-135.3

-135.35

-135.4

20x10 square lattice Heisenberg

quadratic fit

0 0.001 0.002 0.003 0.004 0C
€

Result: central M = 0.3032(9)

0.325

0.32

cubic fit

0.02

0.04
AE

0.06

0.



Improved finite size scaling: choosing aspect ratios to reduce finite
size effects

M Short: proximity to
M strong pinning makes
M large

Long: 1D makes M small

2
* “Standard” measurements in QMC estimate M using correlation
functions and have large finite size effects O(1/L,)

 Can one choose a special aspect ratio to eliminate O(1/L,) term?

* What is behavior at large length scales? Use finite system spin
wave theory as a guide.



0.4

= 0.35

0.3

Square lattice

| | |‘I | | | | | | | | | | | 1

S(7t,m)

o

|

| | |
C(L/2.L/2)

o=1
AO

o=1.5

-

E\E\BGXE :
I

-

|
0.05 O.

| |
I 015 02 025
IL,

a=L,/L,



Finite size spin wave theory

T T T 1
045F |, Mo P M
. g; 15 0.315F —
M | .22 -
o o =1,PBCs : 03101+ _
o Zhong & Sorella A ) —
040 0.305 -
. - < :__________ _________
e 0300 -
o ¢ r
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0 0.05 0.1 0.15 0.2 J
Ly

 Optimal choice @ = 1.764 eliminates linear term

e Evena = 1 has much smaller finite size effects



Para| |e| D|\/| RG Stoudenmire & White, PRB 87, 155137 (2013)

» Parallelize single DMRG calculation across real space blocks

* Nearly ideal speedup

» Key step: MPS gauge transformation at block boundaries, each
block has orthogonal environment

Sweep =1
_ . . . N re s . 10 10
El=-9048119 E2=-99 32340  Fi= 9932330  FEd4= -Yu4x11v
1 . 7 — Ideal Speedup |
0.3t l,' — U8 8|-| == Parallel DMRG 18
R | T =
- | ST _Jl ,
S ’ - -1
2 H | = 6 16
g | 3
) " o
LR B I | - _1.2 Q |
W )
.= 4 14
S -1.4- —-1.4
g i |
-1.6- -1.6 2 12
- B ! ) . | .
'l 3 v I . I - - | - _Ix 2 4 6 8 10
0 20 40 60 30 100 Number of Nodes n
X
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Tilted square lattice

N a N a N a

e Tilted lattice has smaller DMRG errors for its width

e For this “16 /2 x 8 v/2” obtain M

0.3052(4)



Tilted square lattice

I I I I
¥—X Ly=5 .
= L6 Sandvik, QMC
0.308 c—o L= -
o—oL =8 Energy,
I N\ — extrapolated to
_____________________________________________________________ thermo limat:
-0.669444(5)
0.306 -
Sandvik (1997):
-0.669437(5)
| | | |
0.304 1.85 1.9 1.95 2
LJL,

* Results are consistent with and with comparable
accuracy to QMC! (of 1997, at least)

* Latest QMC (Sandvik&Evertz) -0.30743(1) (No new E)



t-] model: stripes on width 6 cylinders

)4 X
x X
)4 X
i )¢ X
al ‘, ! I X
/]\ 0.35 /]\ 0.25
O 02 () 02
12 x 6 system, Vertical PBC’s 12 x 6 system, Vertical PBC’s
J/t=0.35, 8 holes J/t=0.35, 8 holes

No Pinning AF fields

Pinning AF fields m=1600

® |ssues: How well converged are the results with m!?

® Are these just finite size artifacts? (i.e. are they just Friedel
oscillations?)

® Do the stripes destroy pairing?



Stripes forming from a blob of 8 holes

12x8
Cylindrical BCs
t=1, J=0.35
Q O t’=t’=0
\l/ 8 holes
i *
E = m =

fields applied for
two sweeps to
favor one stripe

OO
OO
%fi

AF edge pinning
40

-30.7350



Undoped system: Restoration of SU(2) symmetry

20 R T |
O
" T |
LN 2 N
)
L 2
S S 2 |
L 2 A

E = -38.0681

- - S o« -

« -5 &« -

T V) t
J 0 l
T ¢ t
J 0 l
T ¢ t
\ 0 {
T t
\ 0 {
m = 600

12x8
Cylindrical BCs
J=0.35

0 holes

No pinning
fields



Stripes not forming from a bad initial state

N

12x8
Cylindrical BCs
t=1, J=0.35
t’=t”’=0

8 holes

No pinning
fields.

Initial state has
holes spread out
so favored
striped state 1s
hard to find.
Energy higher
by ~0.3 t.

> - ——>

><
Q00 < - -

<

5 Oe—i’eﬁ €~ >
R e e 2

S 9>



Curved Stripe forms due to open BCs

E = -30.8532

—>0000—

= > ¢« D DE——>

N
=

12x8
Open BCs
t=1, J=0.35
t’=t’=0

8 holes

No pinning
fields



‘

t'=0.3: two holes attract

x
t

J

T

O O
J

E = -31.0529

m= 40

12x8
Open BCs
t=1, J=0.35
t°=0.3

2 holes

No pinning
fields




t-] model: stripes on width 6 cylinders

q T & P » g S 0 3
0004448800808 D488 6+0EDS4 98
.‘,QQ,OOOOIOOQ,.. ) .D’.O0.0Q,QO.’. k
0006445800060 D¢ 2E804 2800498
...QOO.Q.’.... ) .D’Q,OOOOO,QO.,.,%Q _

| 204000049
T o2 Same cluster, Hamiltonian T o2
© o2 Different initial state © o2
16 x 6 system, Vertical PBC’s 16 x 6 system, Vertical PBC’s
J/A=0.35, 12 holes J/t=0.35, 12 holes
56 -

e—e 2 stripes + 2 pairs
*—* 3 stripes

Convergence to metastable
state: excellent

Tunneling between metastable
states: can be very hard—
need to try many 1nitial states

I | I | I | I | I
0 1000 2000 3000 4000 5000

m



Stripes on 8 leg ladders

16 x 8 system, Vertical PBC’s

J/t=0.35, 16 holes
White and Scalapino,PRL ‘98

m ~2000 == m ~ 10000-15000 still striped



Pairing and stripes, 2 stripes, cylindrical BCs
Particle numbers not conserved

DS99 PSP BY:
112023222212
PSS S e NP
LEGrateroty
6606660600600
...000000..

’[‘ 035 Same state, different
() 025 measurements

12 x 8 system, Vertical PBC’s
Jx/t=0.55Jy/t=0.45, mu=1.165 ,doping=0.1579

e -0.04

nnn 0.04

e To orient the stripes longitudinally, we use Jx>Jy.

e [arger J gives stronger pairing.

® [ocal measurements of response converge much more quickly

than correlations, especially for pairing.

12 x 8 system, Vertical PBC’s
Jx/t=0.55Jy/t=0.45, mu=1.165 ,doping=0.1579

Bond thickness shows pairing
strength (dashed = negative)



Kagome Basics
* The Heisenberg model on the kagome lattice is
one of the most frustrated systems

- Proposed as a possible spin liquid in late 80’s,
support from field theory (Z>...)(Sachdev, Read)

But is it instead a valence bond crystal??
Honeycomb VB

PN 5 _ Honeyeomb VB
e OO R ODORY sictoaon
2L - Oy /7% ) resonance

.IF A‘l ‘.Ir’\:.:(‘ “‘.‘.I’ configurations
LT TN LT

‘.A'A@A.ACV‘A." (’A.A(’v A
LATFXNL LT TN

A




Sample DMRG simulation on Kagome

XC8 cylinder, biased to HVYBC

' vV WV VvV WV
AN AV, TWA MIFAYNAYIVAYN AV, WA MIWAYEY AYFAYN
\ F /N NN\ y v/ VO \
VAYN AYWAYVAVINAVEVAVIVAYE AW AYVA YN AVEYA WY .
vV WV J vV VWV \
A T 5. AP, WL A AR A, . L
/ NV \ F / N/ NV \ y \/
\_ANJN_/_O_LQ N_NJN\_N_O_LQ /\_

swp=3, m=120, E=-89.7836 SR L,

=

o c Y o o S o >,

O ) G ) O 9

Density matrix renormalization group = energy minimization method
over matrix product states

biased path



Practical Issues for Kagome

I . Metastability: getting stuck in a higher energy state
(usually an issue only on wider cylinders)

* Need to understand system and find a simple state close to
the ground state to initialize DMRG

2. Strong dependence on width (and shift) of cylinders
* Need to do many cylinders and understand patterns of
behavior
3.0pen edges--obtaining bulk cylinder behavior
* This is a minor problem for this system

* Open ends useful for pinning, selecting different topological
sectors...
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The Kagome spin liquid ground state: questions:

Does it have a gap! What type of SL? Can we see

topological degeneracies!?

s it close to a particular VBC? (a “melted” VBC)

If an RVB description applies, what are the key resonances?
What are the excitations? statistics?

What is the extended phase diagram (J, ...)

How does it compare to experiments?! (Herbertsmithite)

— Both spin liquids!! But Herbertsmithite first appeared gapless(??) Later, experiments

flipped, and now gapped, but small gap. But now new DMRG/theoretical pointing
back towards gapless or small gap (He et al Phys. Rev. X 7,031020 (2017)



Response to small bond perturbations

. Response
10 1%
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A LN

 hexagon

Response to 0.5% increase/decrease 1n J on fat vertical bonds: the
“diamond pattern”, which fits only on the even cylinders



Varying Jz with x coordinate
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gap

0.2

0.15[

0.05[

Next nearest neighbor |,

0.1

o—eo YC3S =0 |
¥ — =¥ 36 site torus |-

¥ m—m YC8S =1

4 XC8 S =0

./IJ * | I | | | | I
0 0.1 0.2

36 site exact
diagonalization:

Sindzingre and
Lhuillier

The finite size shift of
the phase boundary
explains the many low
lying states in ED.

Note: no sign of 4-fold
degeneracy for torus



Tips for DMRG on hard/2D systems

Use simulations first as a way of intuitively understanding
the system. Perform many numerical experiments with
different initial states, different sizes, and different boundary
conditions. Plot local observables as a function of sweeps
to understand how the system lowers its energy. Compare
results with theoretical predictions and “cartoon”
descriptions of the system.

Start with small diameter cylinders, with nearly exact
treatments, then do bigger cylinders.

Explore the broader phase diagram
Extrapolate in the truncation error.
Measure local properties rather than correlation functions.



