arXiv:1306.5551v1 [quant-ph] 24 Jun 2013

C4 Condensed Matter Applications of

Contents
1 Introduction
1.1  Entanglement structure of ground states: The arealaw . . . . . . ... ...
2 One-dimensional systems: Matrix Product States
2.1 Matrix Product States . . . . . . ... ..
2.2 Variational calculation with MPS: The DMRG method . . . . .. ... ...
2.3 MPS as a framework for solvablemodels . . . . .. ... ..........
3 Tensor network states beyond one dimension and ground state problems

Entanglement Theory'

Norbert Schuch
Institute for Quantum Information
RWTH Aachen, 52056 Aachen, Germany

3.1 PEPS: Tensor networks in two dimensions . . . . . . . . . . . .. ... ...
3.2 Simulating time evolution and thermal states . . . . . . . ... ... ... ..
3.3 Othertensor network ansatzes . . . . . . . . .. . ... ... ...
34 Simulation of fermionic sytems . . . . .. ... ... L.

Quantum Complexity: Understanding the limitations to our understanding

4.1 A crash course in complexity classes . . . . . . . ... ... L L.
4.2 The complexity of problems in many-body physics . . . . . ... ... ...

Summary

(Forschungszentrum Jiilich, 2013).

Lecture Notes of the 44" IFF Spring School “Quantum Information Processing”, edited by D. DiVincenzo


http://arxiv.org/abs/1306.5551v1

C4.2 Norbert Schuch

1 Introduction

The aim of this lecture is to show how the tools of quantum information theory and in particular
entanglement theory can help us to understand the physics of condensed matter systems and
other correlated quantum many-body systems. In a certain sense, many-body systems are all
around in quantum information: The defining feature of these systems is that they consist of
many subsystems of the same dimension, equipped with a natural tensor product structure?
(C4)®N | and such structures appear in quantum information as quantum registers in quantum
computers, as parties in multipartite protocols, and so on.

Most condensed matter systems exhibit only weak quantum correlations (this is, entanglement)
between the individual subsystems. These systems are well described by a mean field ansatz
(i.e., a product state), and their behavior can be understood using Landau theory. However, some
of the most exciting phenomena discovered in condensed matter physics in the last decades,
such as the fraction quantum Hall effect or high-temperature superconductivity, are based on
systems with strong interactions in which entanglement plays an essential role. Given the re-
fined understanding of entanglement which has been developed in the field of quantum infor-
mation theory, it is thus natural to apply quantum information concepts, and in particular the
theory of entanglement, towards an improved understanding of quantum many-body systems.
Indeed, an active field of research has grown during the last decade at the interface of quantum
information theory and quantum many-body physics, and the aim of this lecture is to give an
introduction to this area.

In this lecture, we will highlight two complementary topics at the interface between condensed
matter and quantum information: In the first part (Sec. 2, 3), we will show how we can use in-
sights on the entanglement structure of condensed matter systems to develop powerful methods
to both numerically simulate and analytically characterize correlated many-body systems; and
in the second part (Sec. 4) we will show how the field of quantum complexity theory allows us
to better understand the limitations to our (numerical) understanding of those systems.

1.1 Entanglement structure of ground states: The area law

For clarity of the presentation, we will in the following restrict our attention to quantum spin
systems on a lattice (such as a line or a square lattice in 2D), with a corresponding Hilbert
space (C%)®N (where each spin has d levels, and the lattice has N sites); generalizations to
fermionic systems and beyond lattices will be discussed later. Also, we will for the moment
focus on ground state problems, i.e., given some Hamiltonian /1 acting or our spin system, we
will ask about properties of its ground state |W). The approach we pursue will be variational —
we will try to obtain a family of states which gives a good approximation of the ground state,
for which quantities of interest can be evaluated efficiently, and where the best approximation to
the ground state can be found efficiently. For instance, mean-field theory is a variational theory
based on the class of product states (for spin systems) or Slater determinants (for electronic
systems).

So which states should we use for our variational description of quantum spin systems? Of
course, one could simply try to parametrize the ground state as

U) = > ciiylin. . in) (1)

i1,ein

2We ignore fermionic systems for the moment, but as it turns out, many of the results described in this lecture
also hold for fermionic systems, see Sec. 3.4.
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Fig. 1: Area law: The entropy of the reduced states of a block A scales like the length of its
boundary 0A; in one dimension, this implies that the entropy is bounded by a constant.

and use the ¢;, ;, as variational parameters. Unfortunately, the number of parameters c¢;,
grows exponentially with N, making it impossible to have an efficient description of |¥) for
growing system sizes. On the other hand, we know that efficient descriptions exist for physical
Hamiltonians: Since H = ) h; is a sum of few-body terms (even if we don’t restrict to
lattice systems), a polynomial number N* of parameters (with k the bodiness of the interaction)
allows to specify H, and thus its ground state. This is, while a general N-body quantum state
can occupy an exponentially large Hilbert space, all physical states live in a very small “corner”
of this space. The difficulty, of course, is to find an efficient parametrization which captures the
states in this corner of Hilbert space, while at the same time allowing for efficient simulation
methods.

In order to have a guideline for constructing an ansatz class, we choose to look at the entan-
glement properties of ground states of interacting quantum systems. To this end, we consider a
ground state | V) on a lattice and cut a contiguous region of length L (in one dimension) or an
area A (in two dimensions), cf. Fig. 1. It is a well-known result from entanglement theory [1]
that the von Neumann entropy of the reduced density matrix p4 of region A,

S(pa) = —palog pa,

quantifies the entanglement between region A and the rest of the system. For a random quantum
state, we expect this entanglement to be almost maximal, i.e., on the order of | A| log d (where
|A| is the number of spins in region A). Yet, if we study the behavior of S(p4) for ground
states of local Hamiltonians, it is found that S(p,) essentially scales like the boundary of re-
gion A, S(pa) o |0A|, with possible corrections for gapless Hamiltonians which are at most
logarithmic in the volume, S(p4) x |0A|log|A|. This behavior is known as the area law for
the entanglement entropy and has been observed throughout for ground states of local Hamil-
tonians (see, e.g., Ref. [2] for a review); for gapped Hamiltonians in one dimension, this result
has been recently proven rigorously [3].

2 One-dimensional systems: Matrix Product States

2.1 Matrix Product States
2.1.1 Construction and Matrix Product notation

Since the entropy S(p4) quantifies the entanglement between region A and its complement, the
fact that S(p ) scales like the boundary of p4 suggests that the entanglement between region A
and the rest of the system is essentially located around the boundary between the two regions,
as 1llustrated in Fig. 2. We will now construct an ansatz for many-body quantum systems,
starting from the insight that the entanglement is concentrated around the boundary of regions;
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Fig. 2: The area law suggests that the entanglement between two regions is located around the
boundary.

for the moment, we will focus on one-dimensional systems. Clearly, since we want to have this
property for any partitioning of the lattice, we cannot just place entangled pairs as in Fig. 2,
but we have to choose a more subtle strategy. To this end, we consider the system at each site
as being composed of two “virtual” subsystems of dimension D each, as illustrated in Fig. 3a.
Then, each of the two subsystems is placed in a maximally entangled state

D

fwn) = li)

i=1
with the corresponding subsystems of the adjacent sites, as shown in Fig. 3b. The maximally
entangled states are called “bonds”, with D the “bond dimension”. This construction already
satisfies the area law: For any region we cut, there are exactly two maximally entangled states
crossing the cuts, bounding the entanglement by 2log D. Finally, we apply linear maps P :
CP ® CP — C? at each site s, which creates a description of a state on a chain of d-level
systems, cf. Fig. 3c. (Note that the rank of the reduced density operator of any region cannot
be increased by applying the linear maps P;.) The construction can be carried out either with
periodic boundary conditions, or with open boundary conditions by omitting the outermost
virtual subsystems at the end of the chain. The total state of the chain can be written as

"If> = (P1®"'®PN)‘WD>®N , (2)
where the maps P, act on the maximally entangled states as illustrated in Fig. 3c.
This class of states can be rewritten as follows: For each site s, define a three-index tensor AESL 5
i1=1,....d,a,6=1,...,D,where the AES] can be interpreted as D x D matrices, such that
Po= Alsli(e, Bl (3)
i,
Then, the state (2) can be rewritten as
) = D w[A AT AT fin, i) @)
i1,enin

i.e., the coefficient ¢;,. ;, in (1) can be expressed as a product of matrices.? For this reason, these
states are called Matrix Product States (MPS). For systems with open boundary conditions, the
matrices AE] and Ay]\vf} are 1 x D and D x 1 matrices, respectively, so that the trace can be
omitted. More generally, D can be chosen differently across each link.

3 The equivalence of (2) and (4) can be proven straightforwardly by noting that for two maps P; and P, and
the bond |wp) between them, it holds that

ProPalwp) = Y (ANAP) 61, i2) (e, B
i1,i2,a,0

and iterating this argument through the chain.
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Fig. 3: Construction of MPS: a) Each site is composed of two virtual subsystems. b) The virtual
subsystems are placed in maximally entangled states. ¢) Linear maps Ps are applied which map
the two virtual systems to the physical system.

2.1.2 Tensor network notation

The defining equation (4) for Matrix Product States is a special case of a so-called tensor net-
work. Generally, tensor networks are given by a number of tensors A;, i, . ix» Biyio....ixc» €tC.,
where each tensor usually only depends on a few of the indices. Then, one takes the product of
the tensors and sums over a subset of the indices,

Ciy.ip — E , All 2025 7ZKBZ1 2,0k T -

Zk-‘rlv

For instance, in (4) the tensors are the Al = Al Lﬁ’ and we sum over the virtual indices
a, 3, ..., yielding

(N] (1] 4[2] [V]
Ciroin = Z Au aﬁ i2, 57.“14' _tr[Ail Ai2 Alw] :

in,Ca
,B,7,-

Tensor networks are most conveniently expressed in a graphical language. Each tensor is de-
noted by a box with “legs” attached to it, where each leg corresponds to an index — a three-index
tensor Al = AESL 5 is then depicted as

I —
Ai,aﬁ = « B
Summing over a joint index is denoted by connecting the corresponding legs, e.g.,
U J

%:Ai,ocBBj,ﬁw =a 2 Bl

In this language, the expansion coefficient ¢;, ;. [Eq. (1)] of an MPS (which we will further on
use interchangably with the state itself) is written

i i 13 e AN i d2 i3 iN
| | | |
_ o] 5,
) = | Cir,oyin | = A AR A e (5)

We will make heavy use of this graphical language for tensor networks in the following.
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2.1.3 Approximating states as Matrix Product States

As it turns out, MPS are very well suited to describe ground states of one-dimensional quantum
systems. On the one hand, we have seen that by construction, these states all satisfy the area
law. On the other hand, it can be shown that all states which satisfies an area law, such as ground
states of gapped Hamiltonians [3], as well as states for which the entanglement of a block grows
slowly (such as for critical 1D systems), can be well approximated by an MPS [3,4]: Given a
state |®) on a chain of length N for which the entropy of any block of length L is bounded by
Smax> S(pr) < Smax. there exists an MPS |W ) which approximates |®) up to error*

Necsmax

- ©6)

Note that even if S,,., grows logarithmically with NV, the numerator is still a polynomial in V.
This is, in order to achieve a given accuracy €, we need to choose a bond dimension D which
scales polynomially in IV and 1/¢, and thus, the total number of parameters (and, as we will see
later, also the computation time) scales polynomially as long as the desired accuracy is at most

1/poly(N).

[|®) — |[Up)| =: € < const x

2.1.4 States with exact Matrix Product form

Beyond the fact that ground states of gapped Hamiltonians can be efficiently approximated by
MPS, there is a large class of states which can be expressed exactly as MPS with a small bond
dimension D. First of all, any product state is trivially an MPS with D = 1. The GHZ state

IGHZ) = [0-+-0) +]1---1)

is an MPS with D = 2, with a translational invariant MPS representation Alsl = A Vs, with
Ay =10)(0] = (§3),and A; = [1)(1| = (§9). The W state

[W) =100 - - -00) + |010- - -00) + - - - + |000 - - - 01)

is an MPS with D = 2, and Al = Afor2 < s < N — 1, Al = (0|A, and AV =
A|l), where Ay = 1l and A; = |0)(1]. Other states which have an MPS representation with
small D are the cluster state used in measurement-based computation [6,7] (with D = 2)
or the 1D resonating valence bond state which appears as the ground state of the so-called
Majumdar-Ghosh model [8,9] (with D = 3), and the AKLT state which we will get to know in
Section 2.3.1.

2.2 Variational calculation with MPS: The DMRG method

As we have discussed at the end of Section 2.1.3, MPS approximate ground states of local
Hamiltonians efficiently, as the effort needed for a good approximation scales only polynomi-
ally in the length of the chain and the desired accuracy. Thus, it seems appealing to use the

4 Stricly speaking, this bound only follows from an area law for the Rényi entropy

5. = log tr[p?]
11—«
for o < 1, with ¢ in (6) depending on « [4], which also holds for gapped Hamiltonians [3]. The proof uses the fact
that a bound on the area law implies a fast decay of the Schmidt coefficients (i.e., the eigenvalues of the reduced
density operator), and thus, one can construct an MPS by sequentially doing Schmidt decompositions of the state
and discarding all but the largest D Schmidt coefficients [4,5].
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class of MPS as a variational ansatz to simulate the properties of quantum many-body systems.
However, to this end it is not sufficient to have an efficient description of relevant states — after
all, the Hamiltonian itself forms an efficient description of its ground state, but it is hard to
extract information from it! Rather, a good variational class also requires that we can efficiently
extract quantities of interest such as energies, correlation functions, and the like, and that there
is an efficient way to find the ground state (i.e., minimize the energy within the variational class
of states) in the first place.

2.2.1 Evaluating expectation values for MPS

Let us start by discussing how to compute the expectation value of a local operator / (such as a
term in the Hamiltonian) for an MPS. To this end, note that

_E:* N VR /L LSS S S
<\Il|h|\11> - Cu---lzvcjl...jN(Sll,Jl 61k—17]k—1hikik+1 5Zk+2:]k+2 5ZN:]N

where o
_ IkJk+1 . . .
h = g hikik“ ’Zkazk+1><jk7jk+1’
Urik41

Jko k41

acts on sites k£ and k + 1. Using the graphical tensor network notation, this can be written as

(7

In order to evaluate this quantity, we have to contract the whole diagram (7). In principle,
contracting arbitrary tensor networks can become an extremely hard problem (strictly speaking,
PP-hard [10]), as in some cases it essentially requires to determine exponentially big tensors
(e.g., we might first have to compute ¢;, . ;, from the tensor network and from it determine the
expectation value). Fortunately, it turns out that the tensor network of Eq. (7) can be contracted
efficiently, i.e., with an effort polynomial in D and N. To this end, let us start from the very
left of the tensor network in Eq. (7) and block the leftmost column (tensors A and Ay,
Contracting the internal index, this gives a two-index tensor

Lo = 30 AUAY,
which we interpret as a (bra) vector with a “double index” a’ of dimension D?. Graphically,
this can be denoted as
Al

Al

where we use a doubled line to denote the “doubled” index of dimension D?. We can now
continue this way, and define operators (called transfer operators)

[s\BB" _ [s] xlsl
(E )ao/ - ZAi,a,BAi,o/ﬂ’
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which we interpret as mapping the double index ca’ to 55’, and graphically write as

= = (8)
Similarly, we define operators
=E.= = €)
and
=R =

All of these operators can be computed efficiently (in the parameters DD and NN), as they are
vectors/matrices of fixed dimension D?, and can be obtained by contracting a constant number
of indices.

Using the newly defined objects L, E, E;,, and R, the expectation value (¥|h| V), Eq. (7), can
be rewritten as

(W) = LEZ ... EF-UR,EF2 .. R

- | L HEY Inkad = E, k2 R

This is, (U|h|¥) can be computed by multiplying a D?-dimensional vector O(N) times with
D? x D? matrices. Each of these multiplication takes O(D?) operations, and thus, (¥|h|¥)
can be evaluated in O(NN D*) operations. There are O(N) terms in the Hamiltonian, and thus,
the energy (V| >, h;|V)/(V|W¥) can be evaluated in time O(N?D*), and thus efficiently; in
fact, this method can be easily improved to scale as O(N D?).> Similarly, one can see that e.g.
correlation functions (V|P; ® @);|¥) or string order parameters (V|X ® X ® --- ® X|¥) can
be reduced to matrix multiplications and thus evaluated in O(N D?). Exactly the same way,
evaluating expectation values for MPS with periodic boundary conditions can be reduced to
computing the trace of a product of matrices E of size D? x D?. Each multiplication scales
like O(DY), and using the same tricks as before, one can show that for systems with periodic
boundary conditions, expectation values can be evaluated in time O(N D?).

In summary, we find that energies, correlations functions, etc. can be efficiently evaluated for
MPS, with computation times scaling as O(N D?) and O(N D?) for open and periodic boundary
conditions, respectively.

SFirstly, one uses that the products L. - - - El*l and El*! . . . R need to be computed only once (this can be simpli-
fied even further by choosing the appropriate gauge [11,12]), reducing the scaling in N to O(NN). Secondly, one
slightly changes the contraction order: Starting from the left, one contracts A, A1 ARI AR ABl etc.: This
involves multiplications of D x D matrices with D x dD matrices, and D x Dd matrices with Dd x D matrices,
yielding a O(dD?) scaling.
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2.2.2 Variational optimization of MPS

As we have seen, we can efficiently compute the energy of an MPS with respect to a given local
Hamiltonian H = ) ; hi. In order to use MPS for numerical simulations, we still need to figure
out an efficient way to find the MPS which minimizes the energy for a given D. To this end,
let us first pick a site %, and try to minimize the energy as a function of Al*!, while keeping all
other MPS tensors A, s # k, fixed. Now, since | W) is a linear function of AlFl | we have that

(U|H|W) AWy ALK
(WW) Aty Ak

is the ratio of two quadratic forms in AlF Here, Al¥ denotes the vectorized version of Az[ki 50
where (i, a, 3) is interpreted as a single index. The matrices X and Y can be obtained by
contracting the full tensor network (7) except for the tensors A* and A*!, which can be done
efficiently. The A" which minimizes this energy can be found by solving the generalized
eigenvalue equation

XAW = By AW

where F is the energy; again, this can be done efficiently in ). For MPS with open boundary
conditions, we can choose a gauge® for the tensors such that Y = 1 [11,12] — this reduces the
problem to a usual eigenvalue problem, and avoids problems due to ill-conditioned Y.

This shows that we can efficiently minimize the energy as a function of the tensor Al at an
individual site k. In order to minimize the overall energy, we start from a randomly chosen
MPS, and then sweep through the sites, sequentially optimizing the tensor at each site. Iterating
this a few times over the system (usually sweeping back and forth) quickly converges to a state
with low energy. Although in principle, such an optimization can get stuck [14,15], in practice
it works extremely well and generally converges to the optimal MPS (though some care might
have to be put into choosing the initial conditions).

In summary, we find that we can use MPS to efficiently simulate ground state properties of
one-dimensional quantum systems with both open and periodic boundary conditions. This sim-
ulation method can be understood as a reformulation of the Density Matrix Renormalization
Group (DMRG) algorithm [16,17], which is a renormalization algorithms based on keeping the
states which are most relevant for the entanglement of the system, and which since its invention
has been highly successful in simulating the physics of one-dimensional quantum systems (see
Refs. [11,18,19] for a review of the DMRG algorithm and its relation to MPS, and a more
detailed discussion of MPS algorithms).

2.3 MPS as a framework for solvable models

Up to now, we have seen that MPS form a powerful framework for the simulation of one-
dimensional systems, due to their ability to efficiently approximate ground states of local Hamil-

® MPS have a natural gauge degree of freedom, since for any X with a right inverse X!, we can always
replace

Al Al
Al o x -1 gl

without changing the state; this gauge degree of freedom can be used to obtain standard forms for MPS with
particularly nice properties [12,13].
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Fig.4: The AKLT model is built from spin—% singlets (S = 0) between adjacent sites, which are
projected onto the spin one subspace (P = lls_1) as indicated.

tonians, and due to the fact that the necessary variational minimization can be carried out ef-
ficiently. As we will see in the following, MPS can also be used as a framework to construct
solvable models whose properties can be understood analytically, which makes them a powerful
tool for resolving various analytical problems regarding quantum many-body systems.

2.3.1 The AKLT model and parent Hamiltonians

The paradigmatic analytical MPS model is the so-called AKLT state, named after Affleck,
Kennedy, Lieb, and Tasaki [20,21]. The construction of the translational invariant AKLT state
is illustrated in Fig. 4: The auxiliary systems are spin-% particles, which are put into a singlet
(i.e., spin S = 0) state’ |w) = |01) — |10). The two virtual spin-3’s at each site have jointly
spin % ® % = 0 @ 1, and the map P projects onto the spin-1 subspace, thereby describing a
translationally invariant chain of spin-1 particles.

Let us now see what we can say about the reduced density operator p, of two consecutive sites
in the AKLT model. The following argument is illustrated in Fig. 5: On the virtual level, we
start from two “open” bonds, each of which has spin % (while we might have more information
about their joint state, we are free to neglect it), as well as one “interior” bond which has spin
0; thus, the virtual state we start from has spin

1 1
loo®l=001.

The projections P onto the spin 1 subspace, on the other hand, do not change the total spin (they
only affect the weight of different subspaces), which implies that p, has spin 0 or 1 as well. On
the other hand, p- is a state of two physical sites, each of which has spin 1; this is, it could have
spin 1®1 = 0@ 1@ 2. We therefore find that there is a non-trivial constraint on p, arising from
the AKLT construction: p, cannot have spin 2.

We can now use this to construct a non-trivial Hamiltonian which has the AKLT state as its
ground state. Namely, let h; ;41 = IIg—s be a local Hamiltonian acting on sites 7 and i + 1,
projecting onto the spin S = 2 subspace of the two sites. Then, by the preceding argument,
hiiv1|Vakpr) = 0 with |Wakpr) the AKLT state, and thus, with

H=> hi,

we have that
H|Uakrr) =0.

"This bond can be easily replaced by a normal bond |00) + |11) by applying the transformation ( % §) on one

side, which can subsequently be absorbed in the map P.
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Fig. 5: Construction of the parent Hamiltonian for the AKLT model.

On the other hand, H > 0, and thus, the AKLT state is a ground state of the AKLT Hamiltonian
H.

While the argument we have given right now seems specific to the AKLT model, it turns out
that the very same way, we can construct a so-called “parent Hamiltonian” for any MPS. To this
end, note that the reduced density operator p; for k consecutive sites lives in a d* dimensional
space, yet it can have rank at most D? (since the only free parameters we have are the outermost
“open” bonds). Thus, as soon as d* > D?, p;, does not have full rank, and we can build a local
Hamiltonian / acting on k consecutive sites as h = I — Il ,pp(,,) Which has the given MPS as
its ground state.

Of course, it is not sufficient to have a non-trivial Hamiltonian with the AKLT state (or any other
MPS) as its ground state, but we want that the AKLT state is the unique ground state of this
Hamiltonian. Indeed, it turns out that there is a simple condition which is satisfied for almost
any MPS (and in particular for the AKLT state) which allows to prove that it is a unique ground
state of a suitable chosen parent Hamiltonian; for the case of the AKLT model, it turns out that
this Hamiltonian is the two-body Hamitonian which we defined originally.® Secondly, it can be
shown that the parent Hamiltonian of MPS is always gapped, this is, there is a finite gap above
the ground space which does not close even as N — oo.

Together, this proves that the AKLT state is the unique ground state of a gapped local Hamilto-
nian. It is an easy exercise to show that the AKLT Hamiltonian equals

hijiv1 = %Si - Sip1+ %(Si - Sip)? + % ;

and is thus close to the spin-1 Heisenberg model. Indeed, proving that the spin-1 Heisenberg
model is gapped, as conjectured by Haldane, was one motivation for the construction of the
AKLT model, showing that MPS allow for the construction of models of interest for which
certain properties can be rigorously proven.

The fact that MPS naturally appear as ground states of local Hamiltonians makes them a very
powerful tool in studying the properties of one-dimensional gapped systems. In particular, one
can use them to classify phases of one-dimensional systems: On the one hand, we know that the
ground state of any gapped one-dimensional Hamiltonian is well approximated by an MPS. This
allows us to replace the original Hamiltonian by the parent Hamiltonian of the MPS while keep-
ing a gap (i.e., without crossing a phase transition). Given two MPS characterized by tensors P;
and P, we can now build a smooth interpolation between the two models (i.e., Hamiltonians)
by appropriately interpolating between P; and Ps: due to the very way the parent Hamiltonian

8This condition is known as “injectivity” and states there is a k such that after blocking k sites, the map
X = > tr[A; - A, X]liq, ..., ig) from the “open bonds™ to the physical system is injective, or, differently
speaking, that we can infer the state of the bonds by looking at the physical system; the AKLT state acquires
injectivity for k& = 2. It can then be shown that the parent Hamiltonian defined on k + 1 sites has a unique ground
state; in the case of the AKLT model, one can additionally show that the ground space of this three-body parent
Hamiltonian and the original two-body one are identical [12,13,21-23].
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is constructed, this will give rise to a smooth path of parent Hamiltonians as well [24]. This is
particularly interesting if one imposes symmetries on the Hamiltonian, which (for a system with
a unique MPS ground state |¥)) implies that U |¥) = |¥). For an MPS with such a symme-
try, it can be shown [25,26] that the symmetry is reflected in a local symmetry of the MPS map
P,U,P = P(V, ® V,), and classifying the possible inequivalent types of V; allows to classify
the different phases in one-dimensional systems in the presence of symmetries [24,27,28].

2.3.2 Correlation length and the transfer operator

As we have discussed in the preceding section, MPS form a powerful tool for the construction
of solvable models. Let us now have a closer look at what we can say about the behavior of
physical quantities. While we have discussed how to extract physically relevant quantities such
as energies and correlation functions numerically in Sec. 2.2.1, the purpose of this section is
different: Here, we focus on a translationally invariant exact MPS ansatz, and we are asking for
simple (and ideally closed) expressions for quantities such as the correlation length.

In Sec. 2.2.1, the central object was the transfer operator,

As compared to Eq. (8), we have omitted the site-dependency index [s]. It is easy to see that
— up to local unitaries — the MPS is completely determined by the transfer operator E: If A
and B give rise to the same transfer operator, > A; ® A; = Y B ® B;, then we must have
Aj = >, viBj, with V- = (v;;) an isometry.” In the following, we would like to see how
specific properties can be extracted from the transfer operator.

One property which is of particular interest are two-point correlations. To obtain those, let us
first define

Then, the correlation between operator A at site 1 and B at site 7 + 2 on a chain of length

N — oo is } }

tr[EAE/EgEN =772
tr[EN]

If we now assume that E has a unique maximal eigenvalue \;, which we normalize to \; = 1,

with eigenvectors |r) and (I|, then for large N, EN — |r)(l|, and thus Eq. (10) converges to
(l|EAE'Eg|r). If we now expand

(A1Bj o) = (10)

E? = [r){l[+ Y Mlri)(l

k>2

9This is nothing but the statement that two purifications of a mixed state are identical up to an isometry on the
purifying system (this can be easily proven using the Schmidt decomposition, cf. Sec. 2.5 of Ref. [29]), where the
index ¢ corresponds to the purifying system.
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(where |\;| < 1for k > 2), we find that

(A1Bjia) = (I (UE5|D) + Y MAEalr) (WEsll) |

k>2

and thus decays exponentially with 7; in particular, the correlation length £ is given by the ratio
of the second largest to the largest eigenvalue of [E,

i.e., it is determined solely by simple spectral properties of the transfer operator. Let us note
that the same quantity, i.e. the ratio between the two largest eigenvalues, also bounds the gap of
the parent Hamiltonian [13,30].

The proof above that correlations in MPS decay exponentially is not restricted to the case of a
unique maximal eigenvalue of the transfer operator: In case it is degenerate, this implies that the
correlation function has a long-ranged part (i.e., one which is not decaying), such as in the GHZ
state, while any other contribution still decays exponentially. In particular, MPS cannot exhibit
algebraically decaying correlations, and in case MPS are used to simulate critical systems,
one has to take into account that a critical decay of correlations in MPS simulations is always
achieved by approximating it by a sum of exponentials.

3 Tensor network states beyond one dimension and ground
state problems

3.1 PEPS: Tensor networks in two dimensions

As we have seen, MPS are very well suited for simulating ground state properties of one-
dimensional systems. But what if we want to go beyond one-dimensional systems, and, e.g.,
study interacting spin systems in two dimensions? Two-dimensional systems can exhibit a rich
variety of phenomena, such as topologically ordered states [31,32] which are states distinct
from those in the trivial phase, yet which do not break any (local) symmetry. Moreover, two-
dimensional spin systems can be highly frustrated due to the presence of large loops in the
interaction graph, and even classical two-dimensional spin glasses can be hard to solve [33]. In
the following, we will focus on the square lattice without loss of generality.

A first idea to simulate two-dimensional systems would be to simply use an MPS, by choosing
a one-dimensional ordering of the spins in the two-dimensional lattice. While this approach has
been applied successfully (see, e.g., Ref. [34]), it cannot reproduce the entanglement features of
typical ground states in two dimensions as one increases the system size: As we have discussed
in Section 1.1, two-dimensional systems also satisfy an area law, i.e., in the ground state we
expect the entanglement of a region A with its complement to scale like its boundary, S(p4) ~
|0A|. To obtain an ansatz with such an entanglement scaling, we follow the same route as in the
construction of MPS: We consider each site as being composed of four D-dimensional virtual
subsystems, place each of them in a maximally entangled state |wp) with the corresponding
subsystem of each of the adjacent sites, and finally apply a linear map

P.:CPeCcPgCclecCl - C?
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Fig. 6: PEPS construction for a 2D square lattice, where we have omitted the site-dependence
P = Ps of the maps Ps.

at each site s to obtain a description of the physical state on a 2D lattice of d-level sytems. The
construction is illustrated in Fig. 6. Due to the way they are constructed, these states are called
Projected Entangled Pair States (PEPS). Again, we can define five-index tensors Al*l = AZ[SL 56
where now

Po= D Algslid(e8.7.9]

iafyd

and express the PEPS in Fig. 6 graphically as a tensor network

Jl ya | ya | //L
= A v
/ / /

(where we have omitted the tensor labels). Similar to the result in one dimension, one can show
that PEPS approximate ground states of local Hamiltonians well as long as the density of states
grows at most polynomially with the energy [35,36], and thereby provide a good variational
ansatz for two-dimensional systems. (Note, however, that it is not known whether all 2D states
which obey an area law are approximated well by PEPS.)

3.1.1 Contraction of PEPS

Let us next consider what happens if we try to compute expectation values of local observables
for PEPS. For simplicity, we first discuss the evaluation of the normalization (V|W), which is
obtained by sandwiching the ket and bra tensor network of |¥),

2z 7 2
yi yi ya ya
= /—// f—~ S~ A~

:
:

-_\I_
_\I_
N

;
I
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This can again be expressed using transfer operators

I -;4;131
T 4%;_44
(the [E should be thought of as being “viewed from the top”), leaving us with the task of con-
tracting the network

Lo
HEHHH— ]E — E — E — ]E —HH
L L I 1
B H—— ]E — E — E — ]E ——HH
L L I |
s B E = E = E fwess
u

[This easily generalizes to the computation of expectation values, where some of the E have to
be modified similar to Eq. (9)]. Different from the case of MPS, there is no one-dimensional
structure which we can use to reduce this problem to matrix multiplication. In fact, it is easy to
see that independent of the contraction order we choose, the cluster of tensors we get (such as a
rectangle) will at some point have a boundary of a length comparable to the linear system size.
This is, we need to store an object with a number of indices proportional to v/ N — and thus an
exponential number of parameters — at some point during the contraction, making it impossible
to contract such a network efficiently. (Indeed, it can be proven that such a contraction is a
computationally hard problem [10].)

This means that if we want to use PEPS for variational calculations in two dimensions, we have
to make use of some approximate contraction scheme, which of course should have a small and
ideally controlled error. To this end, we proceed as follows [37]: Consider the contraction of a
two-dimensional PEPS with open boundary conditions,

E — E — E — E =

]E — ]E — ]E — ]E —eieiees

(12)

Now consider the first two columns, and block the two tensors in each column into a new tensor



C4.16 Norbert Schuch

[F (with vertical bond dimension D?):

EHEE F
A i [
D2 E E & F & D4
= (13)
EHEE =
i i |
EHEEE F

This way, we have reduced the number of columns in (12) by one. Of course, this came at the
cost of squaring the bond dimension of the first column, so this doesn’t help us yet. However,
what we do now is to approximate the right hand side of (13) by an MPS with a (fixed) bond
dimension aD? for some . We can then iterate this procedure column by column, thereby
contracting the whole MPS, and at any point, the size of our tensors stays bounded. It remains
to be shown that the elementary step of approximating an MPS |®) [such as the r.h.s. of (13)]
by an MPS |¥) with smaller bond dimension can be done efficiently: To this end, it is sufficient
to note that the overlap (®|¥) is linear in each tensor Al*l of |¥), and thus, maximizing the
overlap

[(@|w)[*

(P|w)

can again be reduced to solving a generalized eigenvalue problem, just as the energy minimiza-
tion for MPS in the one-dimensional variational method. Differently speaking, the approxi-
mate contraction scheme succeeds by reducing the two-dimensional contraction problem to a
sequence of one-dimensional contractions, i.e., it is based on a dimensional reduction of the
problem.

This shows that PEPS can be contracted approximately in an efficient way. The scaling in D
is naturally much less favorable than in one dimension, and for the most simple approach one
finds a scaling of D'? for open boundaries, which using several tricks can be improved down to
D?8. Yet, the method is limited to much smaller D as compared to the MPS ansatz. It should be
noted that the approximate contraction method we just described has a controlled error, as we
know the error made in in each approximation step. Indeed, the approximation is very accurate
as long as the system is short-range correlated, and the accuracy of the method is rather limited
by the D needed to obtain a good enough approximation of the ground state. Just as in one
dimension, we can use this approximate contraction method to build a variational method for
two-dimensional systems by successively optimizing over individual tensors [37].

3.1.2 Alternative methods for PEPS calculations

The PEPS construction is not limited to square lattices, but can be adapted to other lattices,
higher dimensions, and even arbitrary interaction graphs. Clearly, the approximate contraction
scheme we just presented works for any two-dimensional lattice, and in fact for any planar
graph. In order to approximately contract systems in more than two dimensions, note that
the approximate contraction scheme is essentially a scheme for reducing the dimension of the
problem by one; thus, in order to contract e.g. three-dimensional systems we can nest two layers
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of the scheme. In cases with a highly connected PEPS graph (e.g., when considering systems
with highly connected interaction graphs such as orbitals in a molecule), one can of course still
try to find a sequential contraction scheme, though other contraction methods might be more
promising.

The contraction method described in Section 3.1.1 is not the only contraction scheme for PEPS.
One alternative method is based on renormalization ideas [38—40]: There, one takes blocks of
e.g. 2 x 2 tensors and tries to approximate them by a tensor with lower bond dimension by

appropriate truncation,
Il Il

SEREF I
L =B
= EEHEE |
I I
Finding the best truncation scheme requires exact knowledge of the environment, i.e., the con-
traction of the remaining tensor network. Since this is as hard as the original problem, heuristic
methods to approximate the environment (such as to only contract a small number of surrond-
ing tensors exactly, and imposing some boundary condition beyond that) have been introduced.
While these approximations are in principle less accurate and the error is less controlled, their
more favorable scaling allows for larger D and thus potentially better approximations of the
ground state.
Another approach to speed up PEPS contraction is using Monte Carlo sampling [41-43]: We
can always write

Q
I

(wjo] ) (ijo]w)
Wy = 2P0 {14

where the sum runs over an orthonormal basis |4}, and p(i) = [(:|¥)|?/(¥|¥); in particular, we
want to consider the local spin basis i = (i1,...,iy). If we can compute (i|¥) and (i|O|V)
(where the latter reduces to the former if O is a local operator), then we can use Monte Carlo
sampling to approximate the expectation value (¥|O|W¥). In particular, for PEPS (i|¥) can
again be evaluated by contracting a two-dimension tensor network; however, this network now
has bond dimension D rather than D?. Thus, we can apply any of the approximate contraction
schemes described before, but we can go to much larger D with the same computational re-
sources; it should be noted, however, that the number of operations needs to be multiplied with
the number M of sample points taken, and that the accuracy of Monte Carlo sampling improves

as 1/v/M.

3.1.3 PEPS and exactly solvable models

Just as MPS, PEPS are also very well suited for the construction of solvable models. First of
all, many relevant states have exact PEPS representations: For instance, the 2D cluster state
underlying measurement based computation [6] is a PEPS with D = 2 [7], as well as various
topological models such as Kitaev’s toric code state [9,22,32] or Levin and Wen’s string-net
models [44—46]. A particularly interesting class of exact PEPS ansatzes is obtained by consid-
ering classical spin models H(s1, . .., sx), such as the 2D Isingmodel H = — > _, . s;s;,and
defining a quantum state

) = Z 6_5/2H(81""’8N)’51,...,SN>.
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It is easy to see that this state has the same correlation functions in the z basis as the classical
Gibbs state at inverse temperature (5. On the other hand, this state has a PEPS representation
(called the “Ising PEPS”) with P = |0)(a, a, a, a| + |1)(b, b, b, b, where (a|a) = (b|b) = 1 and
(a]b) = (bla) = e~# [9]. This implies that in two dimensions, PEPS (e.g., the Ising PEPS at the
critical ) can exhibit algebraically decaying correlations which implies that any corresponding
Hamiltonian must be gapless.'® This should be contrasted with the one-dimensional case, where
we have seen that any MPS has exponentially decaying correlations and is the ground state of a
gapped parent Hamiltonians.

Clearly, parent Hamiltonians can be defined for PEPS just the same way as for MPS: The
reduced density operator py,, of a region of size k x / lives on a d**-dimensional system, yet can
have rank at most D*72¢, Thus, by growing both & and ¢ we eventually reach the point where
Prx¢ becomes rank deficient, giving rise to a non-trivial parent Hamiltonian /7 with local terms
H projecting onto the kernel of pj.,. Again, just as in one dimension it is possible to devise
conditions under which the ground state of H is unique [49], as well as modified conditions
under which the ground space of H has a topological structure [22], which turns out to be
related to “hidden” (i.e., virtual) symmetries of the PEPS tensors. Unlike in one dimension,
these parent Hamiltonians are not always gapped (such as for the critical Ising PEPS discussed
above); however, techniques similar to the ones used in one dimension can be used to prove a
gap for PEPS parent Hamiltonians under certain conditions [24].

3.2 Simulating time evolution and thermal states

Up to now, our discussion has been focused on ground states of many-body systems. How-
ever, the techniques described here can also be adapted to simulate thermal states as well as
time evolution of systems governed by local Hamiltonians. In the following, we will discuss
the implementation for one-dimensional systems; the generalization to to 2D and beyond is
straightforward.

Let us start by discussing how to simulate time evolution. (This will also form the basis for
the simulation of thermal states.) We want to study how an initial MPS | W) changes under the
evolution with ¢*#*; w.l.0.g., we consider H to be nearest neighbor. To this end, we perform a

Trotter decomposition

1Ht ~ (eiHevent/]\/[eiHoddt/]\/[) M

e
where we split H = Hyen + Hoqq into even and odd terms (acting between sites 12,34, ..., and
23, 45, ..., respectively), such that both H,., and H,qq are sums of non-overlapping terms.

For large M, the Trotter expansion becomes exact, with the error scaling like O(1/M). We can

now write
eiHevenT — ® eihi,i+l7— — e
i=1,3,5,...

(with 7 = t/M), and similarly for e*#cda7  Thus, after one time step 7 the initial MPS is

10This follows from the so-called “exponential clustering theorem” [47,48] which states that ground states of
gapped Hamiltonians have exponentially decaying correlation functions.
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transformed into

cee | eih12T| |€ih347'| e

Here, the lowest line is the initial MPS, and the next two lines the evolution by Hy, and Hgq
for a time 7, respectively. We can proceed this way and find that the state after a time ¢ is
described as the boundary of a two-dimensional tensor network. We can then use the same
procedure as for the approximate contraction of PEPS (proceeding row by row) to obtain an
MPS description of the state at time ¢ [5]. A caveat of this method is that this only works well
as long as the state has low entanglement at all times, since only then, a good MPS approx-
imation of the state exists [4,50]. While this holds for low-lying excited states with a small
number of quasiparticles, this is not true after a quench, i.e., a sudden change of the overall
Hamiltonian of the system [51,52]. However, this does not necessarily rule out the possibil-
ity to simulate time evolution using tensor networks, since in order to compute an expectation
value (U|e~*H'Oe'’t| W), one only needs to contract a two-dimensional tensor network with no
boundary, which can not only be done along the time direction (row-wise) but also along the
space direction (column-wise), where such bounds on the correlations do not necessarily hold;
indeed, much longer simulations times have be obtained this way [53].

In the same way as real time evolution, we can also implement imaginary time evolution; and
since e~ acting on a random initial state approximates the ground state for 3 — oo, this can
be used as an alternative algorithm for obtaining MPS approximations of ground states.

In order to simulate thermal states, we use Matrix Product Density Operators (MPDOs) [54]

1 N . . . .
P = Z tr[A'El},jl'”A'EN],jNHZla'"72N><.]17"'7.]N|

7‘1"""7;_N
Jlseens iN
i1 12 13 N
- LA
Ji J2 J3 JN

where each tensor Al*l now has two physical indices, one for the ket and one for the bra layer.
We can then write the thermal state as

¢ BH _ o~BH/2q ,~BH/2

and use imaginary time evolution (starting from the maximally mixed state 1 which has a triv-
ial tensor network description) and the Trotter decomposition to obtain a tensor network for
e PH | which can again be transformed into an MPDO with bounded bond dimension using
approximate contraction [54].

3.3 Other tensor network ansatzes

There is a number of other entanglement based ansatzes beyond MPS and PEPS for interacting
quantum systems, some of which we will briefly sketch in the following.

Firstly, there is the Multiscale Entanglement Renormalization Ansatz (MERA) [55], which is an
ansatz for scale invariant systems (these are systems at a critical point where the Hamiltonian
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Fig. 7: The Multi-Scale Entanglement Renormalization Ansatz (MERA) in ID. (The left and
right boundary are connected.)

is gapless, and which have algebraically decaying correlation functions), and which incorpo-
rates the scale-invariance in the ansatz. A first step towards a scale-invariant ansatz would be
to choose a tree-like tensor network. However, such an ansatz will not have sufficient entangle-
ment between different blocks. Thus, one adds additional disentanglers which serve to remove
the entanglement between different blocks, which gives rise to the tensor network shown in
Fig. 7. In order to obtain an efficiently contractible tensor network, one chooses the tensors to
be unitaries/isometries in vertical direction, such that each tensor cancels with its adjoint. It is
easy to see that this way for any local O, in the tensor network for (¥|O|W¥) most tensors cancel,
and one only has to evaluate a tensor network of the size of the depth of the MERA, which is
logarithmic in its length [55]. The MERA ansatz is not restricted to one dimension and can also
be used to simulate critical system in 2D and beyond [56].

A different variational class is obtained by studying states for which expectation values can be
computed efficiently using Monte Carlo sampling. Following Eq. (14), this requires (for local
quantities O) that we can compute (7| V) efficiently for all i = (i1, ...,4y). One class of states
for which this holds is formed by MPS, which implies that we can evaluate expectation values
for MPS using Monte Carlo sampling [41,42] (note that the scaling in D is more favorable
since (i|¥) can be computed in time oc N D?). This can be extended to the case where (i|¥)
is a product of efficiently computable objects, such as products of MPS coefficients defined
on subsets of spins: We can arrange overlapping one-dimensional strings in a 2D geometry
and associate to each of them an MPS, yielding a class known as string-bond states [41,57],
which combines a flexible geometry with the favorable scaling of MPS-based methods. We
can also consider (i|¥) to be a product of coefficients each of which only depends on the spins
1 supported on a small plaquette, and where the lattice is covered with overlapping plaquettes,
yielding a family of states known as Entangled Plaquette States (EPS) [58] or Correlator Product
States (CPS) [59], which again yields an efficient algorithm with flexible geometries. In all of
these ansatzes, the energy is minimized by using a gradient method, which is considerably
facilitated by the fact that the gradient can be sampled directly without the need to first compute
the energy landscape.

In order to simulate infinite lattices, it is possible to extend MPS and PEPS to work for infinite

systems: iMPS and iPEPS. The underlying idea is to describe the system by an infinite MPS and
PEPS with a periodic pattern of tensors such as ABABAB. .. (which allows the system to break
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translational symmetry and makes the optimization more well-behaved). Then, one fixes all
tensors except for one and minimizes the energy as a function of that tensor until convergence
is reached. For the optimization, one needs to determine the dependence of the energy on the
selected tensor, which can be accomplished in various ways, such as using the fixed point of
the transfer operator, renormalization methods (cf. Section 3.1.2), or the corner transfer matrix
approach. For more information, see, e.g., [60-62].

3.4 Simulation of fermionic sytems

Up to now, we have considered the simulation of spin systems using tensor networks. On
the other hand, in many cases of interest, such as for the Hubbard model or the simulation of
molecules, the underlying systems are fermionic in nature. In the following, we will discuss
how tensor network methods such as MPS, PEPS, or MERA can be extended to the simulation
of fermionic systems.

In order to obtain a natural description of fermionic systems, the idea is to replace each object
(i.e., tensor) in the construction of PEPS or MERA by fermionic operators [63—65]. This is,
in the construction of MPS and PEPS, Fig. 3 and Fig. 6, both the maximally entangled bonds
and the P, are now built from fermionic operators and need to preserve parity; equally, in the
MERA construction, Fig. 7, all unitaries and isometries are fermionic in nature. The resulting
states are called fermionic PEPS (fPEPS) and fermionic MERA (fMERA).

Let us now have a closer look at a fermionic tensor network, and discuss how to compute
expectation values for those states. E.g., the fPEPS construction yields a state

(PL@Py@- (w1 @uwa ®--+)|Q),

where (2} is the vacuum state, the w; create entangled fermionic states between the correspond-
ing auxiliary modes, and the P, map the auxiliary fermionic modes to the physical fermionic
modes at site s (leaving the auxiliary modes in the vacuum). While the product of the w; contains
only auxiliary mode operators in a given order, the product of the P, contains the physical and
auxiliary operators for each site grouped together. To compute expectation values, on the other
hand, we need to move all the physical operators to the left and the virtual operators to the right
in the product of the Py; additionally, the virtual operators have to be arranged such that they
cancel with the ones arising from the product of the w;. Due to the fermionic anti-commutation
relations, this reordering of fermionic operators results in an additional complication which
was not present for spin systems. Fortunately, it turns out that there are various ways how to
take care of the ordering of fermionic operators at no extra computational cost: One can use
a Jordan-Wigner transformation to transform the fermionic system to a spin system [63,65];
one can map the fPEPS to a normal PEPS with one additional bond which takes care of the
fermionic anticommutation relations [64]; or one can replace the fermionic tensor network by
a planar spin tensor network with parity preserving tensors, where each crossing of lines [note
that a planar embedding of a network such as the 2D expectation value in Eq. (11) gives rise to
crossings of lines, which corresponds to the reordering of fermionic operators] is replaced by a
tensor which takes care of the anticommutation rules [66,67].
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4 Quantum Complexity: Understanding the limitations to
our understanding

In the preceding sections, we have learned about different methods to simulate the physics of
many-body systems governed by local interactions, using their specific entanglement structure.
While these algorithms work very well in practice, the convergence of these methods can almost
never be rigorously proven. But does this mean that we just haven’t found the right proof yet,
or is there a fundamental obstacle to proving that these methods work — and if yes, why do they
work after all?

4.1 A crash course in complexity classes

These questions can be answered using the tools of complexity theory, which deals with clas-
sifying the difficulty of problems. Difficulty is typically classified by the resources needed to
solve the problem on a computer (such as computation time or memory) as a function of the
problem size, this is, the length of the problem description n.

Let us start by introducing some relevant complexity classes.!! To simplify the comparison
of problems, complexity theorists usually focus on “decision problems”, i.e., problems with
a yes/no answer. While this seems overly restrictive, being able to answer the right yes/no
question typically enables one to also find an actual solution to the problem. (E.g., one can ask
whether the solution is in a certain interval, and divide this interval by two in every step.) So let
us get started with the complexity classes:

e P (“polynomial time”): The class of problems which can be solved in a time which scales
at most as some polynomial poly(n) in the size of the problem. For instance, multiplying
two numbers is in P — the number of elementary operators scales like the product of
the number of digits of the two numbers to be multiplied. Generally, we consider the
problems in P those which are efficiently solvable.

e NP (“non-deterministic polynomial time”): The class of all decision problems where for
“yes” instances, there exists a “proof™ (i.e., the solution to the problem) whose correct-
ness can be verified in a time which is poly(n), while for “no” instances, no such proof
exists. Typical problems are decomposing a number into its prime factors (given the
prime factors, their product can easily be verified), or checking whether a given graph
can be colored with a certain number of colors without coloring two adjacent vertices in
the same color (for a given coloring, it can be efficiently checked whether all adjacent
vertices have different colors).

e BQP (bounded-error quantum polynomial time), the quantum version of P: The class of
problems which can be (probabilistically) solved by a quantum computer in time poly(n);
a famous example of a problem in BQP which is not known to be in P is Shor’s algorithm
for factoring [70].

e QMA (quantum Merlin Arthur), one quantum version of NP: The class of decision prob-
lems where for a “yes” instance, there exists a quantum proof (i.e., a quantum state) which
can be efficiently verified by a quantum computer, and no such proof exists for a “no” in-
stance. For example, determining whether the ground state energy of a local Hamiltonian

'This is going to be a very brief introduction. If you want to learn more, consult e.g. Refs. [68,69].
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Q

Fig. 8: Relevant complexity classes and their relation.

H is below some threshold £ (up to a certain accuracy) is in QMA —in a “yes” case, the
proof would be any state |¢)) with energy below the threshold, and the energy ()|H |1))
can be efficiently estimated by a quantum computer, using e.g. phase estimation [71].

The relation of the classes to each other is illustrated in Fig. 8. All of the inclusions shown
are generally believed to be strict, but none of them has up to now been rigorously proven. In
particular, whether NP#P is probably the most famous open problem in theoretical computer
science.

An important concept it that of complete problems: A problem is complete for a class if it is as
hard as any problem in the class. Completeness is established by showing that any problem in
the class can be reduced to the complete problem, this is, it can be reformulated as an instance
of the complete problem in poly(n) time. The relevance of complete problems lies in the fact
that they are the hardest problems in a class: This is, if a problem is e.g. NP-complete, and
we believe that NP+£P, then this problem cannot be solved in polynomial time; and on similar
grounds, QMA-complete problems cannot be solved in polynomial time by either a classical or a
quantum computer. We will discuss physically relevant complete problems relating to quantum
many-body systems in the next section.

4.2 The complexity of problems in many-body physics

In the following, we will discuss the computational complexity of quantum many-body prob-
lems. The main problem we will consider is determining whether the ground state energy of a
Hamiltonian /7 which is a sum of few-body terms is below a certain threshold (up to a certain
accuracy). As we have argued above, this problem is inside the class QMA. In the following, we
will argue that the problem is in fact QMA-complete, which implies that it is hard not only for
classical, but even for quantum computers; the following construction is due to Kitaev [71,72].
To this end, we need to consider an arbitrary problem in QMA and show that we can rephrase it
as computing the ground state energy of a certain Hamiltonian. A problem in QMA is described
by specifying the quantum circuit which verifies the proof, and asking whether it has an input
which will be accepted with a certain probability. The verifying circuit is illustrated in Fig. 9.
Now let us assume that there is a valid proof |¢o), and run the verifier with |¢,) (plus ancillas
|0)) as an input. At each time step ¢, the state of the register the verifier acts on is denoted by
|4+), and the proof is accepted if the first qubit of the state |¢)7) at time 7" is in state |1).

Our aim will now be to build a Hamiltonian which has the “time history state”

T) = [ rlt)r (15)

as a ground state. To this end, we will use three types of terms: One term, H;y;;, will ensure
that the ancillas are in the state |0) at time ¢t = 0, by increasing the energy of non-zero ancillas
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Fig. 9: QOMA verifier: The proof |¢o), together with some ancillas |0), is processed by the
verifying circuit Uy - - - Uy ; the intermediate state at step t is denoted by |1;). Att = T, the first
qubit is measured in the computational basis to determine whether the proof is accepted.

if t = 0. A second term, H,,.,, Will ensure correct propagation from time ¢ to ¢ + 1, ie.,
|ty) = Uy|wy_1). Finally, a last term Hp,,,; will increase the energy if the proof is not accepted,
i.e., the first bit of |¢r) is not |1). Together,

H = Hinit + Hprop + Hﬁnal (16)

has a ground state with minimal energy if there exists a valid proof [which in that case is exactly
the time history state | W) of Eq. (15)]. On the other hand, in a “no” instance in which no valid
proof exists, any ground state — which is still of the form (15) — must either start with incorrectly
initialized ancillas, or propagate the states incorrectly (violating |¢;) = U;|1,_1)), or be rejected
by Hpgnal, thereby increasing the energy sufficiently to reliably distinguish “yes” from “no”
instances. Together, this demonstrates that finding the ground state energy of the Hamiltonian
(16) is a QMA-complete problem, showing that it is impossible to solve this problem even for a
quantum computer [71,72]).

While the Hamiltonian (16) is not spatially local, there has been a number of works sequentially
proving QMA-hardness for more and more simple Hamiltonians. In particular, nearest-neighbor
Hamiltonians on a 2D square lattice of qubits are QMA-complete [73], and, most notably, near-
est neighbor Hamiltonians on one-dimensional chains [74], thus substantiating the difficulties
encountered in searching for convergence proofs for simulation methods even in 1D.

Let us note that there is also a classical version of the above construction, showing NP-com-
pleteness of classical ground state problems: In that case, we can use a “history state”

%0) @ [¢1) ® - - ® |br)

with no coherence between different times, where we think of the states as being arranged in
columns. The Hamiltonian is similar to the one before, Eq. (16), just that the individual terms
are no more conditioned on the value of a “time” register, but simply act on the columns of
the history state corresponding to the right time ¢. (Sloppily speaking, the reason that we can
do so is that all terms in the Hamiltonian act in a classical basis, and classical information can
be cloned.) The resulting Hamiltonian is at most four-local, acting across 2 x 2 plaquettes
of adjacent spins. Again, it has been shown using differerent techniques that even classical
two-dimensional models with Ising-type couplings and local fields are still NP-complete [33].
Given all these hardness results for determining ground state properties of classical and quan-
tum spin systems, one might wonder why in practice, simulation methods often work very well.
First, let us note that these hardness result tell us why in many cases, we cannot prove that
numerical methods work: This would require to identify the necessary conditions such as to
exclude all hard instances, while still keeping the relevant problems, and to find a proof re-
lying exactly on these conditions. Indeed, there are many properties which separate practical
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problems from the hard instances we discussed: For instance, in practice one usually considers
translationally invariant (or nearly translationally invariant) systems (though there exist hard-
ness results for translationally invariant systems even in one dimension [75]), and the systems
considered will have various symmetries. Even more importantly, all the QMIA-complete mod-
els known have a spectral gap of at most 1/poly(n), as opposed to the typically constant gap in
many problems of interest. On the other hand, the NP-complete Hamiltonian outlined above is
completely classical and thus has gap 1, while still being NP-complete. Overall, while there is
no doubt that numerical methods are extremely successful in practice, computational complex-
ity tells us that we have to carefully assess their applicability in every new scenario. It should
also be pointed out that the the fact that a family of problems (such as ground state problems) is
complete for a certain complexity class addresses only the worst-case complexity, and in many
cases, typical instances of the same problem can be solved much more efficiently.

S Summary

In this lecture, we have given an overview over condensed matter applications of quantum infor-
mation methods, and in particular of entanglement theory. The main focus was on entanglement-
based ansatzes for the description and simulation of quantum many-body systems. We started
by discussing the area law for the entanglement entropy which is obeyed by ground states of
local interactions, and used this to derive the Matrix Product State (MPS) ansatz which is well
suited to describe the physics of such systems. We showed that the one-dimensional structure of
MPS allows for the efficient evaluation of expectation values, and that this can be used to build
a variational algorithm for the simulation of one-dimensional systems. We have also shown
how MPS appear as ground state of local “parent Hamiltonians” which makes them suitable
to construct solvable models, and thus for the study of specific models as well as the general
structure of quantum phases.

We have then discussed Projected Entangled Pair States (PEPS), which naturally generalize
MPS and are well suited for the description of two-dimensional systems, and we have shown
how approximation methods can be used to implement efficient PEPS based simulations. Again,
PEPS can also be used to construct solvable models very much the same way as for MPS. We
have subsequently demonstrated that MPS and PEPS can be used to simulate the time evolution
and thermal states of systems governed by local Hamiltonians. Moreover, we have discussed
other tensor network based approaches, such as MERA for scale-invariant systems or iMPS
and iPEPS for infinite sytems, and concluded with a discussion on how to apply tensor network
methods to fermionic systems.

Finally, we have introduced another field in which quantum information tools are useful to un-
derstand condensed matter systems, namely the field of computational complexity. Complexity
tools allow us to understand which problems we can or cannot solve. In particular, we have
discussed the class QMA which contains the problems which are hard even for quantum com-
puters, and we have argued that many ground state problems, including 2D lattices of qubits
and 1D chains, are complete for this class. While this does not invalidate the applicability of
simulation methods to these problems, it tells us that special care has to be taken, and points out
to us why we cannot hope for convergence proofs without imposing further conditions.
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