when does it work?

\square measuring bipartite entanglement S : reduced density matrix

\square arbitrary bipartition of MPS:

AAAAAAAA BBBBBBBBBBBBBBBBBBB

$$
|\psi\rangle=\sum_{\alpha}^{D} \sqrt{w_{\alpha}}\left|\alpha_{A}\right\rangle\left|\alpha_{B}\right\rangle
$$

use Schmidt decomposition
\square reduced density matrix and bipartite entanglement

$$
\hat{\rho}_{A}=\sum_{\alpha} w_{\alpha}\left|\alpha_{A}\right\rangle\left\langle\alpha_{A}\right|
$$

$$
S=-\sum_{\alpha}^{D} w_{\alpha} \ln w_{\alpha} \leq \ln D
$$

why DMRG loves one dimension

Latorre, Rico, Vidal, Kitaev (03)
\square entanglement grows with system surface: area law
Bekenstein `73 Callan, Wilczek `94
\square for ground states! Eisert, Cramer, Plenio, RMP (IO)

gapped

$$
S(L) \sim \text { cst. }
$$

$$
S(L) \sim L
$$

$S(L) \sim L^{2} \quad \begin{aligned} & \text { black } \\ & \text { hole }\end{aligned}$

$$
S \leq \ln D \Rightarrow D \geq \mathrm{e}^{S}
$$

dimension

$$
D>\mathrm{e}^{L}
$$

$$
D>\mathrm{e}^{L^{2}}
$$

Hilbert space size: just an illusion?

\square random state in Hilbert space: entanglement entropy extensive
\square expectation value for entanglement entropy extensive and maximal
\square states with non-extensive entanglement set of measure zero
\square but contain ground states!
\square MPS parametrize low-entanglement states efficiently!
ground states are here!

frustrated magnetism in 2D

\square „classic" candidates (spin length I/2):
Yan et al, Science (20II)
Depenbrock et al, PRL (20I2)
$J_{1}-J_{2}$ model on a square lattice

DMRG in two dimensions

map 2D lattice to ID (vertical) „snake" with long-ranged interactions
vertically $O B C$

vertically PBC: extra cost!
\square horizontally: ansatz obeys area law: easy axis, long at linear costvertically: ansatz violates area law: hard axis, long at exponential cost
\square consider long cylinders of small circumference c : mixed BC
circumference c

length L

ground state energies

fully $S U(2)$ invariant $D M R G$ codeup to 3,800 representatives $(16,000 U(I)$ DMRG states)100\% increase
\square cylinders up to circumference $c=17.3, N=726$
50\% increase
\square tori up to $N=(6 \times 6) \times 3=108$ sites
TD limit energy estimate: -0.4386(5)
\square iDMRG (infinite cylinder) upper bounds below HVBC; YC8: -0.4379
iDMRG: I.P. McCulloch, arXiv:0804.2509

triplet gap

fully $S U(2)$ invariant DMRG code\square eliminates need for special edge manipulations of $U(I)$ DMRG: ground state of $S=I$ sector

bond energy deviations from meanbulk excitationmuch smoother gap curvetriplet gap estimate: $0.13(1)$

triplet gap for infinitely long cylinders

TEE in the kagome lattice

\square extrapolate Renyi entropies to circumference $c=0$
\square negative intercept is TEE
\square find topological order!

$$
\gamma \approx 0.94 \quad D \approx 2
$$

\square TEE extracted from random state in GS manifold lower bound
\square true value for so-called minimum entropy state
\square DMRG seems to systematically pick those

Zhang, Grover, Turner, Oshikawa,Vishvanath, PRB (2012)
time evolution

time-evolution

assume initial state in MPS representation; time evolution:

$$
|\psi(t)\rangle=\mathrm{e}^{-\mathrm{i} \hat{H} t}|\psi(0)\rangle
$$

how to express the evolution operator as an MPO?
one solution:Trotterization of evolution operator into small time steps

$$
N \rightarrow \infty \quad \tau \rightarrow 0 \quad N \tau=T \quad \tau \sim 0.01
$$

Heisenberg model: $\quad \hat{H}=\sum_{i=1}^{L-1} \hat{h}_{i} \quad \hat{h}_{i}=\mathbf{S}_{i} \cdot \mathbf{S}_{i+1}$
first-order Trotter decomposition

Trotter decomposition

calculation of $\mathrm{e}^{-\mathrm{i} \hat{h}_{i} \tau}$ as $\left(d^{2} \times d^{2}\right)$ matrix:

$$
H_{i} U=U \Lambda \quad H_{i}=U \Lambda U^{\dagger} \quad \Rightarrow \quad \mathrm{e}^{-\mathrm{i} H_{i} \tau}=U \mathrm{e}^{-\mathrm{i} \Lambda \tau} U^{\dagger}=U \cdot \operatorname{diag}\left(\mathrm{e}^{-\mathrm{i} \lambda_{1} \tau}, \mathrm{e}^{-\mathrm{i} \lambda_{2} \tau}, \ldots\right) \cdot U^{\dagger}
$$

problem: exponential does not factorize if operators do not commute

$$
\mathrm{e}^{\hat{A}+\hat{B}}=\mathrm{e}^{\hat{A}} \mathrm{e}^{\hat{B}} \mathrm{e}^{\frac{1}{2}[\hat{A}, \hat{B}]}
$$

but error is negligible as $\quad \tau \rightarrow 0$

$$
\left[\hat{h}_{i} \tau, \hat{h}_{i+1} \tau\right] \propto \tau^{2}
$$

convenient rearrangement:

$$
\begin{gathered}
\hat{H}=\hat{H}_{\text {odd }}+\hat{H}_{\text {even }} ; \quad \hat{H}_{\text {odd }}=\sum_{i} \hat{h}_{2 i-1}, \quad \hat{H}_{\text {even }}=\sum_{i} \hat{h}_{2 i} \\
\mathrm{e}^{-\mathrm{i} \hat{H} T}=\mathrm{e}^{-\mathrm{i} \hat{H}_{\text {even }} \tau} \mathrm{e}^{-\mathrm{i} \hat{H}_{\text {odd }} \tau} ; \quad \mathrm{e}^{-\mathrm{i} \hat{H}_{\text {even }} \tau}=\prod_{i} \mathrm{e}^{-\mathrm{i} \hat{h}_{2 i} \tau}, \quad \mathrm{e}^{-\mathrm{i} \hat{H}_{\text {odd }} \tau}=\prod_{i} \mathrm{e}^{-\mathrm{i} \hat{h}_{2 i-1} \tau}
\end{gathered}
$$

tDMRG, tMPS, TEBD

bring local evolution operator into MPO form:
$U^{\sigma_{1} \sigma_{2}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}}=\left\langle\sigma_{1} \sigma_{2}\right| \mathrm{e}^{-\mathrm{i} \hat{h}_{1} \tau}\left|\sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle$
$U^{\sigma_{1} \sigma_{2}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}}=\quad \bar{U}_{\sigma_{1} \sigma_{1}^{\prime}, \sigma_{2} \sigma_{2}^{\prime}} \stackrel{S V D}{=} \sum_{b} W_{\sigma_{1} \sigma_{1}^{\prime}, b} S_{b, b} W_{b, \sigma_{2} \sigma_{2}^{\prime}}$

$$
=
$$

even bonds
odd bonds
one time step: dimension grows as d^{2} initial state
\square apply one infinitesimal time step in MPO form
\square compress resulting MPS

single-particle excitation

\square quarter-filled Hubbard chain: U/t=4
\square add spin-up electron at chain center at time $=0$
\square measure charge and spin density

\square separation of charge and spin
Kollath, US, Zwerger, PRL 95, I7640I (‘05)

some comments

ground states can be obtained by imaginary time evolution (SLOW!):

$$
\begin{gathered}
|\psi\rangle=\sum_{n} c_{n}|n\rangle \quad \hat{H}|n\rangle=E_{n}|n\rangle \quad E_{0} \leq E_{1} \leq E_{2} \leq \ldots \\
\lim _{\beta \rightarrow \infty} \mathrm{e}^{-\beta \hat{H}}|\psi\rangle=\lim _{\beta \rightarrow \infty} \sum_{n} \mathrm{e}^{-\beta E_{n}} c_{n}|n\rangle=\lim _{\beta \rightarrow \infty} \mathrm{e}^{-\beta E_{0}}\left(c_{0}|0\rangle+\sum_{n>0} \mathrm{e}^{-\beta\left(E_{n}-E_{0}\right)} c_{n}|n\rangle\right. \\
= \\
\lim _{\beta \rightarrow \infty} \mathrm{e}^{-\beta E_{0}} c_{0}|0\rangle
\end{gathered}
$$

real time evolution limited by entanglement growth:

$$
S(t) \leq S(0)+\nu t \quad D \sim \mathrm{e}^{S} \sim \mathrm{e}^{\nu t}
$$

in the worst case, matrix dimensions grow exponentially!

limitations ...

\square do correlations in non-relativistic systems spread at finite velocity?

$$
\left\|\left[A_{0}(0), B_{d}(t)\right]\right\| \leq c s t .\|A\|\|B\| \exp [-(d-v t)]
$$

\square correlations
Lieb-Robinson theorem (CMP, I972)
\square entanglement bound:

$$
S(t) \leq S(0)+c s t . \times 2 v t
$$

linear in time exponential resources
out-of-equilibrium cartoon:
quasiparticles entangle in „light" cone

[^0]Calabrese, Cardy (since 2004) and others

dynamical quantum simulator

coherent dynamics! controlled preparation? local measurements?
first experiments: period-2 superlattice

- double-well formation
- staggered potential bias

- pattern loading
- odd/even resolved measurement
(Fölling et al. (2007))

first theory proposals:
- prepare $|\psi\rangle=|1,0,1,0,1,0, \ldots\rangle$
- switch off superlattice
- observe Bose-Hubbard dynamics

Cramer et al., PRL IOI, 06300 (2008)
Flesch et al., PRA 78, 033608 (2008)

dynamical quantum simulator

Trotzky et al., Nat. Phys. 8, 325(2012)

45,000 atoms, U=5.2
momentum
distribution

densities: relaxing to $n=0.5$

no free fit parameters!
fully controlled relaxation in closed quantum system!
validation of dynamical quantum simulator
time range of experiment > $10 \times$ time range of theory real „analog computer" that goes beyond theory

nearest-neighbour correlators

- again three regimes
- U ≈ 3 : crossover regime
- at large U, I/U fit of relaxed correlator can be understood as perturbation to locally relaxed subsystems

currents

measurement: split in double wells, measure well oscillations

phase and amplitude

sloshing; no c.m. motion

current decay as power law?

nearest neighbour correlations

momentum
distribution
visibility proportional to nearest neighbour correlations

interaction strength
 general trend, I/U correct!

build-up of quantum coherence

discrepancy because original theory ignored trap:

measurement at .,Iong time"
old theory prediction for long times without trap
trap allows particle migration to the ,edges" energy gained in kinetic energy:
$E_{k i n}=-J\left\langle b_{i}^{\dagger} b_{i+1}+b_{i+1}^{\dagger} b_{i}\right\rangle$
long-time limit of nearest-neighbor correlations (here: visibility of momentum distribution)

new: we do even better!

Barthel, US, Sachdev, I2 I 2.3570 (20I2); Barthel, I30I. 2246 (20|3)

$$
\langle\hat{B}(2 t) \hat{A}\rangle_{\beta}=Z(\beta)^{-1} \operatorname{Tr}(\underbrace{\left[\mathrm{e}^{\mathrm{i} \hat{H} t} \mathrm{e}^{-\beta \hat{H} / 2} \hat{B} \mathrm{e}^{-\mathrm{i} \tilde{H} t}\right]} \mathrm{e}^{-\mathrm{e} \hat{H} \hat{H} t} \hat{A} \mathrm{e}^{-\beta \hat{H} / 2} \mathrm{e}^{\mathrm{i} \hat{H} t}])
$$

\square one calculation if $\hat{B}^{\dagger}=\hat{A}$
\square doubles reachable time for same effort as in Karrasch scheme

neutron scattering at $T>0$

structure function by neutron scattering (Broholm group)
high flux
precise lineshapes
\square problem: experiment usually $T=4.2 \mathrm{~K}$, energy scales at $J=\mathrm{O}$ (IOK) definitely not at $T=0$!
\square desired feature because of achievable field strengths: H should be of order J-- rule of thumb IK=IT

finite-temperature dynamics

purification
density matrix of physical system: pure state of physical system plus auxiliary system

$$
\hat{\rho}_{p h y s}=\operatorname{Tr}_{a u x}|\psi\rangle\langle\psi|
$$

\square finite-temperature dynamics

evolution of pure state in enlarged state space

purification and finite-T evolution

purification: any mixed state can be expressed by a pure state on a larger system (P: physical, Q: auxiliary state space)

$$
\begin{gathered}
\hat{\rho}_{P}=\sum_{n} \rho_{n}|n\rangle_{P}{ }_{P}\langle n| \quad|\psi\rangle_{P Q}=\sum_{n} \sqrt{\rho_{n}}|n\rangle_{P}|n\rangle_{Q} \\
\hat{\rho}_{P}=\operatorname{tr}_{Q}|\psi\rangle_{P Q} \quad P_{Q}\langle\psi| \quad \text { simplest way: } \mathrm{Q} \text { copy of } \mathrm{P}
\end{gathered}
$$

expectation values as before:
$\left\langle\hat{O}_{P}\right\rangle_{\hat{\rho}_{P}}=\operatorname{tr}_{P} \hat{O}_{P} \hat{\rho}_{P}=\operatorname{tr}_{P} \hat{O}_{P} \operatorname{tr}_{Q}|\psi\rangle_{P Q}{ }_{P Q}\langle\psi|=\operatorname{tr}_{P Q} \hat{O}_{P}|\psi\rangle_{P Q}{ }_{P Q}\langle\psi|={ }_{P Q}\langle\psi| \hat{O}_{P}|\psi\rangle_{P Q}$ time evolution as before:

$$
\hat{\rho}_{P}(t)=\mathrm{e}^{-\mathrm{i} \hat{H} t} \hat{\rho}_{P} \mathrm{e}^{+\mathrm{i} \hat{H} t}=\mathrm{e}^{-\mathrm{i} \hat{H} t} \operatorname{tr}_{Q}|\psi\rangle_{P Q P Q}\langle\psi| \mathrm{e}^{+\mathrm{i} \hat{H} t}=\operatorname{tr}_{Q}|\psi(t)\rangle_{P Q P Q}\langle\psi(t)|
$$

$$
|\psi(t)\rangle_{P Q}=\mathrm{e}^{-\mathrm{i} \hat{H} t}|\psi\rangle_{P Q}
$$

time-evolution of thermal states

problem: usually we do not have mixed state in eigenrepresentation
thermal states: easy way out by imaginary t-evolution
$\mathrm{e}^{-\beta \hat{H}}=\mathrm{e}^{-\beta \hat{H} / 2} \cdot \hat{I}_{P} \cdot \mathrm{e}^{-\beta \hat{H} / 2}=\operatorname{tr}_{Q} \mathrm{e}^{-\beta \hat{H} / 2}\left|\rho_{0}\right\rangle_{P Q \quad}{ }_{P Q}\left\langle\rho_{0}\right| \mathrm{e}^{-\beta \hat{H} / 2}$
purification of infinite-T state: product of local totally mixed states
gauge degree of freedom: arbitrary unitary evolution on Q
lots of room for improvement: see further slides!!

linear prediction

(Barthel, Schollwöck,White, PRB 79, 245IOI (2009))
\square ansatz: data is linear combination of p previous data points

$$
\begin{aligned}
& \text { prediction } \\
& \qquad \tilde{x}_{n}=-\sum_{i=1}^{p} a_{i} x_{n-i} \quad \text { calculation } \\
& \text { index labels time: time series }
\end{aligned}
$$

\square find prediction coefficients by minimising error for available data

$$
E=\sum_{n} \frac{\left|\tilde{x}_{n}-x_{n}\right|^{2}}{w_{n} \quad \text { error estimate }}
$$

\square iteratively continue time series from data using ansatz

linear prediction

(Barthel, US,White, PRB 79, 245I0I (2009))
\square ansatz: data is linear combination of p previous data points

$$
\begin{aligned}
& \text { prediction } \\
& \qquad \tilde{x}_{n}=-\sum_{i=1}^{p} a_{i} x_{n-i} \quad \text { calculation } \\
& \text { index labels time }
\end{aligned}
$$

\square find prediction coefficients by minimising error for available data

$$
\begin{gathered}
E=\sum_{n} \frac{\left|\tilde{x}_{n}-x_{n}\right|^{2}}{w_{n}} \\
0=\sum_{j} a_{j} \sum_{n \in \mathcal{N}_{f i t}} \frac{x_{n-k}^{*} x_{n-j}}{w_{n}}+\sum_{n \in \mathcal{N}_{f i t}} \frac{x_{n-k}^{*} x_{n}}{w_{n}}
\end{gathered}
$$

linear prediction II

\square solving for the coefficients: matrix equation

$$
\begin{array}{rlrl}
\mathbf{R} \cdot \mathbf{a} & =-\mathbf{r} & R_{i j} & =\sum_{n \in \mathcal{N}_{f i t}} \frac{x_{n-i}^{*} x_{n-j}}{w_{n}} \\
\mathbf{a} & =-\mathbf{R}^{-1} \cdot \mathbf{r} & r_{i} & =\sum_{n \in \mathcal{N}_{f i t}} \frac{x_{n-i}^{*} x_{n}}{w_{n}} \\
\text { attention: close to singular! }
\end{array}
$$

iterating the solution towards the future

$$
\begin{aligned}
& \mathbf{x}_{n}=\left[x_{n-1} \ldots x_{n_{p}}\right]^{T} \quad \mathbf{A}=\left[\begin{array}{cccc}
-a_{1} & -a_{2} & \ldots & -a_{P} \\
1 & 0 & & \\
0 & 1 & \ddots & \\
\mathbf{x}_{n+1}=\mathbf{A} \cdot \mathbf{x}_{n} & \ddots & \ddots & 0 \\
& & 0 & 1
\end{array}\right], ~
\end{aligned}
$$

transverse Ising model

\square cuts in momentum space: time domain

extends time domain $10 x$
\square cuts in momentum space: frequency domain

$\mathrm{k}=\mathrm{pi} / 4 \quad \mathrm{k}=\mathrm{pi} / 2 \quad \mathrm{k}=3 \mathrm{pi} / 4$

spin-I/2 Heisenberg chain

structure function at finite T in real space and time

spinonic continuum of excitations: much harder!?
$(\pi / 2)|\sin k| \leq \omega(k) \leq \pi \sin k / 2$ at $T=0$

spin-I/2 Heisenberg chain II

\square dependence on prediction parameters negligible

Wavevectork

\square excellent convergence to Bethe ansatz (98\%)

(Bethe data:J.S. Caux)
perfect agreement with experiment

Lake, ... Barthel, US, ... PRL III, I37 (20|3)

when does it work?

\square why do we predict $S(k, t)$ in time and not e.g. $G(x, t)$ (and Fourier transform to momentum space later)?
linear prediction works best for special time series
\square superposition of exponential decays

$$
x_{n+m}=\sum_{\nu=1}^{p} c_{\nu} e^{i\left(\omega_{\nu}-\eta_{\nu}\right) m} x_{n}
$$

$\square \mathrm{cf}$. pole structure of momentum-space of Green's functions

$$
G(k, \omega)=\frac{1}{\omega-\epsilon_{k}-\Sigma(k, \omega)} \quad G(k, t)=a_{1} e^{-i \omega_{1} t-\eta_{1} t}
$$

evolution of the auxiliary system

\square problem: sometimes results are not good enough even using prediction
\square solution: degree of freedom: „time evolution" of auxiliary system Q
$\left\langle\hat{B}_{P}(t) \hat{A}_{P}\right\rangle_{\beta}=Z(\beta)^{-1}\langle\psi(0)| \mathrm{e}^{-\beta \hat{H}_{P} / 2} \mathrm{e}^{\mathrm{i} \hat{H}_{P} t} \hat{B}_{P} \mathrm{e}^{-\mathrm{i} \hat{H}_{P} t} \hat{A}_{P} \mathrm{e}^{-\beta \hat{H}_{P} / 2}|\psi(0)\rangle$
$\left\langle\hat{B}_{P}(t) \hat{A}_{P}\right\rangle_{\beta}=Z(\beta)^{-1}\left\langle\psi(0)\left(\hat{T}_{Q}^{-1} \mathrm{e}^{-\beta \hat{H}_{P} / 2} \mathrm{e}^{\mathrm{i} \hat{H}_{P} t} \hat{B}_{P} \mathrm{e}^{-\mathrm{i} \hat{H}_{P} t} \hat{A}_{P} \mathrm{e}^{-\beta \hat{H}_{P} / 2} \hat{T}_{Q}\right\rangle \psi(0)\right\rangle$
\square proposal by Karrasch et al. (PRL 20I2): $\hat{T}_{Q}(t)=\mathrm{e}^{\mathrm{i} \hat{H}_{Q} t}$ time-evolve Q using physical Hamiltonian backwards in time
\square substantial improvement over original approach
\square questions:
\square why does time range improve?
\square can we do even better?

a new notation

\square isomorphism between „doubled" Hilbert space and linear bounded operators on Hilbert space $\mathcal{H}_{P}=\mathcal{H}_{Q} \equiv \mathcal{H}$ $|\psi\rangle \in \mathcal{H} \otimes \mathcal{H} \quad \hat{\Psi} \in \mathcal{B}(\mathcal{H}): \mathcal{H} \mapsto \mathcal{H}$ $\left\langle\{\sigma\},\left\{\sigma^{\prime}\right\} \mid \psi\right\rangle \equiv\langle\{\sigma\}| \hat{\Psi}\left|\left\{\sigma^{\prime}\right\}\right\rangle$
\square in MPS language:
matrix product operator
$|\psi\rangle=\sum_{\{\sigma\},\left\{\sigma^{\prime}\right\}} A^{\sigma_{1}, \sigma_{1}^{\prime}} \ldots A^{\sigma_{L}, \sigma_{L}^{\prime}}\left|\{\sigma\},\left\{\sigma^{\prime}\right\}\right\rangle$
$\hat{\Psi}=\sum_{\{\sigma\},\left\{\sigma^{\prime}\right\}} A^{\sigma_{1}, \sigma_{1}^{\prime}} \ldots A^{\sigma_{L}, \sigma_{L}^{\prime}}|\{\sigma\}\rangle\left\langle\left\{\sigma^{\prime}\right\}\right|$
\square translation rules:

$|\psi(0)\rangle \propto \sum_{\left\{\sigma,,\left\{\sigma^{\prime}\right\}\right.}\left|\{\sigma\},\left\{\sigma^{\prime}\right\}\right\rangle \equiv|I\rangle$
$|\psi(\beta)\rangle \propto \mathrm{e}^{-\beta \hat{H}}|I\rangle$
$\mathrm{e}^{-\beta \hat{H}}$
$(\hat{P} \otimes \hat{Q})|\psi\rangle \leftrightarrow \hat{P} \hat{\Psi} \hat{Q}^{T}$

reexpress approaches

$$
\langle\hat{B}(t) \hat{A}\rangle_{\beta}=Z(\beta)^{-1}\langle I| \mathrm{e}^{-\beta \hat{H} / 2} \mathrm{e}^{\mathrm{i} \hat{H} t} \hat{B} \mathrm{e}^{-\mathrm{i} \hat{H} t} \hat{A} \mathrm{e}^{-\beta \hat{H} / 2}|I\rangle
$$

- original approach:
matrix product operator $\langle\hat{B}(t) \hat{A}\rangle_{\beta}=Z(\beta)^{-1} \operatorname{Tr}\left(\left[\mathrm{e}^{-\beta \hat{H} / 2} \mathrm{e}^{+\mathrm{i} \hat{H} t}\right] \hat{B} \hat{\left[\mathrm{e}^{-\mathrm{i} \hat{H} t} \hat{A} \mathrm{e}^{-\beta \hat{H} / 2}\right]}\right)$
\square approach by Karrasch et al.:

$$
\langle\hat{B}(t) \hat{A}\rangle_{\beta}=Z(\beta)^{-1} \operatorname{Tr}\left(\left[\mathrm{e}^{-\mathrm{i} \hat{H} t} \mathrm{e}^{-\beta \hat{H} / 2} \mathrm{e}^{\mathrm{i} \hat{H} t}\right] \hat{B}\left[\mathrm{e}^{-\mathrm{i} \hat{H} t} \hat{A} \mathrm{e}^{-\beta \hat{H} / 2} \mathrm{e}^{\mathrm{i} \hat{H} t}\right]\right)
$$

 works well because of lightcone argument

long-ranged interactions

what can we do if interactions are not just nearest-neighbour?
\square larger unit cells for Trotter scheme
\square becomes very costly
\square swap gates + Trotter scheme
\square treat all interactions as nearest-neighbour
\square to make this possible you have to swap sites into different positions
\square sequence of nearest-neighbour swaps
\square build one large M-matrix from two sites, exchange local sites, deconstruct into two M-matrices by SVD

long-ranged interaction: Krylov

\square bring Hamiltonian into MPO form: exact, small dimension
\square calculate successive powers $|\psi\rangle, H|\psi\rangle, H^{2}|\psi\rangle, \ldots$ Krylov vectors
\square apply Hamiltonian MPO
\square compress resulting MPS

\square orthonormalize powers
\square tridiagonalize Hamiltonian in new basis, calculate $e^{i H \Delta t}|\psi\rangle$
\square for small time steps, 4 to 5 Krylov vectors sufficient; quasi-exact

conclusions

\square ID: DMRG/MPS currently most powerful method
\square ground states
\square time-evolution, also at non-zero temperature
\square limitation: exponential growth of resources; entanglement growth
\square 2D: DMRG/MPS starts making very interesting forays
\square long cylinders
\square suboptimal ansatz, but numerically extremely stable
\square barring new ideas, key challenges for powerful codes:
\square parallelization
\square (non-)Abelian quantum numbers
\square non-trivial geometries (impurity solvers, quantum chemistry)
\square convergence of ground states

[^0]: (sub)system length ℓ

