Density-Matrix Renormalisation Group/ Matrix Product States

Ulrich Schollwöck
University of Munich

introduction

fundamental problem of solid state

\square what do we need DMRG for? problem class:
fundamental Hamiltonian (without lattice vibrations...!):

$$
H=\sum_{\substack{\text { kinetic } \\
\text { energy }}}^{\sum_{j=1}^{-} \frac{\mathbf{p}_{j}^{2}}{2 m_{e}}+\frac{1}{2} \frac{1}{4 \pi \epsilon_{0}} \frac{q_{e}^{2}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{j}^{e^{-}} V_{\mathrm{eff}}\left(\mathbf{r}_{j}\right)} \text { l} \begin{aligned}
& \text { electron-electron } \\
& \text { interaction }
\end{aligned} \quad \begin{aligned}
& \text { lattice } \\
& \text { potential }
\end{aligned}
$$

we don't know how to solve the Schrödinger equation!
problem: electron-electron interactions

electrons in solids

\square scenario \|
valence electrons well delocalized interactions well screened

\square many metals, semiconductors: single-electron picture OK density functional theory (DFT)

electrons in solids: strong correlations

\square scenario:
valence electrons tightly bound
strong local interactions

lattice potential
 parent compounds
\square many particle picture: strongly correlated materials
model Hamiltonian methods - OUR TOPIC

why strong correlations?

0 dimensions

spin chains \& ladders
Luttinger liquid

3 dimensions

2 dimensions
realistic modelling:
transition metal, rare earth compounds
strange metal
Non-Fermi liquid Non-Fermi liquid
frustrated magnets
high- T_{c} superconductors
in equilibrium and out of/far from equilibrium!

which models?

\square Hubbard model

$$
H=-t \sum_{\langle i, j\rangle ; \sigma} c_{i \sigma}^{\dagger} c_{j \sigma}+h . c .+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

$$
\text { Wannier basis } \quad \text { kinetic energy } \quad \text { Coulomb energy }
$$

\square Hilbert space: $\quad\{|\emptyset\rangle,|\uparrow\rangle,|\downarrow\rangle,|\uparrow \downarrow\rangle\}^{\otimes L} \quad d=4$
\square Heisenberg model (large-U Hubbard at half-filling)

$$
H=J \sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}=J \sum_{\langle i, j\rangle} \frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{j}^{+} S_{i}^{-}\right)+S_{i}^{z} S_{j}^{z}
$$

\square Hilbert space: $\quad\{|\uparrow\rangle,|\downarrow\rangle\}^{\otimes L}$

$$
d=2
$$

\square most simple cartoons of correlated problems
\square computational methods needed ...

compression of information

\square compression of information necessary and desirable
\square diverging number of degrees of freedom
\square emergent macroscopic quantities: temperature, pressure, ...

$$
H=J \sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}=J \sum_{\langle i, j\rangle} \frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{j}^{+} S_{i}^{-}\right)+S_{i}^{z} S_{j}^{z}
$$

\square classical spins
\square thermodynamic limit: $N \rightarrow \infty \quad 2 N$ degrees of freedom (linear)
\square quantum spins
\square superposition of states
\square thermodynamic limit: $N \rightarrow \infty \quad 2^{N}$ degrees of freedom (exponential)

classical simulation of quantum systems

\square compression of exponentially diverging Hilbert spaces
\square what can we do with classical computers?
\square exact diagonalizations
\square limited to small lattice sizes: 40 (spins), 20 (electrons)
\square stochastic sampling of state space
\square quantum Monte Carlo techniques
\square negative sign problem for fermionic systems
\square physically driven selection of subspace: decimation
\square variational methods
\square renormalization group methods
\square how do we find the good selection?

DMRG: a young adult

09.II.I992 S.R.White: Density Matrix Formulation for Quantum Renormalization Groups (PRL 69, 2863 (I992))
„This new formulation appears extremely powerful and versatile, and we believe it will become the leading numerical method for ID systems; and eventually will become useful for higher dimensions as well."
~2004 old insight „DMRG is linked to MPS (Matrix Product States)" goes viral

Östlund, Rommer, PRL 75, 3537 (1995), Dukelsky, Martin-Delgado, Nishino, Sierra, EPL43, 457 (I998)
Vidal, PRL 93, 040502 (2004), Daley, Kollath, Schollwöck, Vidal, J. Stat. Mech. P04005 (2004), White, Feiguin, PRL 93, 07640I (2004), Verstraete, Porras, Cirac, PRL 93, 227205 (2004), Verstraete, Garcia-Ripoll, Cirac, PRL 93, 207204 (2004),Verstraete, Cirac, cond-mat/0407066 (2004)
(some) reviews:
U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005) - „old" statistical physics perspective, applications
U. Schollwöck, Ann. Phys. 326, 96 (201I) - „new" MPS perspective, technical
F.Verstraete, V. Murg, J. I. Cirac,Adv. Phys. 57, I43 (2008) - as seen from quantum information

definitions

quantum system living on L lattice sites
d local states per site $\left\{\sigma_{i}\right\} \quad i \in\{1,2, \ldots, L\}$ example: spin I/2: $\quad d=2 \quad|\uparrow\rangle,|\downarrow\rangle$

Hilbert space:

$$
\mathcal{H}=\otimes_{i=1}^{L} \mathcal{H}_{i} \quad \mathcal{H}_{i}=\left\{\left|1_{i}\right\rangle, \ldots,\left|d_{i}\right\rangle\right\}
$$

most general state (not necessarily ID):

$$
|\psi\rangle=\sum_{\sigma_{1}, \ldots, \sigma_{L}} c^{\sigma_{1} \ldots \sigma_{L}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle
$$

abbreviations: $\quad\{\sigma\}=\sigma_{1} \ldots \sigma_{L} \quad c^{\{\sigma\}}$

matrix product states: idea

proposal: let us do quantum mechanics entirely with matrix product states (MPS):

$$
|\psi\rangle=\sum_{\sigma_{1}, \ldots, \sigma_{L}} M^{\sigma_{1}} M^{\sigma_{2}} \ldots M^{\sigma_{L}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{L}\right\rangle
$$

\square all basis states participate
\square (variational) constraint is in expansion coefficients:
\square for each of the d local basis states, one matrix M $d L$ matrices altogether
\square dimensions such that they can be multiplied to a scalar
\square matrix size has upper limit D up to dLD 2 coefficients instead of exponentially many
\square look weird: do they make any sense at all? are they useful and practical?

product states and MPS

standard approximation: mean-field approximation / product state

$$
c^{\sigma_{1} \ldots \sigma_{L}}=c^{\sigma_{1}} \cdot c^{\sigma_{2}} \cdot \ldots \cdot c^{\sigma_{L}} \quad d^{L} \rightarrow d L \text { coefficients }
$$

often useful, but misses essential quantum feature: entanglement consider 2 spin I/2: $\quad \mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \quad \mathcal{H}_{i}=\left\{\left|\uparrow_{i}\right\rangle,\left|\downarrow_{i}\right\rangle\right\}$

$$
|\psi\rangle=c^{\uparrow \uparrow}|\uparrow \uparrow\rangle+c^{\uparrow \downarrow}|\uparrow \downarrow\rangle+c^{\downarrow \uparrow}|\downarrow \uparrow\rangle+c^{\downarrow \downarrow}|\downarrow \downarrow\rangle
$$

singlet state: $\left.\left|\langle\psi\rangle=\frac{1}{\sqrt{2}}\right| \uparrow \downarrow\right\rangle-\frac{1}{\sqrt{2}}|\downarrow \uparrow\rangle$

$$
c^{\uparrow \downarrow} \neq c^{\uparrow} c^{\downarrow}
$$

$c^{\sigma_{1}} \cdot c^{\sigma_{2}} \rightarrow M^{\sigma_{1}} \cdot M^{\sigma_{2}}$

$$
\begin{array}{ll}
M^{\uparrow_{1}}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] & M^{\uparrow_{2}}=\left[\begin{array}{c}
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right] \\
M^{\downarrow_{1}}=\left[\begin{array}{ll}
0 & 1
\end{array}\right] & M^{\downarrow^{2}}=\left[\begin{array}{c}
+\frac{1}{\sqrt{2}} \\
0
\end{array}\right]
\end{array}
$$

AKLT model

MPS useful even for matrices of dimension 2!
Haldane chain (1982): $\quad H=\sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}(S=1) \begin{aligned} & \begin{array}{l}\text { hidden order } \\ \text { topological } \\ \text { unexpected gap }\end{array}\end{aligned}$

AKLT (Affleck-Kennedy-Lieb-Tasaki) model (I987):

$$
H=\sum \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}+\frac{1}{3}\left(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1}\right)^{2} \quad(S=1) \begin{aligned}
& \text { hidden order } \\
& \text { topological } \\
& \text { gapped }
\end{aligned}
$$

ground state:

MPS matrices: $\quad M^{+}=\left[\begin{array}{cc}0 & \sqrt{\frac{2}{3}} \\ 0 & 0\end{array}\right] \quad M^{0}=\left[\begin{array}{cc}-\frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{3}}\end{array}\right] \quad M^{-}=\left[\begin{array}{cc}0 & 0 \\ -\sqrt{\frac{2}{3}} & 0\end{array}\right]$

matrix product states

general matrix product state (MPS):

$$
|\psi\rangle=\sum_{\sigma_{1}, \ldots, \sigma_{L}} M^{\sigma_{1}} M^{\sigma_{2}} \ldots M^{\sigma_{L}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{L}\right\rangle
$$

matrix dimensions:
$\left(1 \times D_{1}\right),\left(D_{1} \times D_{2}\right), \ldots,\left(D_{L-2} \times D_{L-1}\right),\left(D_{L-1} \times 1\right)$
non-unique: gauge degree of freedom
$X X^{-1}=1 \quad M^{\sigma_{i}} \rightarrow M^{\sigma_{i}} X \quad M^{\sigma_{i+1}} \rightarrow X^{-1} M^{\sigma_{i+1}}$
non-uniqueness highly important/useful in practice!

MPS: beyond toy models

Why are matrix product states interesting beyond toy models?
\square any state can be represented as an MPS (even if numerically inefficiently)
\square MPS are hierarchical: D related to degree of entanglement
\square MPS emerge naturally in renormalization groups (NRG!)
\square MPS can be manipulated easily and efficiently (overlaps, expectation values)
\square MPS can be searched efficiently: which MPS has lowest energy for a given Hamiltonian? (DMRG)
technical tools

singular value decomposition (SVD)

key workhorse of MPS manipulation and generally very useful!
general matrix A of dimension $(m \times n) \quad k=\min (m, n)$
then

$$
A=U S V^{\dagger}
$$

with $U \operatorname{dim} .(m \times k) \quad U^{\dagger} U=I(\mathrm{ON} \mathrm{col})$; if $m=k: U U^{\dagger}=I$
$S \operatorname{dim} .(k \times k)$ diagonal: $s_{1} \geq s_{2} \geq s_{3} \geq \ldots$ non-neg.: $s_{i} \geq 0$ singular values, non-vanishing $=\operatorname{rank} r \leq k$
$V^{\dagger} \operatorname{dim} .(k \times n) \quad V^{\dagger} V=I \quad$ (ON row); if $k=n: V V^{\dagger}=I$
popular notation: (left) singular vectors $\left|u_{i}\right\rangle$

$$
U=\left[\left|u_{1}\right\rangle\left|u_{2}\right\rangle \ldots\right]
$$

SVD and EVD (eigenvalue decomp.)

singular value decomposition (always possible):

$$
A=U S V^{\dagger} \quad s_{1} \geq s_{2} \geq s_{3} \geq \ldots \quad s_{i} \geq 0
$$

eigenvalue decomposition (for special square matrices):

$$
A U=U \Lambda \quad \lambda_{i} \quad U=\left[\left|u_{1}\right\rangle\left|u_{2}\right\rangle \ldots\right] \quad \text { eigenvectors }
$$

connection by ,„squaring" A : $A^{\dagger} A \quad A A^{\dagger}$

$$
\begin{aligned}
& A A^{\dagger}=U S V^{\dagger} V S U^{\dagger}=U S^{2} U^{\dagger} \Rightarrow\left(A A^{\dagger}\right) U=U S^{2} \\
& A^{\dagger} A=V S U^{\dagger} U S V^{\dagger}=V S^{2} V^{\dagger} \Rightarrow\left(A^{\dagger} A\right) V=V S^{2}
\end{aligned}
$$

eigenvalues $=$ singular values squared eigenvectors $=$ left, right singular vectors

SVD: Schmidt decomposition

bipartition of ,,universe" AB into subsystems A and B:

read coefficients as matrix entries, carry out SVD:

$$
|\alpha\rangle_{A}=\sum_{i=1}^{\operatorname{dim} \mathcal{H}_{A}} \frac{|\psi\rangle=\sum_{\alpha=1}^{r} s_{\alpha}|\alpha\rangle_{A}|\alpha\rangle_{B} \quad \text { Schmidt decomposition }}{U_{i \alpha}|i\rangle_{A} \quad|\alpha\rangle_{B}=\sum_{j=1}^{\operatorname{dim} \mathcal{H}_{B}} V_{j \alpha}^{*}|j\rangle_{B} \begin{array}{l}
\text { orthonormal } \\
\text { sets! }
\end{array}}
$$

calculating entanglement

reduced density operators for A, B from Schmidt decomposition:
$\hat{\rho}_{A}=\operatorname{tr}_{B}|\psi\rangle\langle\psi|=\sum_{\alpha=1}^{r} s_{\alpha}^{2}|\alpha\rangle_{A}{ }_{A}\langle\alpha| \quad \hat{\rho}_{B}=\operatorname{tr}_{A}|\psi\rangle\langle\psi|=\sum_{\alpha=1}^{r} s_{\alpha}^{2}|\alpha\rangle_{B}{ }_{B}\langle\alpha|$
entanglement between A, B : von Neumann entropy of reduced DOs:

$$
S_{A \mid B}(|\psi\rangle)=-\operatorname{tr}_{A} \hat{\rho}_{A} \ln \hat{\rho}_{A}=-\operatorname{tr}_{B} \hat{\rho}_{B} \ln \hat{\rho}_{B}=-\sum_{\alpha=1}^{r} s_{a}^{2} \ln s_{a}^{2}
$$

$$
\text { product states: }|\psi\rangle=|\alpha\rangle_{A}|\alpha\rangle_{B} \quad \text { with } \quad|\alpha\rangle_{A, B}=\sum_{\left\{\sigma_{A, B}\right\}} c^{\sigma_{A, B}}\left|\sigma_{A, B}\right\rangle
$$

$$
\text { spectrum: }(1,0,0, \ldots) \text { entanglement } 0 \quad 0 \ln 0=\lim _{\epsilon \rightarrow 0^{+}} \epsilon \ln \epsilon=0
$$

$$
\text { singlet state: } \quad \hat{\rho}_{A}=\hat{\rho_{B}}=\operatorname{diag}\left(\frac{1}{2}, \frac{1}{2}\right) \quad-2 \cdot \frac{1}{2} \ln \frac{1}{2}=\ln 2
$$

maximal entanglement: $\quad-D \cdot D^{-1} \ln D^{-1}=\ln D$

MPS details

any state can be decomposed as MPS

reshape coefficient vector into matrix of dimension $\left(d \times d^{L-1}\right)$ and SVD:

$$
\begin{aligned}
& c^{\sigma_{1} \sigma_{2} \ldots \sigma_{L}} \rightarrow \Psi_{\sigma_{1}, \sigma_{2} \ldots \sigma_{L}}=\sum_{a_{1}} U_{\sigma_{1}, a_{1}} S_{a_{1}, a_{1}} V_{a_{1}, \sigma_{2} \ldots \sigma_{L}}^{\dagger} \\
& \text { U into d row vectors: }
\end{aligned}
$$

slice U into d row vectors:

$$
U_{\sigma_{1}, a_{1}} \rightarrow\left\{A^{\sigma_{1}}\right\} \quad \text { with } \quad A_{1, a_{1}}^{\sigma_{1}}=U_{\sigma_{1}, a_{1}}
$$

rearrange SVD result:

$$
c^{\sigma_{1} \sigma_{2} \ldots \sigma_{L}}=\sum_{a_{1}} A_{1, a_{1}}^{\sigma_{1}} c^{a_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{L}} \quad c^{a_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{L}}=S_{a_{1}, a_{1}} V_{a_{1}, \sigma_{2} \ldots \sigma_{L}}^{\dagger}
$$

reshape coefficient vector into matrix of dim. $\left(d^{2} \times d^{L-2}\right)$ and SVD:

$$
c^{a_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{L}} \rightarrow \Psi_{a_{1} \sigma_{2}, \sigma_{3} \ldots \sigma_{L}}=\sum_{a_{2}} U_{a_{1} \sigma_{2}, a_{2}} S_{a_{2}, a_{2}} V_{a_{2}, \sigma_{3} \ldots \sigma_{L}}^{\dagger}
$$

slice U into d matrices:

$$
A_{a_{1}, a_{2}}^{\sigma_{2}}=U_{a_{1} \sigma_{2}, a_{2}}
$$

rearrange SVD result: $c^{\sigma_{1} \sigma_{2} \ldots \sigma_{L}}=\sum_{a_{1}, a_{2}} A_{1, a_{1}}^{\sigma_{1}} A_{a_{1}, a_{2}}^{\sigma_{2}} c^{a_{2} \sigma_{3} \sigma_{3} \ldots \sigma_{L}}$ and so on!

work with MPS: diagrammatics

matrix: vertical lines $=$ physical states, horizontal lines $=$ matrix indices

bulk

right edge complex conjug.
rule: connected lines are contracted (multiplied and summed)

matrix product state in graphical representation

block growth, decimation and MPS

RG schemes: grow blocks while decimating basis

simple rearrangement of expansion coefficients into matrices:

$$
M_{a_{\ell-1}, a_{\ell}}^{\sigma_{\ell}}=\left\langle a_{\ell-1}, \sigma_{\ell} \mid a_{\ell}\right\rangle
$$

recursion easily expressed as matrix multiplication:

$$
\left|a_{\ell}\right\rangle=\sum_{\sigma_{1}, \ldots, \sigma_{\ell}}\left(M^{\sigma_{1}} M^{\sigma_{2}} \ldots M^{\sigma_{\ell}}\right)_{1, a_{\ell}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{\ell}\right\rangle
$$

(left and right) normalization

both state decomposition and block growth scheme give special gauge

$$
\begin{array}{rlrl}
\delta_{a_{\ell}^{\prime}, a_{\ell}}= & \left\langle a_{\ell}^{\prime} \mid a_{\ell}\right\rangle= & \sum_{a_{\ell-1}^{\prime} \sigma_{\ell}^{\prime} a_{\ell-1} \sigma_{\ell}} & M_{a_{\ell-1}^{\prime}, a_{\ell}^{\prime}}^{\sigma_{\ell}^{\prime} *} M_{a_{\ell-1}, a_{\ell}^{\prime}}^{\sigma_{\ell}}\left\langle a_{\ell-1}^{\prime} \sigma_{\ell}^{\prime} \mid a_{\ell-1} \sigma_{\ell}\right\rangle \\
= & & \sum_{a_{\ell-1} \sigma_{\ell}} M_{a_{\ell-1}, a_{\ell}^{\prime}}^{\sigma_{\ell}^{*}} M_{a_{\ell-1}, a_{\ell}^{\prime}}^{\sigma_{\ell}}=\sum_{\sigma_{\ell}}\left(M^{\sigma_{\ell} \dagger} M^{\sigma_{\ell}}\right)_{a_{\ell}^{\prime}, a_{\ell}}
\end{array}
$$

left normalization (called A); more compact representation:

$$
I=\sum_{\sigma_{\ell}} M^{\sigma_{\ell} \dagger} M^{\sigma_{\ell}} \equiv \sum_{\sigma_{\ell}} A^{\sigma_{\ell \dagger} \dagger} A^{\sigma_{\ell}}
$$

right normalization (called B):

$$
I=\sum_{\sigma_{\ell}} B^{\sigma_{\ell}} B^{\sigma_{\ell} \dagger}
$$

mixed normalization:
$A A A A A M B B B B B B B B B$

$$
|\psi\rangle=\sum_{\alpha \beta \sigma} M_{\alpha \beta}^{\sigma}|\alpha\rangle|\sigma\rangle|\beta\rangle \text { block ONBs! }
$$

matrix product operators

matrix product operators (MPO)

general operator:

$$
\hat{O}=\sum_{\{\sigma\}} \sum_{\left\{\sigma^{\prime}\right\}} c^{\sigma_{1} \ldots \sigma_{L}, \sigma_{1}^{\prime} \ldots \sigma_{L}^{\prime}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle\left\langle\sigma_{1}^{\prime} \ldots \sigma_{L}^{\prime}\right|
$$

matrix product operator:

$$
\hat{O}=\sum_{\{\sigma\}} \sum_{\left\{\sigma^{\prime}\right\}} M^{\sigma_{1} \sigma_{1}^{\prime}} M^{\sigma_{2} \sigma_{2}^{\prime}} \ldots M^{\sigma_{L} \sigma_{L}^{\prime}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle\left\langle\sigma_{1}^{\prime} \ldots \sigma_{L}^{\prime}\right|
$$

always possible, cf. MPS:

$$
c^{\sigma_{1} \ldots \sigma_{L}, \sigma_{1}^{\prime} \ldots \sigma_{L}^{\prime}} \rightarrow c^{\sigma_{1} \sigma_{1}^{\prime} \sigma_{2} \sigma_{2}^{\prime} \ldots \sigma_{L} \sigma_{L}^{\prime}}
$$

simple operators MPO of dimension $D=I$:

$$
\begin{aligned}
& \hat{S}_{i}^{z} \rightarrow \hat{I}_{1} \otimes \hat{I}_{2} \otimes \ldots \otimes \hat{S}_{i}^{z} \otimes \ldots \otimes \hat{I}_{L} \\
& c^{\sigma_{1} \sigma_{1}^{\prime} \sigma_{2} \sigma_{2}^{\prime} \ldots \sigma_{L} \sigma_{L}^{\prime}}=\delta_{\sigma_{1}, \sigma_{1}^{\prime}} \cdot \delta_{\sigma_{2}, \sigma_{2}^{\prime}} \cdot \ldots \cdot\left(\hat{S}^{z}\right)_{\sigma_{i}, \sigma_{i}^{\prime}} \ldots . \delta_{\sigma_{L}, \sigma_{L}^{\prime}}
\end{aligned}
$$

applying an MPO to an MPS

graphical representation with ingoing and outgoing physical states:

applying an MPO to an MPS: new MPS with matrix dims multiplied

$$
\tilde{M}_{(a b),\left(a^{\prime} b^{\prime}\right)}^{\sigma_{i}}=\sum_{\sigma_{i}^{\prime}} N_{a a^{\prime}}^{\sigma_{i} \sigma_{i}^{\prime}} M_{b b^{\prime}}^{\sigma_{i}^{\prime}}
$$

overlaps

$\langle\phi \mid \psi\rangle$
overlap contractions:

$$
\begin{aligned}
\langle\phi \mid \psi\rangle= & \sum_{\{\sigma\}} \sum_{\left\{\sigma^{\prime}\right\}}\left\langle\left\{\sigma^{\prime}\right\}\right| \tilde{M}^{\sigma_{1}^{\prime} *} \ldots \tilde{M}^{\sigma_{L}^{\prime} *} M^{\sigma_{1}} \ldots M^{\sigma_{L}}|\{\sigma\}\rangle=\sum_{\{\sigma\}} \tilde{M}^{\sigma_{1} *} \ldots \tilde{M}^{\sigma_{L} *} M^{\sigma_{1}} \ldots M^{\sigma_{L}} \\
\langle\phi \mid \psi\rangle= & \sum_{\{\sigma\}} \tilde{M}^{\sigma_{1} *} \ldots \tilde{M}^{\sigma_{L} *} M^{\sigma_{1}} \ldots M^{\sigma_{L}} \\
= & \sum_{\{\sigma\}} \tilde{M}^{\sigma_{L} \dagger} \ldots \tilde{M}^{\sigma_{1} \dagger} M^{\sigma_{1}} \ldots M^{\sigma_{L}} \\
= & \sum_{\sigma_{L}} \tilde{M}^{\sigma_{L} \dagger}\left(\ldots\left(\sum_{\sigma_{2}} \tilde{M}^{\sigma_{2} \dagger}\left(\sum_{\sigma_{1}} \tilde{M}^{\sigma_{1} \dagger} M^{\sigma_{1}}\right) M^{\sigma_{2}}\right) \ldots\right) M^{\sigma_{L}}
\end{aligned}
$$

order of contractions: zip through the ladder; cost $O\left(d L D^{3}\right)$

expectation values

overlap contractions:

$$
\langle\psi| \hat{O}|\psi\rangle
$$

contractions again cost $O\left(d L D^{3}\right)$
two-point correlators: long-range or superposition of exponentials

hence: power laws only „by approximation"

Hamiltonians in MPO form

construct Hamiltonian as automaton that moves through chain (e.g. from right to left) building Hamiltonian

$$
\begin{aligned}
& \hat{H}=\hat{M}^{[1]} \hat{M}^{[2]} \ldots \hat{M}^{[L]} \quad \hat{M}^{[i]}=\sum_{\sigma_{i}, \sigma_{i}^{\prime}} M^{\sigma_{i}, \sigma_{i}^{\prime}}\left|\sigma_{i}\right\rangle\left\langle\sigma_{i}^{\prime}\right| \\
& \hat{H}=J \sum_{i=1}^{L-1} \frac{1}{2}\left(\hat{S}_{i}^{+} \hat{S}_{i+1}^{-}+\hat{S}_{i}^{-} \hat{S}_{i+1}^{+}\right)+\hat{S}_{i}^{z} \hat{S}_{i+1}^{z}+h \sum_{i=1}^{L} \hat{S}_{i}^{z}
\end{aligned}
$$

Hamiltonians in MPO form II

short ranged Hamiltonians find very compact, exact representation!

$$
\begin{gathered}
\hat{M}^{[i]}=\left[\begin{array}{ccccc}
\hat{I} & 0 & 0 & 0 & 0 \\
\hat{S}^{+} & 0 & 0 & 0 & 0 \\
\hat{S}^{z} & 0 & 0 & 0 & 0 \\
\hat{S}^{-} & 0 & 0 & 0 & 0 \\
h \hat{S}^{z} & (J / 2) \hat{S}^{-} & J^{z} \hat{S}^{z} & (J / 2) \hat{S}^{+} & \hat{I}
\end{array}\right] \\
\hat{M}^{[1]}=\left[\begin{array}{lllll}
h \hat{S}^{z} & (J / 2) \hat{S}^{-} & J^{z} \hat{S}^{z} & (J / 2) \hat{S}^{+} & \hat{I}
\end{array}\right] \quad \hat{M}^{[L]}=\left[\begin{array}{c}
\hat{I} \\
\hat{S}^{+} \\
\hat{S}^{z} \\
\hat{S}^{-} \\
h \hat{S}^{z}
\end{array}\right]
\end{gathered}
$$

complicated for long-ranged, generic Hamiltonians efficient automated construction: Hubig, McCulloch, US(2017)

normalization and compression

problem: matrix dimensions of MPS grow under MPO application solution: compression of matrices with minimal state distance assume state is given in mixed normalized form:

$$
|\psi\rangle=\sum_{\{\sigma\}} A^{\sigma_{1}} A^{\sigma_{2}} \ldots A^{\sigma_{\ell}} M^{\sigma_{\ell+1}} B^{\sigma_{\ell+2}} \ldots B^{\sigma_{L}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle
$$

stack M matrices into one:

$$
M_{a_{\ell}, \sigma_{\ell+1} a_{\ell+1}}=M_{a_{\ell}, a_{\ell+1}}^{\sigma_{\ell+1}}
$$

carry out SVD, and use results: $\quad M=U S V^{\dagger}$

$$
\begin{aligned}
& A^{\sigma_{\ell}} \leftarrow A^{\sigma_{\ell}} U \quad \text { orthonormality of } U! \\
& B_{a_{\ell}, a_{\ell+1}}^{\sigma_{\ell+1}}=V_{a_{\ell}, \sigma_{\ell+1} a_{\ell+1}}^{\dagger}
\end{aligned}
$$

normalization and compression II

now introduce orthonormal states:

$$
\begin{aligned}
\left|a_{\ell}\right\rangle_{A} & :=\sum_{\sigma_{1}, \ldots, \sigma_{\ell}}\left(A^{\sigma_{1}} \ldots A^{\sigma_{\ell}}\right)_{1, a_{\ell}}\left|\sigma_{1} \ldots \sigma_{\ell}\right\rangle \\
\left|a_{\ell}\right\rangle_{B} & :=\sum_{\sigma_{\ell+1}, \ldots, \sigma_{L}}\left(B^{\sigma_{\ell+1}} \ldots B^{\sigma_{L}}\right)_{a_{\ell}, 1}\left|\sigma_{\ell+1} \ldots \sigma_{L}\right\rangle
\end{aligned}
$$

read off Schmidt decomposition: $|\psi\rangle=\sum_{a_{\ell}} s_{a_{\ell}}\left|a_{\ell}\right\rangle_{A}\left|a_{\ell}\right\rangle_{B}$
compress matrices $A^{\sigma_{\ell}}, B^{\sigma_{\ell+1}}$ by keeping D largest singular values

$$
|\psi\rangle=\sum_{\{\sigma\}} A^{A_{1}} A^{\sigma_{\ell}} \ldots \rightarrow M^{\sigma_{\ell-1}} \xrightarrow[M^{\sigma_{\ell}}]{M_{\ell}} B^{\sigma_{\ell+1}} \ldots B^{\sigma_{L}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle
$$

mixed rep shifted by I site: sweep through chain; also normalization

ground states with MPS: DMRG

variational ground state search: DMRG

problem: find MPS (of a given dimension) that minimizes energy

$$
\min \frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle} \Leftrightarrow \min (\langle\psi| \hat{H}|\psi\rangle-\lambda\langle\psi \mid \psi\rangle)
$$

graphical representation of expression to be minimized:

multilinear :-(
variational minimization with respect to one matrix:

unnormalized MPS:
generalized EV problem

mixed normalization MPS:
eigenvalue problem

ground state DMRG

analytical representation of variational problem:

$$
\begin{aligned}
& \frac{\partial}{\partial M^{\sigma_{i} *}}(\langle\psi| \hat{H}|\psi\rangle-\lambda\langle\psi \mid \psi\rangle) \stackrel{!}{=} 0 \\
& \sum_{\sigma_{i}^{\prime} a_{i-1}^{\prime} a_{i}^{\prime}} H_{\sigma_{i} a_{i-1} a_{i}, \sigma_{i}^{\prime} a_{i-1}^{\prime} a_{i}^{\prime}} M_{\sigma_{i}^{\prime} a_{i-1}^{\prime} a_{i}^{\prime}}=\sum_{\sigma_{i}^{\prime} a_{i-1}^{\prime} a_{i}^{\prime}} N_{a_{i-1} a_{i}, a_{i-1}^{\prime} a_{i}^{\prime}} \delta_{\sigma_{i}, \sigma_{i}^{\prime}} M_{\sigma_{i}^{\prime} a_{i-1}^{\prime} a_{i}^{\prime}} \equiv \sum_{\sigma_{i}^{\prime} a_{i-1}^{\prime} a_{i}^{\prime}} N_{\sigma_{i} a_{i-1} a_{i}, \sigma_{i}^{\prime} a_{i-1}^{\prime} a_{i}^{\prime}} M_{\sigma_{i}^{\prime} a_{i-1}^{\prime} a_{i}^{\prime}} \\
& H \mathbf{m}=\lambda N \mathbf{m}
\end{aligned}
$$

DMRG algorithm:
\square start with random or guess initial MPS
\square maintaining mixed normalization, sweep „hot site" forth and back
\square at each step, optimize local matrices by solving eigenvalue problem
convergence: monitor $\langle\psi| \hat{H}^{2}|\psi\rangle-(\langle\psi| \hat{H}|\psi\rangle)^{2}$

bells and whistles

\square solving the eigenproblem is a large sparse matrix problem:
\square Lanczos, Davidson methods for „extreme" eigenvalues/vectors of large sparse matrices A (dimension may be millions).
\square calculate powers $A|\psi\rangle, A^{2}|\psi\rangle=A(A|\psi\rangle), \ldots$
\square efficient implementation crucial!
\square symmetries make MPS smaller and operations more efficient
\square Abelian symmetries (particle number, magnetisation) easy to implement

\square non-Abelian symmetries (e.g. $\operatorname{SU}(2)$) much harder further huge (McCulloch 2002, later Vidal, Weichselbaum) savings
\square ensuring convergence: how do we get into a global minimum? (White 2005, e.g. Hubig et al 2015)

