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introduction



fundamental problem of solid state

~ what do we need DMRG for?! problem class:

fundamental Hamiltonian (without lattice vibrations...!):

p2
I 1
H = - Vet (
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kinetic electron-electron lattice
energy interaction potential

~ we don’t know how to solve the Schrodinger equation!

problem: electron-electron interactions



electrons in solids

I scenario |
valence electrons well delocalized
interactions well screened

electron cloud  energy
A

_——/
; half-filled conductor

lattice potential = DOS

“ many metals, semiconductors: single-electron picture OK

density functional theory (DFT)



electrons in solids: strong correlations

"I scenario:
valence electrons tightly bound
strong local interactions

energy
't

—_'/
; half-filled insulator

eg. high-Tc
P parent compounds

lattice potential DOS

~ many particle picture: strongly correlated materials

model Hamiltonian methods - OUR TOPIC



why strong correlations?

0 dimensions | dimension

magnetic spin chains & ladders
impurity physics
Luttinger liquid

quantum dots

realistic modelling: remiia  frustrated magnets

transition metal,
rare earth compounds

high-T. superconductors

in equilibrium and out of/far from equilibrium!



which models?

I Hubbard model

H = —t Z cwc]a—l—hc —I—UZnnnw
(1,7);0

e —

Wannier basis kinetic energy Coulomb energy

" Hilbert space:  {|0), | 1), 1), T4)}®F  d =4
" Heisenberg model (large-U Hubbard at half-filling)

_ _ 1 + Qo— + o— zZ Q%
H=J) S;-S;=J> 3(5FS; +5/57)+5;;
(2,9) (,7)

" Hilbert space:  {| 1), ] )}®*" d=2

“ most simple cartoons of correlated problems

" computational methods needed ...



compression of information

"~ compression of information necessary and desirable
"I diverging number of degrees of freedom
"I emergent macroscopic quantities: temperature, pressure, ...

_ _ l/Q+qQ— + Q— zZ Qz
H=J) S;-8;=J) 3(SFS; +557)+85;5;
(i.5) (ij)

~ classical spins

"I thermodynamic limit: N — oo 2V degrees of freedom (linear)

“I quantum spins
"I superposition of states

"I thermodynamic limit: N — o0 2Ndegrees of freedom (exponential)



classical simulation of quantum systems

"I compression of exponentially diverging Hilbert spaces

“ what can we do with classical computers?

© exact diagonalizations
| limited to small lattice sizes: 40 (spins), 20 (electrons)
"I stochastic sampling of state space

| quantum Monte Carlo techniques

| negative sign problem for fermionic systems

I physically driven selection of subspace: decimation
| variational methods

| renormalization group methods

" | how do we find the good selection? DMRG/MPS!



DMRG: a young adult

09.11.1992 S.R.White: Density Matrix Formulation for Quantum
Renormalization Groups (PRL 69,2863 (1992))

,» This new formulation appears extremely powerful and versatile, and we believe it will become the
leading numerical method for | D systems; and eventually will become useful for higher dimensions

as well.“

~2004 old insight ,,DMRG is linked to MPS (Matrix Product States)"
goes viral

Ostlund, Rommer, PRL 75, 3537 (1995), Dukelsky, Martin-Delgado, Nishino, Sierra, EPL43,457 (1998)

Vidal, PRL 93,040502 (2004), Daley, Kollath, Schollwock,Vidal, J. Stat. Mech. P04005 (2004),
White, Feiguin, PRL 93,076401 (2004),Verstraete, Porras, Cirac, PRL 93,227205 (2004),
Verstraete, Garcia-Ripoll, Cirac, PRL 93, 207204 (2004),Verstraete, Cirac, cond-mat/0407066 (2004)

(some) reviews:

U. Schollwock, Rev. Mod. Phys. 77,259 (2005) - ,,old” statistical physics perspective, applications
U. Schollwock, Ann. Phys. 326,96 (2011) - ,,new" MPS perspective, technical
FVerstraete,V. Murg, J. |. Cirac,Adv. Phys. 57, 143 (2008) - as seen from quantum information



definitions

quantum system living on L lattice sites
d local states per site {0} i€41,2,...,L}
example: spin 1/2:  d=2 4

Hilbert space:

H=cHi  Hi={1),...,]di)}

most general state (not necessarily |1D):

Py = oy, op)

01,...,07],

abbreviations: {0} =01...0], c{"}



matrix product states: idea

proposal: let us do quantum mechanics entirely with
matrix product states (MPS):

) = Z M°*M°2 ... M°t|o109...0L)

01,...,07],

= all basis states participate

" (variational) constraint is in expansion coefficients:

"I for each of the d local basis states, one matrix M
dL matrices altogether

~ dimensions such that they can be multiplied to a scalar

" matrix size has upper limit D
up to dLD? coefficients instead of exponentially many

= look weird: do they make any sense at all? are they useful and practical?



product states and MPS

standard approximation: mean-field approximation / product state
Ol b =% .¢c%2.....c%F d¥ — dIL coefficients
often useful, but misses essential quantum feature: entanglement
consider 2 spin 1/2: H = H1 ® Ho- H, = {‘ T,L>, ‘ ¢Z>}
) =TT 1) + 1) + T + e LD

singlet state: [¢) = %\ ) — %\ ) ¢ £ Tt

c’t .92 = M. M2 |

M©Y™ =101  M¥?=

o H o
S-Sl

works!



AKLT model

MPS useful even for matrices of dimension 2!

hidden order
Haldane chain (1982): H = Z S;-Sit1 (8S=1) topological

unexpected gap

AKLT (Affleck-Kennedy-Lieb-Tasaki) model (1987):

hidden order

H=)8i-Sipn+3(S8-Sin)? (S =1) wroosea

spin-1 singlet spin-1/2

Moot
ground state: | @ @ @ @ @j

MPS matrices: Mt = [ 8 \{);] MO — [ N

N

3
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0 0
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matrix product states

general matrix product state (MPS):

) = Z M M°2 ... M°|o105...0L)

01,...,0],
matrix dimensions:

(1 X Dl), (Dl X DQ), ce ey (DL_2 X DL—l), (DL—l X 1)
non-unique: gauge degree of freedom
XX'=1 M7 M7X M7+ = XM

non-uniqueness highly important/useful in practice!



MPS: beyond toy models

Why are matrix product states interesting beyond toy models!?

"I any state can be represented as an MPS
(even if numerically inefficiently)

“MPS are hierarchical: D related to degree of entanglement

“"MPS emerge naturally in renormalization groups (NRG!)

"/ MPS can be manipulated easily and efficiently
(overlaps, expectation values)

"/ MPS can be searched efficiently:
which MPS has lowest energy for a given Hamiltonian!? (DMRG)



technical tools



singular value decomposition (SVD)

key workhorse of MPS manipulation and generally very useful!
general matrix A of dimension (m X n) k = min(m, n)

then A = USV]L
with U dim.(m x k) U'U =1 (ONcol); if m=%k UU' =1

S dim.(k X k) diagonal: $1 = S2 = S3 = ... non-neg.:5; > 0
singular values, non-vanishing = rank r < k

VTdim.(k xn) VIV=I (ONrow)ifk=mn: VVI =1

popular notation: (left) singular vectors |u;)

U= [|ui)|usz)...]



SVD and EVD (eigenvalue decomp.)

singular value decomposition (always possible):

A=USVT S1 > S9 > 53> ... s; >0

eigenvalue decomposition (for special square matrices):

AU =UA Ai U = [|u1)|usz)...] eigenvectors

connection by ,,squaring“ A: ATA  AAT
AAT =USVTVSUT = US?*UT = (AANU = US?
ATA=VSUTUSVT = VS?VT = (ATA)V =V §?

eigenvalues = singular values squared
eigenvectors = left, right singular vectors



SVD: Schmidt decomposition

bipartition of ,,universe” AB into subsystems A and B:

{18)a} e}
O 0 0000 000|000 O0O0O OO

1 ¢ /+1 L
dimHas dimHp

) = Z Z Vijli)al]) B

read coefficients as matrix entries, carry out SVD:
T

P) = Z So|a)ala)p  Schmidt decomposition

=1

dim H a dim H g ch |
. . orthonorma
o)a= ) Uili)a la)s= 3 Vili)s e
1=1 1=1




calculating entanglement

reduced density operators for A, B from Schmidt decomposition:

T Tr

pa=tiplo)e] = D sEla)a alal  pp = tralt) Wl = 3 sEla)s pla

a=1 a=1

entanglement between A, B: von Neumann entropy of reduced DOs:

Sap(|¥)) = —trapalnps = —trppplnpp = — Z 52 In 52

a=1
product states: |¢) = |a)a|la)p with |a)a p = Z c*Bloa B)
{oa,B}
spectrum: (1,0,0,...) entanglement 0 0In0 = lim elne =0
e—0T
| S B 1.1
singlet state: pa = pp = dlag(§, 5) 2 5 In 5 = In 2

maximal entanglement: —D - D 'InD ' =InD



MPS details



any state can be decomposed as MPS

reshape coefficient vector into matrix of dimension(d x d“~') and SVD:

0102...0], — T
C — \:[10‘1,0'2...0'L — E :U01,015a17a1Va1 02...0L

slice U into d row vectors: a1

UO’1,&1 — {Aal} With T,lal — UO’1,CL1
rearrange SVD result:

(010200 _ E :Al (310203...0L ¢110208..0L _ G 174l
CL1 1,01

ai1,02...0[,

reshape coeff‘uent vector into matrix of dim. (d* x d*~2) and SVD:

a10903...07, S T
C — \Ija10'270'3---0'L T § :Ua1027a25a2,a2VCLQ,O‘g...O'L

. . . az
slice U into d matrices:

Al? =
ail,ao a102,a2

rearrange SVD result: ¢71727L = E AT AT 4,c™?7378 78 and so on!

ai,a2



work with MPS: diagrammatics

matrix: vertical lines = physical states, horizontal lines = matrix indices

(O] Oy O
éﬁ aj ap.| é ay ar.y 4& dy-1 ? dy
Oy
left edge bulk right edge complex conjug.

rule: connected lines are contracted (multiplied and summed)

O] Or

66666640

matrix product state in graphical representation



block growth, decimation and MPS

RG schemes: grow blocks while decimating basis

|a£—1>A \00 |a£>,4
O —
1 /-1 7 /

ag) = Z (ar—1,00lag)|ag—1)|oe) = Z M7t . lae—1)|oe)

ay—1,0¢ ag—1,0¢

simple rearrangement of expansion coefficients into matrices:

Mg! ., = (ae—1,00|ap)

y—1,0p

recursion easily expressed as matrix multiplication:

|Cl,g> — Z (M01M02 .. .Mae)l7a£|0'10'2 .. .O'g>

01,4...,0yp

______

boddd . bbdsd

_______

ay



(left and right) normalization

both state decomposition and block growth scheme give special gauge

Oay,ap = (aglae) = M MT {ah yoplag100)

ap_1,0p Gr—1,a;
/ /
ae_ldgag_ldg

_ > oMI M= (MM,
Ag—1,a, Qar—1,a, 0L

Qp—10¢ Oy

left normalization (called A); more compact representation:

I = ZMUgTMJg — ZAJgTAae Etar[ ) [
g, “

Oy

right normalization (called B):

1= Y B Z’j] - ]
oy 4

mixed normalization:

AAAAAM BBBBBBBBB Z %5la)|o)[8) block ONBs!



matrix product operators



matrix product operators (MPO)

general operator:

> >1 OLOTL gy oMo .o
{o} {0’}

matrix product operator:
= S: S: M 2% MLL|gy...o)(0]...0%
{o} o'}

/ / / / /
always POSSIb|e, f. MPS: Cal...aL,Jl...aL N CO’10'10'20'2...O'L0'L

simple operators MPO of dimension D=1:

/ / / A
/ . / . . , . . /

OL,0T



applying an MPO to an MPS

graphical representation with ingoing and outgoing physical states:

b

applying an MPO to an MPS: new MPS with matrix dims multiplied
b4 =
} }

i ssssasde




overlaps
(D)

(9l
overlap contractions: —»I _>I _.I _>I _>I _.I _,I _,I

(Ol) =Y (o' HM MM MO {o}) =Y M MM MOE

{o} {0} {o}
(0ly) = SO N MM MO
{o}
- DRV Y Sk VO VEE
{o}

= > Mo ( (Z M2t (Z MUl’fofl) M‘”) ) Me*

oL g2 01

order of contractions: zip through the ladder; cost O(dLD?)



expectation values

(|Ol)

—9F5+-0—0 y
overlap contractions: I I_'O | EEI é I I
6 —( W)

contractions again cost O(dLD?)

two-point correlators: long-range or superposition of exponentials

I qt
! (ap_1a) 1),(ae,a ) . O * oy

I I %IIE I % I I L o ¢ E:Aae 1a£Aa£1ae
— O‘e

hence: power laws only ,,by approximation®

L_




Hamiltonians in MPO form

construct Hamiltonian as automaton that moves through chain
(e.g. from right to left) building Hamiltonian

[:_[ — M[l]M[Q] o M[L] M[z] _ Z Moi,a,g

0;,0

o) (ol

7

L—1 L

A 1 A A A A A A A

H=J E :Q(S;FSEQJFS;S;A)JFS??S;H+h§ :Siz
i=1 1=1

start

hS*




Hamiltonians in MPO form Il

short ranged Hamiltonians find very compact, exact representation!

I 0 0 0 0
S+ 0 0 0 0
M= g 0 0 0 0
S 0 0 0 0
| hS® (J/2)ST J*S8* (J/2)St I |
-
g+
MW =1 ns* (J/2)5~ J*S8% (J/2)8+ 1] M = S
o
_hS’Z -

complicated for long-ranged, generic Hamiltonians
efficient automated construction: Hubig, McCulloch, US(2017)



normalization and compression |

problem: matrix dimensions of MPS grow under MPO application
solution: compression of matrices with minimal state distance

assume state is given in mixed normalized form:

) =S ATIAT L AT(MOBT S L B oy Loy )

{o}
stack M matrices into one:
_ Oot1
MaEaJE—I—laﬁ—}—l T Ma,g,a,g_|_1

carry out SVD, and use results: M = USV?T

A%t +— AU orthonormality of U !

Byt  =V]

Ay,Ap41 Ay, 0p4+1A¢41



normalization and compression ||

now introduce orthonormal states:

‘CL@>A = Z (A01...AU£)17a£’0-1...0-€>
01,...,0yp
ag)g = Y (B7*...B7)g,1l0041...0L)

O¢+4+14---,0L

read off Schmidt decomposition: |1)) = Z Say, lag) alar) B

Y,
compress matrices A°¢, B?**! by keeping D largest singular values
A°tS — Mt
1)) = Z AT A% L. A"*’f—l‘”+1 ...B%%|oy...0p)

io}

mixed rep shifted by | site: sweep through chain; also normalization



ground states with MPS: DMRG



variational ground state search: DMRG

problem: find MPS (of a given dimension) that minimizes energy

- (Y[H ) . T —
min o & m1n(<¢\HW> MWW)

graphical representation of expression to be minimized:

SRR —9—o—9—o—0—0
#—+—¢—+—H—+ -xx! | L 4] multilinear :-(
o—0—0—0—0—0—0

variational minimization with respect to one matrix:

_XX? T ?_?=0 unnormallzed MPS:
O—0—0—0—0—0—0 generalized EV problem
bbb
T Ty

mixed normalization MPS:
A =0 lixed norma atio S
eigenvalue problem



ground state DMRG

analytical representation of variational problem:

0]\5 (W‘ff ¥) — A<wrw>) =0

H., o ! /ZW// Y N oA /5,/2\/1// /) = Z\/ o) /2\/1// /
E 0i0;—-10;,0,Q, 1a; o,a;,_1a; E a;i—1aq,a;, 1Q,70;,0; o,a, 14, E 0i0;—1Qi,0,Q, 1a; o,a, 14,

! 7/ / ! 7 / ! 7 /
0;0; 10 0;0; 14 0;0; 104

Hm = ANm

DMRG algorithm:
" start with random or guess initial MPS
“ maintaining mixed normalization, sweep ,,hot site" forth and back

" at each step, optimize local matrices by solving eigenvalue problem

convergence: monitor <¢’ﬁ2’¢> - (<¢’I:IW>)2



bells and whistles

" solving the eigenproblem is a large sparse matrix problem:

"I Lanczos, Davidson methods for ,,extreme’ eigenvalues/vectors of large
sparse matrices A (dimension may be millions).

" calculate powers A1), A%|)) = A(A)),. ..

"I efficient implementation crucial!
“ symmetries make MPS smaller and operations more efficient

“I Abelian symmetries (particle number, magnetisation) easy to implement

———————

Lo ddd . bddssd

_______

MZ, o # 0= S%(lae 1)) + S7(j0)) = S7(|as)) saves O(10-100)

ag—10¢

block structures

ay

" non-Abelian symmetries (e.g. SU(2)) much harder  further huge
(McCulloch 2002, later Vidal, Weichselbaum) savings

" ensuring convergence: how do we get into a global minimum!?

(White 2005, e.g. Hubig et al 2015)





