
Monte Carlo
integration

Lode Pollet

Why?
f(x)

I =

Z b

a
f(x)dx = h

NX

i=1

f(a+ ih) +O(1/N)

h =
b� a

N

a b

discrete sum:

higher order integrators

I = h

1

2
f(a) +

N�1X

i=1

f(a+ ih) +
1

2
f(b)

!

I =
h

3

f(a) +

N�1X

i=1

(3� (�1)i)f(a+ ih) + f(b)

!

trapezoidal

Simpson
(N even)

+O(1/N4)

+O(1/N2)

Why?
consider multi-dimensional integration

Convergence in higher dimensions is slow

for N points in d dimensions, the spacing is

Simpson rule converges hence as

N�1/d

N�4/d

In classical statistical mechanics the integrals are 6N-dimensional
(3N positions, 3N momenta)

Monte Carlo integration

I =

∫
D

g(x)dx

identical and independent random samples uniformly drawn from D

Îm =
1

m

(

g(x(1)) + · · · + g(x(m))
)

P

[

lim
m→∞

|Îm − I| = 0

]

= 1

law of the large numbers

D

g(x)

Central limit theorem

lim
m→∞

Cdf
√

m
(

Îm − I
)

= CdfN(0, σ2)

central limit theorem

convergence is

O(m−1/2)

regardless of the dimensionality of D

The mean of a large number of iid samples, each with well-
defined value and variance, will be approximately normal

distributed independent of the underlying distribution

Von Neumann rejection
f(x)

a b

g(x)

say f(x) hard and g(x) easy to
generate random numbers from

 and g(x) >= f(x) everywhere

then generate random numbers xi between [a,b] and [0,g(xi)].
If it falls below the function f, keep it otherwise reject it

Direct sampling

Known geometry
converges to π/4

Direct sampling

Importance sampling
hfi = 1

V

Z
f(x)dx =

1

V

Z
f(x)

p(x)
p(x)dx ⇡ 1

N

NX

i=1

f(xi)

p(xi)

� =

r
Varf/p

N

•imagine function f is sharply peaked
•then the variance can be reduced by finding p(x)
such that p(x) is close to f(x) and that it is easy to
generate random numbers according to p(x)

Importance sampling

draw random numbers that are exponentially distributed, then

I =

∫
∞

0

g(x)e−xdx

Îm =
1

m

(

g(x(1)) + · · · + g(x(m))
)

how?

u ∈ [0, 1[

p = −lnu p ∈ [0,∞[

inverse transformation is needed

standard random
number generator

change of variables

Box-Mueller (gaussian)

exponential

general

p = � ln(u)

p1 = R cos(�) =
p

�2 ln(u1) cos(2⇥u2)

p2 = R sin(�) =
p

�2 ln(u1) sin(2⇥u2)

y = F (y) =

Z y

0
f(u)du f(x) = x

x = F

�1(y)
y = F (x) =

Z
x

0
x

0
dx

0 =
x

2

2

x = 2
p
y

⟨Q⟩ =
1

Z
Tr

[

Qe−βH
]

=
Tr[Qe−βH]

Tr[e−βH]

W (x) = e
−βE(x)

unnormalized weights

how do we get random variables that are distributed
according to W(x) ?

Link with statistical mechanics

Markov Chains

?

Small steps
random walk

through
configuration space

at each time :
measure

Rejection : stay at same configuration, update clock and
measure

transition function

• A Markov chain is a sequence of random
variables X1, X2, X3, ... with the property that
the future state depends only on the past via
the present state.

P [Xn+1 = x|Xn = xn, . . . , X1 = x1, X0 = x0] = P [Xn+1 = x|Xn = xn]

transition function
T (x, y)

∑

y

T (x, y) = 1
conservation of probability

irreducible : it must be possible to reach any configuration x
from any other configuration y in a finite number of steps.

Markov Chains

• irreducible

• aperiodic
convergence to the

stationary distribution W

transition kernel has one eigenvalue 1,
while all other eigenvalues satisfy

|λj | < 1, j = 2, . . . N

The second largest eigenvalue
determines the correlations in the

Markov process

}

Markov Chains

A transition rule T(x,y) leaves the
target distribution W(x) invariant if

∑

x

W (x)T (x, y) ∼ W (y)

This will certainly be the case if
detailed balance is fulfilled,

W (x)T (x, y) = W (y)T (y, x)

Detailed balance

we cannot construct a
transition kernel T that fulfills

detailed balance.

proposal function P(x,y)

acceptance factor

q = min

[

1,
W (y)P (y, x)

W (x)P (x, y)

]

go to the proposed configuration
y with prob q, otherwise stay in x

Metropolis algorithm

Metropolis algorithm

Metropolis algorithm

Peskun ordering
Peskun theorem: let TA and TB be two transition kernels that satisfy detailed balance
(and are properly normalized). Let all the off-diagonal elements of the TB be larger
than the corresponding ones of TA. Then TB will lead to a smaller asymptotic variance
for all observables than TA

for example let there be 2 weights with W1 < W2. Then the most efficient sampler is

�A
2 > �B

2

Tij =


0 1
W1
W2

1� W1
W2

�

it has an eigenvalue �2 = �W1

W2

Note that this is precisely the Metropolis algorithm! (note: Metropolis
is for more than 2 weights not the most efficient sampler)

Note that we have found a case where the second largest eigenvalue is
smaller than in direct sampling; i.e., we are sampling more efficiently with
correlated measurements!

heat bath
Another choice corresponds to

Tij =

"
W1

W1+W2

W2
W1+W2

W1
W1+W2

W2
W1+W2

#

this corresponds to heat-bath updates. Its second largest eigenvalue is 0. To
compute the transition probability to state j, compute the weight of state j and
normalize wrt the weights of all reachable states.

Peskun’s theorem implies an ordering of the weights, and tells us that we can have
zero’s on the diagonal elements (except for the largest weight). This ‚metropolizing‘
procedure can be carried out iteratively, and one shows that the best possible
sampler is

y1 =
⇡1

1� ⇡1

y2 = (1� y1)
⇡2

1� ⇡1 � ⇡2

�2 = �y1

etc

drawbacks: you need to know all weights (over all phase space) and be able to
order and normalize them; i.e. impossible in practice for realistic problems

L. Pollet et al., Phys. Rev. E 70, 056705 (2004)

Markov chain
energy landscape

Initial configuration

Discard the first 20% of the Markov steps !

Markov Chain should be sufficiently long

|λ2|

λ2
τint

Homework

calculate (mean value, no error analysis) :

by :
1. direct integration (analytical/Monte Carlo by exponentially distributed random numbers)
2. Markov chain Monte Carlo : choose a step size d (wisely), and update the current position according to the

Metropolis algorithm by choosing a random step of. Don’t forget that in every step you can move to larger
or smaller x values. Show that you satisfy detailed balance.

3. modification (advanced). Suppose the following. Suppose you start with moving to the right. If you accept
the move, then always choose moving to the right in the next step. If you reject the move, then start
moving to the left. So, you keep moving in one direction until you have a rejection (bounce), and then you
change the direction and keep moving in this direction until there is another bounce after which you
change the direction again. Does this Monte Carlo Markov chain produce the right answer ?

I =
� 6

0
exp(�x/2)dx

Dogs and fleas model
http://arxiv.org/pdf/0906.0943.pdf

• Two dogs play:
• Anick has 50 fleas
• Burnside has no fleas

• During play fleas jump from
one dog to the other;

 ie at every step one random
flea jumps to the other dog
• what is the distribution of

fleas after they played?

the shape is
impossible and points

at an error

10000 steps,
uncorrelated

measurements
assumed

http://arxiv.org/pdf/0906.0943.pdf

Markov chains trivially correlate measurements

autocorrelations decay exponentially

integrated autocorrelation time

number of independent measurements is reduced, but central
limit theorem still holds

autocorrelation function

• Markov chain correlates measurements

• if chain is long enough, then the configuration is
independent of the initial one

21 m

identically and independent
τint(l) =

lσ2(l)

2σ2

How to get correct error bars?

Binning analysis

http://arxiv.org/pdf/0906.0943.pdf; slides M. Troyer

http://arxiv.org/pdf/0906.0943.pdf

Dogs and fleas:binning analysis
http://arxiv.org/pdf/0906.0943.pdf

using a correct
binning analysis the
Monte Carlo agrees
within error bar with
the exact solution

100,000
measurements
correct error

analysis

http://arxiv.org/pdf/0906.0943.pdf

Jackknife analysis

R(0)

R(j), j = 1, k

Bias = (k-1)(Rav - R(0))

δR =
√

k − 1

⎛

⎝

1

k

k
∑

j

(R(j))2 − (Rav)2

⎞

⎠

1/2

R = R(0) - Bias

further reading: http://arxiv.org/abs/1210.3781

http://arxiv.org/abs/1210.3781

Autocorrelation effects
The Metropolis algorithm creates a Markov chain

c1 ! c2 ! c3 ! . . . cn ! cn+1 ! . . .

Successive measurements are correlated, leading to an increased statistical error

�A =
q⌦

(Ā� hAi)2
↵
=

r
VarA

M
(1 + 2⌧A)

At second order phase transitions one observes critically slowing down,

At first order transitions, the tunneling rate between the free energy minima of the
two co-existing phases is exponential

⌧ / exp(Ld�1
)

⌧ / Lz

Typically, z is about 2. For the Ising model with single spin flop, z = 2.2(1)

Continuous time
quantum Monte Carlo

Lode Pollet
LMU Munich

Consider the Hamiltonian

H = h�
z

+ ��
x

This is a single-particle problem that can easily be diagonalized and is hence a
very good problem for benchmarking our first continuous-time QMC algorithm

We are interested in computing and in a path-integral formulation.h�
x

i h�zi

We work in the σz basis, �z |"i = |"i
�z |#i = |#i

�
x

|"i = |#i
�
x

|#i = |"i

The exact answers are h�
x

i = �p
�2 + h2

tanh
⇣
�
p

�2 + h2
⌘

h�zi =
�hp

�2 + h2
tanh

⇣
�
p

�2 + h2
⌘

Starting from the partition function

Z = Tre��H =
X

|↵i=|"i,|#i

D
↵|e��(h�z+��z)|↵

E

-

We see that the term with the field along the z-axis is diagonal in this basis.

Introducing the interaction picture operators
�
x

(⌧) = e⌧h�z�
x

e�⌧h�z

the partition function can be written as

Z =
X

|↵i=|"i,|#i

1X

n=0

(��)n

n!

Z
�

0
d⌧1 . . .

Z
�

0
d⌧

n

⌦
↵|e��h�zT

⌧

[�
x

(⌧1)�x

(⌧2) . . .�x

(⌧
n

)]↵
↵

To lowest order (n=0) this is just σz propagating from 0 to β:

Z0 = e��h + e�h

To first order (n=1) there is no valid configuration that satisfies the trace. In other
words, we need an even number of σx operators. The (-1)n factor will hence always be
positive (+1) and there is no sign problem.

In second order we have the following

and
�

�

�

�

Z2 = �2
X

|↵i,|↵ai=|"i,|#i

Z
�

0
d⌧1

Z
⌧1

0
d⌧2

⌦
↵|e��h�ze⌧1h�z�

x

|↵1ih↵1|e�⌧1h�ze⌧2h�z�
x

e�⌧2h�z |↵
↵

= �2
X

|↵i,|↵ai=|"i,|#i

Z
�

0
d⌧1

Z
⌧1

0
d⌧2

D
↵|e�(��⌧1)h�z�

x

|↵1ih↵1|e�(⌧1�⌧2)h�ze⌧2h�z�
x

e�⌧2h�z |↵
E

Although higher orders can be written and worked out explicitly as well, the
integrals will quickly become too complicated.

⌧1

⌧2

The typical structure is

�

�

�

�

The cost of a vertex is Γ
The cost of the lines between the vertices is e�(⌧2�⌧1)h�z

Note in particular the periodic boundary conditions in β; ie
time differences are measured modulo β.

limits:

high temperature: preferably a straight world line, few vertices

low temperature, h >> Γ : preferably a straight world line, few vertices

low temperature, Γ >> h: many vertices (spin wants to align along the
x-axis!)

generalization:

Monte Carlo sampling

our basis states from the quantization along the z-axis are accurate at high
temperature and/or strong fields in the z direction. In those limits, we expect
low expansion orders. When the field along the x-axis is strong our basis
states do not resemble the true eigenstates of the system. We need an
algorithm that can efficiently sample this regime.

The minimum set of updates that satisfy ergodicity are INSERT and REMOVE

INSERT update

1. select at random a time ⌧1 2 [0,�[

2. Find the interval Δ over which the occupation does not change. In case there
are no vertices yet then Δ = β
3. select a random time interval dt 2]0,�[

4. The time of the second vertex is ⌧2 = (⌧1 + dt)mod�

5. The spin is flipped in between where between means times greater than 𝜏1
and less than 𝜏2

�

�

�

�

�

�

�

�

⌧1

⌧2 �
dt

W (X) = e�dt·h·n0

W (Y) = �2e+dt·h·n0d⌧1d⌧2

P (X ! Y) =
1

��
d⌧1d⌧2

P (Y ! X) =
1

NV + 2

qins = min


1,

W (Y)P (Y ! X)

W (X)P (X ! Y)

�

NV = 4 NV = 6

n0 �n0

REMOVE update

1. select at random a vertex v1
2. select deterministically the chronologically next vertex v2 (if v1 was
the last vertex, then v2 is the first vertex)

�

�

�

�

�

�

�

�

�

�

NV = 6 NV = 4

Data structure

class template
<list>

std::list
template < class T, class Alloc = allocator<T> > class list;
List
Lists are sequence containers that allow constant time insert and erase operations anywhere within the sequence, and iteration in both directions.

List containers are implemented as doubly-linked lists; Doubly linked lists can store each of the elements they contain in different and unrelated
storage locations. The ordering is kept internally by the association to each element of a link to the element preceding it and a link to the element
following it.

class vertex_type {
public:
 void time(const double t) { mtime = t;}
 void before(const int n) { n_before = n;}
 void after(const int n) { n_after = n;}
 double get_time() const { return mtime;}
 int before() const { return n_before;}
 int after() const { return n_after;}
private:
 double mtime;
 int n_before;
 int n_after;
};

n_before

n_after

time

The central element is the vertex, specified by its time and the occupation number
before (and after):

the configuration is a chronological set of vertices. Many implementations are
possible, such as the STL vector or the STL list:

 typedef pair<const Key, T> value_type;

class template
<map>

std::map
template < class Key, // map::key_type
 class T, // map::mapped_type
 class Compare = less<Key>, // map::key_compare
 class Alloc = allocator<pair<const Key,T> > // map::allocator_type
 > class map;
Map
Maps are associative containers that store elements formed by a combination of a key value and a mapped value, following a specific order.

In a map, the key values are generally used to sort and uniquely identify the elements, while the mapped values store the content associated to this key. The types of
key and mapped value may differ, and are grouped together in member type value_type, which is a pair type combining both:

Internally, the elements in a map are always sorted by its key following a specific strict weak ordering criterion indicated by its internal comparison object (of type
Compare).

map containers are generally slower than unordered_map containers to access individual elements by their key, but they allow the direct iteration on subsets based on
their order.

The mapped values in a map can be accessed directly by their corresponding key using the bracket operator ((operator[]).

Maps are typically implemented as binary search trees.

another possibility is to use a binary search tree implemented in the „map“ :

Every data structure that you use will require changes to the coding. It is one of the
biggest design questions when developing a new algorithm. We will use the C++
STL list.

note: one can also consider a hash table (std::unordered_map in C++11), or
construct a statically allocated doubly-linked lookup table (as one would do in
Fortran, and which is almost certainly the best choice)

http://www.cplusplus.com/pair
http://www.cplusplus.com/map::key_comp
http://www.cplusplus.com/unordered_map
http://www.cplusplus.com/map
http://www.cplusplus.com/map::operator%5B%5D

Estimators:

The magnetization along the z-direction can be measured in two ways:

1. One keeps track of the occupation n0 at time 𝜏=0 during the
simulation. The measurement is then this number n0 = ±1

2. One evaluates : This quantity can also be updated
on the track
Perhaps one naively expects the second way to be better since it
involves „more information“. This is however wrong; both ways are
equally good (as we will see) and there is hence no gain in using the
second way

The magnetization along the x-direction can be measured as

h�
x

i = hn
v

i
��

1

�

Z �

0
�z(⌧)d⌧

where nv is the number of vertices in the configuration.
Prove this relation in an analogous way to how the energy is computed
in the SSE formalism.

-

results:

high temperature:
Parameters : beta = 0.5 gamma = 0.2 h_mag = 0.2 Ntherm = 100000 Nloop = 100000 Nsweep = 100
Initial values : n0 = -1 nv = 0
Ncorr : 1 Nloop : 100000
 Magnetization(z) : -0.0993386
<sigma_z> : -0.110991 +/- 0.00868948 tau 381.744
<sigma_z> : -0.111069 +/- 0.00869026 tau 383.128
 Magnetization(x) : 0.0993386
<sigma_x> : 0.101372 +/- 0.000867264 tau 1.36222

UPDATE STATISTICS
row 1 : all updates
row 2 : possible updates
row 3 : rejected updates
row 4 : accepted updates
row 5 : acceptance factor (possible)
row 6 : acceptance factor (total)
INSERT 5.00054e+06 5.00054e+06 4.9754e+06 25142 0.00502786 0.00502786
REMOVE 4.99946e+06 25142 0 25142 1 0.00502894
Histogram : 0.994934 0.0050628 2.9e-06 0 0 0 0 0 0 0 0 0 0 0 0 0 0

low temperature, strong z-field
Parameters : beta = 10 gamma = 0.05 h_mag = 0.4 Ntherm = 100000 Nloop = 100000 Nsweep = 100
Initial values : n0 = -1 nv = 0
Ncorr : 1 Nloop : 100000
 Magnetization(z) : -0.991653
<sigma_z> : -0.991607 +/- 0.000119053 tau 3.73956
<sigma_z> : -0.991588 +/- 6.50863e-05 tau 3.68196
 Magnetization(x) : 0.123957
<sigma_x> : 0.1249 +/- 0.000578426 tau 2.8777

UPDATE STATISTICS
row 1 : all updates
row 2 : possible updates
row 3 : rejected updates
row 4 : accepted updates
row 5 : acceptance factor (possible)
row 6 : acceptance factor (total)
INSERT 5.00026e+06 5.00026e+06 4.92128e+06 78981 0.0157954 0.0157954
REMOVE 4.99974e+06 154388 75407 78981 0.511575 0.015797
Histogram : 0.969124 0.0305312 0.0003415 3.6e-06 0 0 0 0 0 0 0 0 0 0 0 0

Parameters : beta = 10 gamma = 0.4 h_mag = 0.05 Ntherm = 100000 Nloop = 100000 Nsweep = 100
Initial values : n0 = -1 nv = 0
Ncorr : 1 Nloop : 100000
 Magnetization(z) : -0.123957
<sigma_z> : -0.121814 +/- 0.00102484 tau 4.83063
<sigma_z> : -0.123657 +/- 0.00037024 tau 2.30787
 Magnetization(x) : 0.991653
<sigma_x> : 0.991833 +/- 0.000407013 tau 2.77057

UPDATE STATISTICS
row 1 : all updates
row 2 : possible updates
row 3 : rejected updates
row 4 : accepted updates
row 5 : acceptance factor (possible)
row 6 : acceptance factor (total)
INSERT 4.99869e+06 4.99869e+06 2.39976e+06 2.59892e+06 0.519921 0.519921
REMOVE 5.00131e+06 4.80139e+06 2.20246e+06 2.59892e+06 0.541286 0.519649
Histogram : 0.0399968 0.296042 0.388064 0.205439 0.0586175 0.0104647 0.0012574 0.0001125 6.7e-06 2e-07 0

low temperature, strong x-field

The integrated autocorrelation times are always good at low temperature. The
acceptance ratio is good at low temperature and strong x-field. At high
temperature the autocorrelation time is bad for the <sigma_z> but good for
the <sigma_x> field. This is explained by the histogram of occupation
numbers: 99% of the time we are in the nv=0 sector

The algorithm behaves as expected and is good in the regime where it was
designed to work (and where high expansion orders matter). There is no point
in trying to improve it further since it works essentially fine.

The results are essentially always within 1 sigma of the analytical answer

(note: generating the times of the kinks according to an exponential
distribution reduces the autocorrelation time only by about 10%)

Nevertheless, the problem at high temperature can be fixed by adding an
update (SPIN_FLIP) which attempts to flip the spin over the full β - interval.

It suffices if this is allowed in the absence of any kinks. The acceptance factor
is then

r = exp (2�hn0)

with n0 the occupation in the ‘old’ configuration

At high temperature the results are then

Parameters : beta = 0.5 gamma = 0.2 h_mag = 0.2 Ntherm = 1000000 Nloop = 100000 Nsweep = 100
Initial values : n0 = -1 nv = 0
Ncorr : 1 Nloop : 100000
 Magnetization(z) : -0.0993386
<sigma_z> : -0.100033 +/- 0.000633487 tau 1.52681
 Magnetization(z) : -0.0993386
<sigma_z> : -0.100032 +/- 0.000633948 tau 1.53661
 Magnetization(x) : 0.0993386
<sigma_x> : 0.100248 +/- 0.000938422 tau 1.70367

UPDATE STATISTICS
row 1 : all updates
row 2 : possible updates
row 3 : rejected updates
row 4 : accepted updates
row 5 : acceptance factor (possible)
row 6 : acceptance factor (total)
SPIN_FLIP 2.00092e+06 1.9908e+06 199121 1.79168e+06 0.899979 0.895425
INSERT 3.99776e+06 3.99776e+06 3.97779e+06 19967 0.00499455 0.00499455
REMOVE 4.00132e+06 19967 0 19967 1 0.00499011
Histogram : 0.994992 0.0050044 4e-06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

whereas at low temperature the integrated autocorrelation times remain the same

and

Parameters : beta = 10 gamma = 0.05 h_mag = 0.4 Ntherm = 1000000 Nloop = 100000 Nsweep = 100
Initial values : n0 = -1 nv = 0
Ncorr : 1 Nloop : 100000
 Magnetization(z) : -0.991653
<sigma_z> : -0.991601 +/- 0.000121103 tau 3.88379
 Magnetization(z) : -0.991653
<sigma_z> : -0.991628 +/- 6.29931e-05 tau 3.41675
 Magnetization(x) : 0.123957
<sigma_x> : 0.12477 +/- 0.000689489 tau 4.30959

UPDATE STATISTICS
row 1 : all updates
row 2 : possible updates
row 3 : rejected updates
row 4 : accepted updates
row 5 : acceptance factor (possible)
row 6 : acceptance factor (total)
SPIN_FLIP 2.00076e+06 1.93886e+06 1.93759e+06 1269 0.000654508 0.000634258
INSERT 3.99796e+06 3.99796e+06 3.93491e+06 63041 0.0157683 0.0157683
REMOVE 4.00128e+06 123342 60301 63041 0.511107 0.0157552
Histogram : 0.96914 0.0305303 0.0003276 2.3e-06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Parameters : beta = 10 gamma = 0.4 h_mag = 0.05 Ntherm = 1000000 Nloop = 100000 Nsweep = 100
Initial values : n0 = -1 nv = 0
Ncorr : 1 Nloop : 100000
 Magnetization(z) : -0.123957
<sigma_z> : -0.121593 +/- 0.00110555 tau 5.70289
 Magnetization(z) : -0.123957
<sigma_z> : -0.123292 +/- 0.000390398 tau 2.62269
 Magnetization(x) : 0.991653
<sigma_x> : 0.991717 +/- 0.000469308 tau 3.85539

UPDATE STATISTICS
row 1 : all updates
row 2 : possible updates
row 3 : rejected updates
row 4 : accepted updates
row 5 : acceptance factor (possible)
row 6 : acceptance factor (total)
SPIN_FLIP 2.00144e+06 79988 36976 43012 0.537731 0.0214905
INSERT 3.99889e+06 3.99889e+06 1.91978e+06 2.07911e+06 0.519921 0.519921
REMOVE 3.99967e+06 3.8396e+06 1.76049e+06 2.07911e+06 0.541491 0.51982
Histogram : 0.0400099 0.295998 0.387858 0.20598 0.0584515 0.0103647 0.0012196 0.0001079 9.6e-06 0 0 0 0 0 0 0

A good rule is to keep the program as simple as possible, analyze, and only
improve if and where needed

Simple extensions: spin-boson model
Simple extensions: polaron models with bosonic bath: see Fröhlich polaron slides

http://arxiv.org/abs/1106.2654
http://arxiv.org/abs/0909.4822

http://arxiv.org/abs/0911.4490

Phys.Rev.Lett.102:030601,2009

H =
�

2
�
x

+
1

2
�
z

X

i

�
i

(a
i

+ a†
i

) +
X

i

!
i

a†
i

a
i

= a two-level system coupled to a bosonic bath with spectral function

J(!) = ⇡
X

i

�2

i �(! � !i) = 2 ⇡↵!1�s
cuto↵

!s

s = 1: Ohmic; s < 1 : subohmic

The bath is integrated out and gives rise to a retarded interaction between the
spins:

S[�] = �
Z �

0
d⌧

Z ⌧

0
d⌧ 0�(⌧ 0)K�(⌧ � ⌧ 0)�(⌧ 0)

K�(⌧) =

Z 1

0
d!

J(!)

⇡

cosh

⇣
~�!
2 [1� 2⌧/�]

⌘

sinh

⇣
~�!
2

⌘

http://arxiv.org/abs/1106.2654
http://arxiv.org/abs/0909.4822
http://arxiv.org/abs/0911.4490

At a critical coupling strength the system undergoes a quantum phase transition
between a delocalized phase and a localized phase. The phase transition
belongs to the universality class of the Ising model with long-range interactions

Phys.Rev.Lett.102:030601,2009

Phys.Rev.Lett.102:030601,2009

Simple extensions: impurity solver for bosonic dynamical mean-field theory

New J. Phys. 13, 075013 (2011)

Phys. Rev. Lett. 105, 096402 (2010)

fermions and sign
problem

In mapping the quantum to the classical system

e.g. 2 electrons might
exchange places

Z = Tr exp��H =
�

i

pi

some of the may pi < 0pi

consequence : exponential scaling

Troyer and Wiese have shown that the sign
problem is NP-hard

http://arxiv.org/abs/cond-mat/0408370; Phys.Rev.Lett. 94 (2005) 170201

http://arxiv.org/abs/cond-mat/0408370

Implications

�s⇥ = Z/Z �

Z =
�

i

pi

Z � =
�

i

|pi|

‘fermionic’ system

‘bosonic’ system

the average sign given by

evaluation in case of negative weights:

with

The sign problem is basis dependent : e.g., if we know the full spectrum, all weights are positive
However, still no solution
The situation is reminiscent of NP hard problems (no proof of exponential scaling, but no solution
that scales polynomially is known)
A solution to the sign-problem is a solution that does not scale exponentially (stronger than
positive weights) when the bosonic problem is easy (polynomial)

The variance can become exponentially large :

Z/Z 0 = exp(��N�f)

Eulerian Circuit Problem

• 7 bridges of Königsberg
• is there a roundtrip that crosses each bridge exactly once?

•Euler (1735) : it exists if and only if the graph is connected and
there are no nodes of odd degree at all
• can be evaluated in polynomial time; is in complexity class P

Hamiltonian cycle
problem

• is there a path that crosses each vertex exactly once?
• expensive task by evaluating all paths
• no solution in polynomial time is known
• is NP-complete

Complexity classes

Turing machine : abstract notion of a CPU

Complexity class P :

P is defined as the set of all languages which
can be decided by a deterministic polynomial-
time Turing machine

Complexity class NP :

• polynomial time on a non-deterministic Turing machine : it can evaluate both branches
of an if-statement, but the branches cannot merge again. It has an exponential number
of CPUs but no communication between them is allowed
• solves the Hamiltonian cycle problem in polynomial time; also determines whether a
spin glass has an energy lower than a predefined value E0

• a solution to the problem can be verified in polynomial time on a polynomial Turing
machine
• cannot calculate the partition function of the spin glass since the sum over the states
cannot be performed

(There exist many more complexity classes)

Concepts

Polynomial reduction

• two polynomial decision problems P and Q
• Q ≤ P means there is a polynomial solution for Q, provided there is one for P
• many problems have been reduced to others

NP-hardness

NP-complete

• a problem is NP-hard if Q ≤ P for all Q in NP
• as hard as the hardest problems in NP; not necessarily in NP or even a decision problem

• a problem is NP-complete if it is NP-hard and if it is in NP
• most problems that are NP-hard are shown to be NP-complete

It is an open question whether P=NP ?

• one of the millenium challenges of the Clay Math Foundation ($1 million)

proof that sign problem
is NP-hard

H = �
�

�j,k⇥

Jjk�j�k

consider 3d frustrated Ising model (glass)

does there exist a state with energy less than a bound E0?

Is a NP-complete problem.

Jj,k = 0,±J

H = �
�

�j,k⇥

Jj,k�x
j �x

k

random signs appear in off-diagonal matrix elements

bosonic model (ferromagnet, Jjk > 0) easy to solve

F. Barahona, J. Phys. A 15, 3241 (1982).

view it as a quantum problem in basis where H is not diagonal :

Jj,k = 0,±J

Hence, the sign problem causes NP-hardness

