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Why??

discrete sum: Aﬂﬂﬂé
a

I:/ f(x)da::hZf(a—l—ih)—l—O(l/N)
higher order integrators

trapezoidal 1= @f(a) + E_j fla+ih) + ;f(b)> +O(1/N?)

. h
Simpson 1=



Why?
consider multi-dimensional integration

Convergence in higher dimensions is slow

for N points in d dimensions, the spacingis N1/

Simpson rule converges hence as N—4/d

In classical statistical mechanics the integrals are 6N-dimensional
(3N positions, 3N momenta)



Monte Carlo integration

I — /D o(2)dz

identical and independent random samples uniformly drawn from D

2 1

fm = = (g(x(l)) NS g(w(m)))

law of the large numbers

P[lim |fm—1\:0}:1

m—00



Central Iimit theorem

The mean of a large number of iid samples, each with well-
defined value and variance, will be approximately normal

distributed independe

centra

m—00

Nt of 1

limit t

ne underlying distribution

neorem

lim Cdfy/m (fm _ I) — CAfN(0, 02)

convergence is

O(m_l/Q)

regardless of the dimensionality of D



Von Neumann rejection

g()

f(z)

say f(x) hard and g(x) easy to
generate random numbers from
and g(x) >= f(x) everywhere

then generate random numbers x; between [a,b] and [0,g(xi)].
It it falls below the function f, keep it otherwise reject it



Direct sampling

Known geometry
converges to Ti/4



Direct sampling

10 T

#include <iostream>

#include <random> 01
#include <iomanip> :
#include <math.h>

using namespace std;

C.01

a-<MC>

int main() {
cout << setprecision(18);
random_device rd;
mt19937 MyGenerator(rd()); 0.001
uniform_real_distribution<double> rnd(9,1);
MyGenerator.seed(40);

double iprint = 2.; 0.C001
double s = 9.;

double inc = 0.;

for (;;) {

21 i P " L | L M | " a2l

"Lacmuf
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double x = 2%rnd(MyGenerator) - 1; o 08 . L
double y = 2xrnd(MyGenerator) - 1; 1 0
if (x%x + y*y < 1) s+= 1;
inc += 1;
if (inc == iprint) {
cout << inc << "\t" << s/incx4 << "\t" << M_PI << "\t" << abs(M_PI - s/inc*4) <<
iprint == 2;
}

if (inc >= 1e8) break;

}

return(0);

100 1000 mneoa 100000 e+
Nsteps

ll\nll;
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Importance sampling

1 1 z 1 o f(
0= [ s =g [T~ 52 T

1=

Varf/p
A\ =
N

*imagine function f is sharply peaked

*then the variance can be reduced by finding p(x)
such that p(x) is close to f(x) and that it is easy to
generate random numbers according to p(x)



Importance sampling

I:/ g(x)e *dx
0

draw random numbers that are exponentially distributed, then

A (g(xu)) I g(x(m)))

T
how?

standard random
u € [0,1] number generator

inverse transformation is needed



Qj_

change of variables

general
/ f(u f@) =
y:F(a:):/Oxzc’da:’:x2
r =2y
exponential
p = —In(u)

Box-Mueller (gaussian)

p1 = Rcos(0) = /—21n(uy) cos(2mus)
= Rsin(6) = /—21n(uy) sin(27us)

2



LInk with statistical mechanics

1 Tr[Qe PH]

(@) = 7T [Qe7"] = Tr[e—PH]

unnormalized weights

Wi(x) = e PE @)

how do we get random variables that are distributed
according to W(x) !




Markov Chains

Small steps
random walk
through
configuration space
at each time :
measure

transition functio

1

/ \ O

\ I _ %

Rejection : stay~at sanfe configuration, update clock and
measure




Markov Chains

® A Markov chain is a sequence of random ‘
variables X, X3, X3, ... with the property that
the future state depends only on the past via ‘
the present state.

P[Xn—l—l — £C|Xn — Lny-.- ,Xl p— Zl?l,X() — 330] — P[Xn_|_1 — I’Xn p— CEn]

transition function
T(z,y)

ZT(w,y) =1

irreducible : it must be possible to reach any configuration x
from any other configuration y in a finite number of steps.



Markov Chains

® irreducible

® aperiodic

convergence to the
stationary distribution W

transition kernel has one eigenvalue |,

while al

RY,

other eigenvalues satisfy

<1,7=2,...N

The second largest eigenvalue
determines the correlations in the

Markov process



Detalled balance

A transition rule T(x,y) leaves the
target distribution W(x) invariant if

ZW y) ~ W (y)

Th|s will certainly be the case if
detailed balance is fulfilled,

W(x)T(z,y) =W(y)T(y, )




Metropolis algorithm

we cannot construct a
transition kernel T that fulfills
detailed balance.

proposal function P(x,y)

acceptance factor

Wy)P(y,z)
| W(z)P(z,y) .
go to the proposed configuration
y with prob g, otherwise stay in x

g = min |1
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I. INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
mdividual molecules. Classical statistics is assumed,

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number N may be as high as
several hundred. Our system consists of a squaref con-
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Peskun ordering

Peskun theorem: let TA and TB be two transition kernels that satisfy detailed balance
(and are properly normalized). Let all the off-diagonal elements of the TB be larger
than the corresponding ones of TA. Then TB will lead to a smaller asymptotic variance

for all observables than TA
A > AP

for example let there be 2 weights with Wy < W2, Then the most efficient sampler is

0 1
T,

. . N
it has an eigenvalue 2 i

Note that this is precisely the Metropolis algorithm! (note: Metropolis
is for more than 2 weights not the most efficient sampler)

Note that we have found a case where the second largest eigenvalue is
smaller than in direct sampling; i.e., we are sampling more efficiently with

correlated measurements!



neat path

Another choice corresponds to

W1 Wo
| WiE=W Wi+W
TZ] B ]‘/Vl ° ]VVQ °
| Wi+Ws Wi+Ws

this corresponds to heat-bath updates. Its second largest eigenvalue is 0. To

compute the transition probability to state |, compute the weight of state | and
normalize wrt the weights of all reachable states.

Peskun’s theorem implies an ordering of the weights, and tells us that we can have
zero's on the diagonal elements (except for the largest weight). This ,metropolizing’

procedure can be carried out iteratively, and one shows that the best possible
sampler is

Wao. W W ™
v 0 e Y2 1 i
. ( Wi, . _ 2
Tgm = | Y1 Y2 0 W Y3 Yo = (1 — yl) - -
) — T — T2
LY Y2 Ys ... l—y1—y2— ... | etc

drawbacks: you need to know all weights (over all phase space) and be able to

order and normalize them; i.e. impossible in practice for realistic problems
L. Pollet et al., Phys. Rev. E 70, 056705 (2004)



MVlarkov chain

energy landscape

Initial configuration .

- .
> ,\w
e e
't ———
. 2o\ 5
\ > \
e - .
v - W .

Discard the first 20% of the Markov steps !
Markov Chain should be sufficiently long



calculate (mean value, no error analysis) :
6

I = | exp(—x/2)dx
0

by :

|. direct integration (analytical/Monte Carlo by exponentially distributed random numbers)

2. Markov chain Monte Carlo : choose a step size d (wisely), and update the current position according to the
Metropolis algorithm by choosing a random step of. Don’t forget that in every step you can move to larger
or smaller x values. Show that you satisfy detailed balance.

3. modification (advanced). Suppose the following. Suppose you start with moving to the right. If you accept
the move, then always choose moving to the right in the next step. If you reject the move, then start
moving to the left. So, you keep moving in one direction until you have a rejection (bounce), and then you
change the direction and keep moving in this direction until there is another bounce after which you
change the direction again. Does this Monte Carlo Markov chain produce the right answer ?



Dogs and fleas model

http://arxiv.org/pdf/0906.0943.pdf

e Two dogs play:
e Anick has 50 fleas
e Burnside has no fleas
e During play fleas jump from :
one dog to the other; | oo Monte Carlo  ; /'
: 0.1 | ... Monte Carlo /.7
le at every step one random
flea jumps to the other dog
e Wwhat is the distribution of

0.12 #4 10000 steps,
exact !
\. uncorrelated
(measurements
t assumed

0.08

5 —
fleas after they played” = 006
0.04
the shape is
Impossible and points 0.02
at an error

10 15 20 25 30 35 40


http://arxiv.org/pdf/0906.0943.pdf

autocorrelation function

Markov chains trivially correlate measurements

autocorrelations decay exponentially <AtAt+A> ( )20((pr( A/ (up))

(int) _ Z =1 <AtAt+A> < >2)

integrated autocorrelation time TA A2) — (A)?

<

<
aar = (- r = (5340 @)
2 N-—t

ﬁg/—\:l ( AR)At+A)) — (< A >2))

= %; (A2 — (A)?)) +

1 .
—VarA (1 + 2r{™)
N
1 .
N T (A% — A2>(1 + 27‘2""’))
number of independent measurements is reduced, but central
limit theorem still holds

Q




BINNINg analysIs
How to get correct error bars!

® Markov chain correlates measurements

® if chain is long enough, then the configuration is
independent of the initial one

@ @
\ \ ) = lc;g(zl)

identically and independent



http://arxiv.org/pdf/0906.0943.pdf; slides M. Troyer

* 'Take averages of consecutive measurements: averages become less
correlated and naive error estimates converge to real error

AR AL A AL Al AU A AL A A A R AL A AL
RV YV VAl VR P
NS N/ N/ N 7 2
A A0 A® A0
\ / \ / 0.004 : : : -
A6 A B 0.0035 |- not converged

0.003 — © L — 4 1) -

0.0025 8|

AP = [Var A0/ Y 2= 54 = J1+27,)Var A/ M

2 0.002 |- -

— ]iml 2’ Var A(I) _1 . : -
' . converged
0.0005 | 3 .l;:- a (o o o o o 1
a smart implementation needs only °I : 2 4 é .

O(og(N)) memory for N measurements binning lovel



http://arxiv.org/pdf/0906.0943.pdf

P[n]

Dogs and fleas:binning ana

0.12
exact 100,000
N\ measurements
correct error
analysis

--------- Monte Carlo
0.1

0.08

0.06

0.04

0.02

10 15 20 25 30 35 40

P[25]

0.003

0.005

0.004

0.003

0.002

0.001

(94

VSIS

http://arxivorg/pdf/0906.0943.pdf

using a correct
binning analysis the
Monte Carlo agrees
within error bar with
the exact solution

M= 10000
M =100 000

4 5 8 10

ro

Binning level !


http://arxiv.org/pdf/0906.0943.pdf

Jackknite analysis

RO,j = I,k

Bias = (k-1)(R¥ - RV) R = RO) - Bias

k

1/2
1 7)\2 av 2
5ch1(k§j(1«z<>) — (R ))

J

further reading: http://arxiv.org/abs/1210.3781



http://arxiv.org/abs/1210.3781

Autocorrelation eftects

The Metropolis algorithm creates a Markov chain

Cl —7C—2C3—7...Cp, —7Cpy1 —7 ...

Successive measurements are correlated, leading to an increased statistical error

A=\l ap) = V0 o

At second order phase transitions one observes critically slowing down,
T ox L”?

Typically, z is about 2. For the Ising model with single spin flop, z = 2.2(1)

At first order transitions, the tunneling rate between the free energy minima of the
two co-existing phases is exponential

T o exp(L41)



Continuous time
guantum Monte Carlo

| ode Pollet
LMU Munich



Consider the Hamiltonian

H=ho,+ 10,

This is a single-particle problem that can easily be diagonalized and is hence a
very good problem for benchmarking our first continuous-time QMC algorithm

We are interested in computing (o) and (o) in a path-integral formulation.

We work in the o basis, o, |T) = |1) o |1 = [4)
oz L) =) oz ) =)
The exact answers are (0,) — \/1:2F+ _ canh ( 8\/T2 1 hz)
(0,) = \/F;:L— - tanh (5\/F2 + h2)

Starting from the partition function

7 — Tre PH — Z <a’6—5(h0z+1“az)‘a>
) =|1),[{)



We see that the term with the field along the z-axis is diagonal in this basis.

Introducing the interaction picture operators

o (7_) _ eTth O'xe_ThUz
the partition function can be written as

X m\n B B
R Dl g . /Odﬁ.../o 070 (0l T [0 (11)00(72) ... 0w ()] @)

=)y =0

To lowest order (n=0) this is just o, propagating from 0 to B3:

Loy = e Pl 4 PP

To first order (n=1) there is no valid configuration that satisfies the trace. In other
words, we need an even number of ox operators. The (-1)" factor will hence always be
positive (+1) and there is no sign problem.



In second order we have the following

lr gl
i and

r T

T 3

Ty = F2 Z / dr / drs ()4’6 Bho, Tlhazo_x’a1><a1’€—ﬁhoz TQhO'Z o€ —TQh,O'Z ‘Ck>
), |aa)=[1),[{)

—I? Z / dT1/ drs oz\e_(ﬁ T1)hoz 5 |041><041\e_(71 T2)hoz eT2ho: 5 6 TQhaz\oz>

), [ea)=I1),[1)

Although higher orders can be written and worked out explicitly as well, the
iIntegrals will quickly become too complicated.



generalization:

The typical structure is

lp The cost of a vertex is [

' The cost of the lines between the vertices is e (T2~ 71)ho-
I : Note in particular the periodic boundary conditions in 3; ie
;1 time differences are measured modulo (3.

o1

limits:
high temperature: preferably a straight world line, few vertices
low temperature, h >> [ : preferably a straight world line, few vertices

low temperature, [ >> h: many vertices (spin wants to align along the
X-axis!)



Monte Carlo sampling

our basis states from the quantization along the z-axis are accurate at high
temperature and/or strong fields in the z direction. In those limits, we expect
low expansion orders. When the field along the x-axis is strong our basis
states do not resemble the true eigenstates of the system. We need an
algorithm that can efficiently sample this regime.

The minimum set of updates that satisfy ergodicity are INSERT and REMOVE



INSERT update

1. select at random atime 71 € [0, 0]

2. Find the interval A over which the occupation does not change. In case there
are no vertices yet then A = 3

3. select a random time interval dt €]0, A]

4. The time of the second vertexis T2 = (71 + dt) mod j3

5. The spin is flipped in between where between means times greater than t+
and less than 1o

lr lr W(X) = e @hme
r ir W(Y) =T?et o dr dry
1
;F s ! P(X%Y):ﬁ—AdﬁdTQ
- T2 A 1
no I—noldt + P(Y—>X):N o
o 4
? - or G = min |1, WY )P(Y — X)

Ny — 4 Ny = 6 W(X)P(X —=Y)



REMOVE update

1. select at random a vertex vi

2. select deterministically the chronologically next vertex v2 (if vl was
the last vertex, then v2 is the first vertex)

4 4




Data structure

The central element is the vertex, specitied by its time and the occupation number
before (and after):

class vertex_type {

public:
n after void time(const double t) { mtime = t;}
— void before(const int n) { n_before = n;}

void after(const int n) { n_after = n;}
double get_time() const { return mtime;}

time int before() const { return n_before;}
: int after() const { return n_after;}
: n_before private:

double mtime;
int n_before;
int n_after;

b

the configuration is a chronological set of vertices. Many implementations are
possible, such as the STL vector or the STL /ist:

class template

<list>

std::list

template < class T, class Alloc = allocator<T> > class list;

List

Lists are sequence containers that allow constant time insert and erase operations anywhere within the sequence, and iteration in both directions.

List containers are implemented as doubly-linked lists; Doubly linked lists can store each of the elements they contain in different and unrelated

storage locations. The ordering is kept internally by the association to each element of a link to the element preceding it and a link to the element
following it.



another possibility i1s to use a binary search tree implemented in the ,map” :

class template

<map>

std::map

template < class Key, // map::key type
class T, // map::mapped_type
class Compare = less<Key>, // map::key compare
class Alloc = allocator<pair<const Key,T> > // map::allocator type
> class map;

Map

Maps are associative containers that store elements formed by a combination of a key value and a mapped value, following a specific order.

In a map, the key values are generally used to sort and uniquely identify the elements, while the mapped values store the content associated to this key. The types of
key and mapped value may differ, and are grouped together in member type value type, which is a pair type combining both:

typedef pair<const Key, T> value type;

Internally, the elements in a map are always sorted by its key following a specific strict weak ordering criterion indicated by its internal comparison object (of type
Compare).

map containers are generally slower than unordered_map containers to access individual elements by their key, but they allow the direct iteration on subsets based on
their order.

The mapped values in a map can be accessed directly by their corresponding key using the bracket operator ((operator[]).

Maps are typically implemented as binary search trees.

note: one can also consider a hash table (std::unordered_map in C++11), or
construct a statically allocated doubly-linked lookup table (as one would do in
Fortran, and which is almost certainly the best choice)

Every data structure that you use will require changes to the coding. It is one of the
biggest design questions when developing a new algorithm. We will use the C++
STL list.


http://www.cplusplus.com/pair
http://www.cplusplus.com/map::key_comp
http://www.cplusplus.com/unordered_map
http://www.cplusplus.com/map
http://www.cplusplus.com/map::operator%5B%5D

Estimators:

The magnetization along the z-direction can be measured in two ways:

1. One keeps track of the occupation np at time =0 during the
simulation. The measurement is then this number no = +1

B
2. One evaluates : l/ o.(t)dr  This quantity can also be updated
on the track 0

Perhaps one naively expects the second way to be better since it
iInvolves ,more information”. This is however wrong; both ways are
equally good (as we will see) and there is hence no gain in using the

second way

The magnetization along the x-direction can be measured as

_‘<nv>
(02) = 8T

where ny is the number of vertices in the configuration.
Prove this relation in an analogous way to how the energy is computed

in the SSE formalism.




results:

high temperature:

beta = 0.5 gamma

Parameters : =
ng = -1 nv =20

Initial values :
Ncorr : 1 Nloop : 100000

Magnetization(z) : -0.0993386

<sigma_z> : -0.110991 +/- 0.00868948 tau 381.744
<sigma_z> : -0.111069 +/- 0.00869026 tau 383.128
Magnetization(x) : ©0.0993386

<sigma_x> : 0.101372 +/- 0.000867264 tau 1.36222

0.2 h_mag = 0.2 Ntherm =

UPDATE STATISTICS

row : all updates

row 2 : possible updates

row : rejected updates

row : accepted updates

row 5 : acceptance factor (possible)

row 6 : acceptance factor (total)

INSERT 5.00054e+06 5.00054e+06 4.9754e+06 25142
REMOVE 4.99946e+06 25142 0 25142 1

# Histogram : 0.994934 0.0050628 2.9e-06 0 0o 0 0 0

HEHRHFHFHH
OUTES WN K

low temperature, strong z-tield

Parameters :
Initial values :
Ncorr : 1 Nloop : 100000

Magnetization(z) : -0.991653

<sigma_z> : -0.991607 +/- 0.000119053 tau 3.73956
<sigma_z> : -0.991588 +/- 6.50863e-05 tau 3.68196
Magnetization(x) : 0.123957

<sigma_x> : 0.1249 +/- 0.000578426 tau 2.8777

beta = 10 gamma =
ng = -1 nv =20

0.05 h_mag = 0.4 Ntherm = 100000 Nloop

UPDATE STATISTICS

row : all updates

row : possible updates

row : rejected updates

row : accepted updates

row : acceptance factor (possible)

row : acceptance factor (total)

INSERT 5.00026e+06 5.00026e+06 4.92128e+06 78981 0.0157954
REMOVE 4.99974e+06 154388 75407 78981 0.511575
# Histogram : 0.969124 0.0305312 0.0003415 3.6e-06 0 0

HHERFHRHHRFHR
OUTES WN -

100000 Nloop = 100000 Nsweep = 100

0.00502786 0.00502786

0.00502894
0 0 0 0

= 100000 Nsweep = 100

0.0157954
0.015797
0 0 0 0



low temperature, strong x-tield

Parameters : beta = 10 gamma = 0.4 h_mag = 0.05 Ntherm = 100000 Nloop = 100000 Nsweep = 100
Initial values : n@ = -1 nv = 0

Ncorr : 1 Nloop : 100000

Magnetization(z) : -0.123957

<sigma_z> : -0.121814 +/- 0.00102484 tau 4.83063

<sigma_z> : -0.123657 +/- 0.00037024 tau 2.30787

Magnetization(x) : ©0.991653

<sigma_x> : 0.991833 +/- 0.000407013 tau 2.77057

# UPDATE STATISTICS

row 1 : all updates

row 2 : possible updates

row 3 : rejected updates

row 4 : accepted updates

row 5 : acceptance factor (possible)

row 6 : acceptance factor (total)

INSERT 4.99869e+06 4.99869e+06 2.39976e+06 2.59892e+06 0.519921 0.519921

REMOVE 5.00131e+06 4.80139e+06 2.20246e+06 2.59892e+06 0.541286 0.519649

# Histogram : 0.0399968 0.296042 0.388064 0.205439 0.05861750.0104647 0.0012574 0.0001125 6.7e-06 2e-07 0

The results are essentially always within 1 sigma of the analytical answer

HHBFHRHHH

The integrated autocorrelation times are always good at low temperature. The
acceptance ratio is good at low temperature and strong x-field. At high
temperature the autocorrelation time is bad for the <sigma_z> but good for
the <sigma_x> field. This is explained by the histogram of occupation
numbers: 99% of the time we are in the n,=0 sector

( note: generating the times of the kinks according to an exponential
distribution reduces the autocorrelation time only by about 10%)

The algorithm behaves as expected and is good in the regime where it was
designed to work (and where high expansion orders matter). There is no point
In trying to improve it further since it works essentially fine.



Nevertheless, the problem at high temperature can be fixed by adding an
update (SPIN_FLIP) which attempts to flip the spin over the full 3 - interval.

It suffices if this is allowed in the absence of any kinks. The acceptance factor
IS then

r = exp (28hng)

with no the occupation in the ‘old’ configuration

At high temperature the results are then

Parameters : beta = 0.5 gamma = 0.2 h_mag = 0.2 Ntherm = 1000000 Nloop = 100000 Nsweep = 100
Initial values : n@ = -1 nv = 0

Ncorr : 1 Nloop : 100000

Magnetization(z) : -0.0993386

<sigma_z> : -0.100033 +/- 0.000633487 tau 1.52681

Magnetization(z) : -0.0993386

<sigma_z> : -0.100032 +/- 0.000633948 tau 1.53661

Magnetization(x) : ©0.0993386

<sigma_x> : 0.100248 +/- 0.000938422 tau 1.70367

# UPDATE STATISTICS

# row 1 : all updates

# row 2 : possible updates

# row 3 : rejected updates

# row 4 : accepted updates

# row 5 : acceptance factor (possible)

# row 6 : acceptance factor (total)

SPIN_FLIP 2.00092e+06 1.9908e+06 199121 1.79168e+06 0.899979 0.895425
INSERT 3.99776e+06 3.99776e+06 3.97779e+06 19967 0.00499455 0.00499455
REMOVE 4.00132e+06 19967 0 19967 1 0.00499011

# Histogram : 0.994992 0.0050044 4e-06 0 0o 0 0 0 0 0 0 0 0 0 0 0 0



whereas at low temperature the integrated autocorrelation times remain the same

0.4 Ntherm = 1000000 Nloop = 100000 Nsweep = 100

Parameters : beta = 10 gamma = 0.05 h_mag
Initial values : n@ = -1 nv = 0

Ncorr : 1 Nloop : 100000

Magnetization(z) : -0.991653

<sigma_z> : -0.991601 +/- 0.000121103 tau 3.88379
Magnetization(z) : -0.991653

<sigma_z> : -0.991628 +/- 6.29931e-05 tau 3.41675
Magnetization(x) : 0.123957

<sigma_x> : 0.12477 +/- 0.000689489 tau 4.30959

# UPDATE STATISTICS

# row 1 : all updates

# row 2 : possible updates

# row 3 : rejected updates

# row 4 : accepted updates

# row 5 : acceptance factor (possible)

# row 6 : acceptance factor (total)

SPIN_FLIP 2.00076e+06 1.93886e+06 1.93759e+06 1269 0.000654508 0.000634258

INSERT 3.99796e+06 3.99796e+06 3.93491e+06 63041 0.0157683 0.0157683

REMOVE 4.00128e+06 123342 60301 63041 0.511107 0.0157552

# Histogram : 0.969140.0305303 0.0003276 2.3e-06 0 0 0 0 0 0 0 0 0 0 0 0 0
and

Parameters : beta = 10 gamma = 0.4 h_mag = 0.05 Ntherm = 1000000 Nloop = 100000 Nsweep = 100
Initial values : n@ = -1 nv = 0

Ncorr : 1 Nloop : 100000

Magnetization(z) : -0.123957

<sigma_z> : -0.121593 +/- 0.00110555 tau 5.70289

Magnetization(z) : -@.123957

<sigma_z> : -0.123292 +/- 0.000390398 tau 2.62269

Magnetization(x) : 0.991653

<sigma_x> : 0.991717 +/- 0.000469308 tau 3.85539

UPDATE STATISTICS

row 1 : all updates

row 2 : possible updates

row 3 : rejected updates

row 4 : accepted updates

row 5 : acceptance factor (possible)

row 6 : acceptance factor (total)

SPIN_FLIP 2.00144e+06 79988 36976 43012 0.537731 0.0214905

INSERT 3.99889e+06 3.99889e+06 1.91978e+06 2.07911e+06 0.519921 0.519921
REMOVE 3.99967e+06 3.8396e+06 1.76049e+06 2.07911e+06 0.541491 0.51982
# Histogram : 0.0400099 ©0.295998 0.387858 0.20598 0.05845150.0103647 0.0012196 0.0001079 9.6e-06 0 0 0 0

HERIFRHRHFHR

A good rule is to keep the program as simple as possible, analyze, and only
improve if and where needed



Simple extensions: polaron models with bosonic bath: see Frohlich polaron slides
Simple extensions: spin-boson model

A

1
H = §ax + 50’2 Z )\i(ai -+ a;-r) + Zwiagai

= a two-level system coupled to a bosonic bath with spectral function

cut

J(w)=m Z APO(w —w;) =2 Taw!® w®

s = 1: Ohmic; s < 1 : subohmic

The bath is integrated out and gives rise to a retarded interaction between the
spins:

Slo] = — /O " /O Ao ()K y(r — 7)o ()

© I (w) cosh (hBTw[l — 27‘/5])
Kg(T) = / dw Phys.Rev.Lett.102:030601,2009
0

7T sinh (hﬁTw)
http://arxiv.org/abs/0909.4822
http://arxiv.org/abs/1106.2654

http://arxiv.org/abs/0911.4490



http://arxiv.org/abs/1106.2654
http://arxiv.org/abs/0909.4822
http://arxiv.org/abs/0911.4490

At a critical coupling strength the system undergoes a quantum phase transition
between a delocalized phase and a localized phase. The phase transition
belongs to the universality class of the Ising model with long-range interactions
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FIG. 1: (Color online) a Realization of an imaginary time world line
of a spin-1/2 in a transversce ficld. b) Sketch of the continuous time
cluster update: 1) Starting conliguration. 2) Random insertion of new
potential spin flips (red dots) with Poissonian statistics 3) Connection
of scgments with probabilitics given by ¢q.(8). Different colors indi-
cate the resulting clusters. 4) Each cluster is [lipped with probability
I/2 (the blue one was not flipped). 5) Resulting new imaginary time
world linc.

Phys.Rev.Lett.102:030601,2009
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Simple extensions: impurity solver for bosonic dynamical mean-field theory

. . 1 g A / ! ~ g ,
Simp = —5/0 drdm'b' (T)A(T — 7" )b(7") — u[; drn(T)
7 8 . B
+ 2/0 drn(t)[n(t) — 1] — kP /0 drb(T7).

n)

Phys. Rev. Lett. 105, 096402 (2010)
New J. Phys. 13, 075013 (2011)



In mapping the quantum to the classical system
7 = Trexp P = E D;
?

some of the P; may D < 0

li)>
/.\ Troyer and Wiese have shown that the sign
li > .
e.g. 2 electrons might problem is NP-hard
exchange places li> ‘I/
li;> http://arxiv.org/abs/cond-mat/0408370; Phys.Rev.Lett. 94 (2005) 170201
i, >

consequence : exponential scaling


http://arxiv.org/abs/cond-mat/0408370

evaluation in case of negative weights:

2. Ale)p(c)

= >.p(c)

_ 2 AQ)s(o)lp(e)| /2. Ip(e)l _ (As)’
>es@pd /X Ip(e)]  — (s)

with <S> = Z/Z/ the average sign given by

7 = . ‘fermionic’ system
2. ’ Z]Z" = exp(=BNAS)

=> Il ‘bosonic’ system
7

The variance can become exponentially large :

_ V=AM _ VIR N
O VM(s) " VM

The sign problem is basis dependent : e.g., if we know the full spectrum, all weights are positive
However, still no solution

The situation is reminiscent of NP hard problems (no proof of exponential scaling, but no solution
that scales polynomially is known)

A solution to the sign-problem is a solution that does not scale exponentially (stronger than
positive weights) when the bosonic problem is easy (polynomial)




Euleria

e 7 bridges of Konigsberg
e is there a roundtrip that crosses each bridge exactly once!?

*Euler (1735) :it exists if and only if the graph is connected and
there are no nodes of odd degree at all
* can be evaluated in polynomial time;is in complexity class P



is there a path that crosses each vertex exactly once!?
expensive task by evaluating all paths

no solution in polynomial time is known

is NP-complete



Com

Turing machine : abstract notion of a CPU

Complexity class P :

P is defined as the set of all languages which
can be decided by a deterministic polynomial-
time Turing machine

Complexity class NP :

e polynomial time on a non-deterministic Turing machine : it can evaluate both branches
of an if-statement, but the branches cannot merge again. It has an exponential number
of CPUs but no communication between them is allowed

e solves the Hamiltonian cycle problem in polynomial time; also determines whether a
spin glass has an energy lower than a predefined value Eg

e a solution to the problem can be verified in polynomial time on a polynomial Turing

machine
e cannot calculate the partition function of the spin glass since the sum over the states

cannot be performed

( There exist many more complexity classes )



Polynomial reduction

* two polynomial decision problems P and Q
* Q < P means there is a polynomial solution for Q, provided there is one for P
e many problems have been reduced to others

NP-hardness

* a problem is NP-hard if Q < P for all Q in NP
* as hard as the hardest problems in NP; not necessarily in NP or even a decision problem

NP-complete

* a problem is NP-complete if it is NP-hard and if it is in NP
* most problems that are NP-hard are shown to be NP-complete

It is an open question whether P=NP ?

e one of the millenium challenges of the Clay Math Foundation ($1 million)



proof

consider 3d frustrated Ising model (glass)

H=— Z Jikojok Jik=0,+J
(4:k)

does there exist a state with energy less than a bound Eo!

Is a NP-complete problem. F. Barahona, J. Phys. A 15,3241 (1982).

view it as a quantum problem in basis where H is not diagonal :
H=— Z Jj,kO';CO'Z Jj,k; — O, +J
(4,k)
random signs appear in off-diagonal matrix elements

bosonic model (ferromagnet, Jjx > 0) easy to solve

Hence, the sign problem causes NP-hardness




