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DMFT is quite versatile 2

  

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…

Control, short range correlation

• Self-consistency in large  
unit cell (Cu + 2 O)  
Σab(ω) a 3x3 matrix

• Impurity model on Cu, 1 band : Σimp(ω) 1x1 matrix

• Multiband/realistic systems
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• DFT + DMFT 

• Interface with electronic structure codes 
(project on Wannier functions, etc).

• Cluster DMFT

• Beyond cluster DMFT

Self-consistency on vertex
Dual fermions/bosons, Trilex, DΓA
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Artificial charge-modulation
in atomic-scale perovskite
titanate superlattices
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The nature and length scales of charge screening in complex
oxides are fundamental to a wide range of systems, spanning
ceramic voltage-dependent resistors (varistors), oxide tunnel
junctions and charge ordering in mixed-valence compounds1–6.
There are wide variations in the degree of charge disproportio-
nation, length scale, and orientation in the mixed-valence com-
pounds: these have been the subject of intense theoretical study7–
11, but little is known about the microscopic electronic structure.
Here we have fabricated an idealized structure to examine these
issues by growing atomically abrupt layers of LaTi31O3

embedded in SrTi41O3. Using an atomic-scale electron beam,
we have observed the spatial distribution of the extra electron on
the titanium sites. This distribution results in metallic conduc-
tivity, even though the superlattice structure is based on two
insulators. Despite the chemical abruptness of the interfaces, we
find that a minimum thickness of five LaTiO3 layers is required
for the centre titanium site to recover bulk-like electronic proper-
ties. This represents a framework within which the short-length-
scale electronic response can be probed and incorporated in thin-
film oxide heterostructures.
In perovskites, charge ordering results in modulations of the

electron density in the form of planes and slabs, whereas in lower-
dimensional perovskite-derived systems, charge ordering leads to
stripes, or one-dimensional charge modulations. Approximations
to the first case can be realized in thin-film superlattices inwhich the
formal valence of the transition-metal ion is varied. Superlattices of
SrTiO3 and LaTiO3 are addressed here, where the titaniumvalence is
varied from 4þ to 3þ. SrTiO3 is a band insulator with an empty d
band, whereas LaTiO3 has one d electron per site, and strong
Coulomb repulsion results in a Mott–Hubbard insulator12. Super-
lattices of these two perovskites capture many of the important
aspects of naturally occurring charge-ordered systems, namely
mixed-valence configurations near half-filling. The lattice constants
are relatively well matched (for SrTiO3, ao ¼ 3.91 Å; LaTiO3,
pseudocubic ao ¼ 3.97 Å), and the continuity of the TiO6 octa-
hedral lattice across the superlattice minimizes the perturbation of
the electronic states near the chemical potential13,14. The principal
growth issue reduces to the control of the titanium oxidation state,
which we have recently addressed for bulk-like film growth15.
We grew SrTiO3/LaTiO3 superlattice films in an ultrahigh-

vacuum chamber (Pascal) by pulsed laser deposition, using a
single-crystal SrTiO3 target and a polycrystalline La2Ti2O7 target.
Extreme care was taken to start with atomically flat, TiO2-
terminated SrTiO3 substrates, which exhibited terraces several
hundred nanometres wide, separated by 3.91-Å unit cell steps as
observed by atomic force microscopy16. A KrF excimer laser with a
repetition rate of 4Hz was used for ablation, with a laser fluence at
the target surface of,3 J cm22. The films were grown at 750 8Cwith
an oxygen partial pressure of 1025 torr, which represented the best
compromise for stabilizing both valence states of titanium. Oscil-
lations in the unit-cell reflection high-energy electron diffraction
intensity were observed throughout the growth, and were used to
calibrate the number of layers grown. After growth, the films were
annealed in flowing oxygen at 400 8C for 2–10 hours to fill residual
oxygen vacancies.

Figure 1 shows the annular dark field (ADF) image of a super-
lattice sample obtained by scanning transmission electron
microscopy (JEOL 2010F) of a 30-nm-thick cross-section along a
substrate [100] zone axis. In this imaging mode, the intensity of
scattering scales with the atomic number Z as Z1.7, so the brightest
features are columns of La ions, the next brightest features are
columns of Sr ions, and the Ti ions are weakly visible in between17–19.
The quality of the interfaces does not degrade with continued
deposition, and the atomic step and terrace structure of the growing
surface is maintained for hundreds of nanometres. The magnified
view at the top of Fig. 1 shows a higher-resolution image, which
visibly demonstrates the ability to grow a single layer of La ions.
Because the layer is viewed in projection, roughness along the
beam—particularly on length scales thinner than the sample—
leads to apparent broadening. Thus these results represent an
upper limit to the actual width of the layers.

With the same imaging conditions used to obtain Fig. 1, we
analysed the energy of the transmitted electron beam and per-
formed core level spectroscopy, atom column by atom column20–22.
This approach is able to probe internal structures directly, unlike
surface-sensitive methods. Specifically, the titanium L2,3, oxygen K,
and lanthanumM4,5 edges can be simultaneously recorded, with an
energy resolution of,0.9 eV and a spatial resolution slightly worse
than the ADF resolution of,1.9 Å, primarily owing to drift during
the slower acquisition of the spectra. We obtained a scan through
the Ti sites crossing a 2-unit-cell layer of LaTiO3 (top centre panel of
Fig. 2). By substituting La for Sr, there is locally an extra electron
that resides mainly on the Ti d orbitals23. To visualize this effect, the
Ti L2,3 near-edge structure can be decomposed into a linear
combination of Ti3þ and Ti4þ, with no residual detectable above
the experimental noise level (bottom panel of Fig. 2).

This decomposition, which would fail both conceptually and
experimentally for more covalent materials, allows a particularly

Figure 1 Annular dark field (ADF) image of LaTiO3 layers (bright) of varying thickness

spaced by SrTiO3 layers. The view is down the [100] zone axis of the SrTiO3 substrate,

which is on the right. After depositing initial calibration layers, the growth sequence is

5 £ n (that is, 5 layers of SrTiO3 and n layers of LaTiO3), 20 £ n, n £ n, and finally a

LaTiO3 capping layer. The numbers in the image indicate the number of LaTiO3 unit cells

in each layer. Field of view, 400 nm. Top, a magnified view of the 5 £ 1 series. The raw

images have been convolved with a 0.05-nm-wide gaussian to reduce noise.

letters to nature
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SrTiO3/LaTiO3  
Ohtomo et al, Nature 2002

DMFT is quite versatile

• Correlated interfaces.  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Alloy

• Disordered systems  • Non equilibrium

• Two impurity models 

• One impurity per layer



Need for a library

• No “general” DMFT code. 

• Better to have a simple language to express your calculation.
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• Design goals

• Basic blocks for DMFT and beyond, diagrammatic methods

• Simplicity : what is simple should be coded simply !            

• High performance :

• Human time :  reduce the cost of writing codes.

• Machine time :  run quickly.  



TRIQS structure

• A Library in Python & C++

• Applications

• State of the art “impurity solvers” for DMFT.

• Interface with electronic structure codes.
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https://triqs.ipht.cnrs.fr

https://github.com/TRIQS

CTHYB
Impurity solver

TRIQS library
The basic blocks

DFTTools
Interface to 
electronic 
structure 

codes

CTHYB
Impurity solver

https://triqs.ipht.cnrs.fr/1.x/index.html
https://github.com/TRIQS


TRIQS library: contents 6

• Green functions containers   
G(ω), G(k,ω), Vertex Γ(ω,ν,ν’). 

• Generic Monte Carlo class & error analysis tools.

• Determinant manipulations (for QMCs).

• Lattice tools: Bravais Lattices, Brillouin zone, ....

• Many-body operators.

• More general tools, e.g.

• Multidimensional array class

• HDF5 light interface in Python & C++

• Python/C++ light interfacing tool

TRIQS library
The basic blocks



Python/C++ toolkit
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 TRIQS library

c+
+

py
t h

on
py

t h
on

py
c+

+ c+
+

dft_tools cthyb

Green's functions, arrays, expressions,
 Monte-Carlo tools ...

Green's functions, plotting tools ..

c++2py

C++ app.
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A full DMFT computation in 1 slide



DMFT on Bethe lattice 9

w
ith
nearest-neighbor
hopping
t ij�
t/�
z,
for
arbitrary

connectivity
z.
W
e
concentrate
on
site
o
and
perform

the
G
aussian
integration
over
all
other
sites
(Fig.
86).

Setting
⇧⇣
i�
n+
�
,this
yields

G
o
o

⇤
1 ⌅⇧
⌘�
⇧⇤

t2 z
� ↵i,o
�

G
ii⌅o

⌘ �
⇧⇤
t2 G
ii⌅o

⌘ .

(A
39)

In
this
equation
i
denotes
a
neighbor
of
o
and
G
ii(o

)
is

the
G
reen’s
function
of
site
i
once
o
has
been
rem
oved.

Translation
invariance
has
been
used,
all
sites
i
being

identical.For
finite
connectivity
how
ever,G
ii(o

)
does
not

coincide
w
ith
G
o
o
even
in
the
lim
it
of
an
infinite
lattice.

T
his
is
because
the
local
topology
has
been
changed

w
hen
rem
oving
site
o
:each
neighbor
i
now
has
only
z�1

nearest
neighbors.
For
large
connectivity,
this
is
of

course
a
1/z
effect,and
G
ii(o

)
can
be
identified
to
G
o
o
in

the
equation
above,yielding
a
closed
form
ula.E
ven
for

finite
connectivity
how
ever,the
elim
ination
process
can

be
taken
one
step
further,
perform
ing
the
G
aussian
in-

tegration
over
the
z�1
neighbors
of
each
site
i.
T
his

yields ⇥G
ii⌅o

⌘ �
⇤
1 �
⇧⇤
⌅z
⇤
1
⌘

t2 z
G
jj⌅o

,i ⌘ .

(A
40)

In
this
equation,G
jj(o

,i) denotes
the
G
reen’s
function
ofa

neighbor
j
of
i,in
the
truncated
tree
w
here
both
sites
o

and
i
have
been
rem
oved.
For
an
infinite
lattice,
j
is

entirely
sim
ilar
to
i,
so
that
G
ii(o

) �
G
jj(o

,i) .
T
his
yields
a

closed
equation
for
this
quantity:

z
⇤
1

z

t2 ⇥G
ii⌅o

⌘ �2 ⇤
⇧G
ii⌅o

⌘ ⇥
1
�
0,

(A
41)

from
w
hich
the
localG
reen’s
function
G
⇣
G
o
o
[w
hich
is

also
the
H
ilbert
transform
D˜
(⇧)
of
the
density
of
states]

is
finally
obtained
as
[for
Im
(⇧)>0]

G
⇣
D˜
⌅⇧
⌘�

⌅z
⇤
2
⌘⇧⇤
z�
⇧

2 ⇤
4
⌅z
⇤
1
⌘t2 /z

2
⌅zt2 ⇤
⇧

2 ⌘

.

(A
42)

T
he
density
of
states
D
( ⌃)=�Im
G
(⌃⇥
i0

⇥
)/✏
thus
reads

D
⌅⌃
⌘�

�
⌃

2 ⇤
4
⌅z
⇤
1
⌘t2 /z

2
✏
⌅t2 ⇤
⌃

2 /z
⌘

.

(A
43)

(O
ne
can
check
that
the
fam
iliar
d
=1
expression
can
be

recovered
for
z=2.)
Taking
the
z�
 
lim
it
yields
the
ex-

pressions
often
used
in
this
article:

G
⇣
D˜
⌅⇧
⌘�

⇧⇤
�
⇧

2 ⇤
4t2

2t2

,
D
⌅⌃
⌘�

�
⌃

2 ⇤
4t2

2
✏
t2

.
(A
44)

It
m
ay
also
be
useful
to
quote
the
expression
of
the

reciprocalfunction
R
(G
)
ofthe
H
ilberttransform
D˜
(⇧),

i.e.,such
that
R
(D˜
(⇧))=
⇧.For
arbitrary
connectivity,it
is

the
solution
of
the
quadratic
equation:

⌅z
⇤
1
⌘R

2 ⇥
⌅z
⇤
1
⌘ ⌅z
⇤
2
⌘

G

R

⇤
⌅z
⇤
1
⌘2 ⇥

z
z
⇤
1

t2 ⇥

1 G
2��
0.

(A
45)

For
z�
 
,one
recovers
(Sec.II)

R
⌅G
⌘�
t2 G
⇥

1 G
.

(A
46)

A
P
P
E
N
D
IX
B
:D
E
TA
ILS
O
F
TH
E
M
O
N
TE
C
A
R
LO

A
LG
O
R
ITH
M

In
this
A
ppendix,
w
e
first
sketch
the
derivation
of

som
e
of
the
form
ulas
in
Sec.
V
I.A
.1,
and
show
the

equivalence
of
the
H
irsch-Fye
approach
w
ith
the

B
lanckenbeckler,
Scalapino,
and
Sugar
algorithm
.
W
e

also
provide
som
e
guidance
for
the
Q
M
C
program
s
pro-

vided
w
ith
this
article.
Finally,
details
are
given
on
the

num
ericalim
plem
entation
of
the
self-consistency
condi-

tion.

1.S
om
e
derivations

E
quation
(139)
for
the
discretized
partition
function

can
be
established
by
m
aking
use
of
the
follow
ing
iden-

tity:
T
r
c

i⇥
,c
i✓e

⇤
�
ijc
i⇥

A
ijc
j e

⇤
�
ijc
i⇥

B
ijc
j e

⇤
�
ijc
i⇥

C
ijc
j ⌥

⇣
det ⇥1
⇥
e

⇤
A e
⇤
B e
⇤
C
�,

(B
1)

and
of
its
generalization
to
m
ore
than
three
m
atrices.

E
quation
(B
1)
is
easily
derived
using
the
rules
ofG
auss-

ian
integration
for
G
rassm
ann
variables,
and
a
very
in-

structive
elem
entary
derivation
can
be
found
in
(H
irsch,

1985).T
he
equivalence
of
detO
s 1
,...,s L
w
ith
the
B
lanck-

enbeckler,
Scalapino,
and
Sugar
form
ula
E
q.
(139)
can

then
be
show
n
by
G
aussian
elim
ination
(replacing
suc-

cessively
the
first
row
of
O
by
m
ultiples
of
row
s

L
,L
�1,...,1,

✓O
1i⌥ i�
1,...,L�
✓O
1i⇤
B
LB
L
⇤
1•••B
L
⇤
k
⇥
1

⇤
O
L
⇤
k
⇥
1,i⌥ i�
1,...,L
for
k
�
0,1,...,L
⇤
1).

FIG
.86.
B
ethe
lattice
(depicted
here
w
ith
connectivity
z=3).

1
1
7

A
.
G
e
o
rg
e
s
e
t
a
l.:
D
y
n
a
m
ic
a
l
m
e
a
n
-fi
e
ld
th
e
o
ry
o
f
.
.
.

R
e
v.
M
o
d
.
P
h
y
s
.,
V
o
l.
6
8
,
N
o
.
1
,
J
a
n
u
a
ry
1
9
9
6

• DMFT equations : 1 band, Hubbard model, Bethe lattice

• Goal: Solve DMFT equations, self-consistently with an impurity 
solver packaged in TRIQS (a quantum Monte Carlo)

  

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…
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How to do it ?

• Which parts ?

• Local Green functions 

• An impurity solver: e.g. the CT-INT solver.

• Save the result.

• Plot it.
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• Break the DMFT computation into small parts and assemble the 
computation.



Assemble a DMFT computation in 1 slide

• A complete code, using a QMC impurity solver (a TRIQS app).

• In Python, with parallelization included (mpi).

• Do not worry about the details of the syntax at this stage 
Get an idea of how to use TRIQS by example.  

11



DMFT computation in 1 slide 

• Import some basic blocks (Green function, a solver).

• Define some parameters and declare a CT-INT solver S

• All TRIQS solvers contains G, G0, Σ as members  
with the correct β, dimensions, etc.

• Initialize S.G_iw to a (the Hilbert transform of a) semi-circular dos.

12

from pytriqs.gf.local import *
from pytriqs.applications.impurity_solvers.ctint_tutorial import CtintSolver

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function



DMFT computation in 1 slide 

• Implement DMFT self-consistency condition
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from pytriqs.gf.local import *
from pytriqs.applications.impurity_solvers.ctint_tutorial import CtintSolver

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for sigma, G0 in S.G0_iw: # sigma = ‘up’, ‘down’
  G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0

G�1
0� (i!n) = i!n + µ� t2Gc�(i!n), for � =", #



DMFT computation in 1 slide 

• Call the solver.

• From G0σ(iωn) (and various parameters),  
it computes Gσ(iωn) for σ=↑,↓
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from pytriqs.gf.local import *
from pytriqs.applications.impurity_solvers.ctint_tutorial import CtintSolver

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for sigma, G0 in S.G0_iw:
  G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0

S.solve(U, delta, n_cycles) # Solve the impurity problem



DMFT computation in 1 slide 

• DMFT iteration loop 

15

from pytriqs.gf.local import *
from pytriqs.applications.impurity_solvers.ctint_tutorial import CtintSolver

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for it in range(n_iterations): # DMFT loop
  for sigma, G0 in S.G0_iw:
    G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0

  S.solve(U, delta, n_cycles) # Solve the impurity problem

SELF CONSISTENCY

IMPURITY PROBLEM

G0 Gc, Σ



DMFT computation in 1 slide 

• Enforce the fact that the solution is paramagnetic.  
(noise in the QMC would lead to a AF solution after iterations).

16

from pytriqs.gf.local import *
from pytriqs.applications.impurity_solvers.ctint_tutorial import CtintSolver

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for it in range(n_iterations): # DMFT loop
  for sigma, G0 in S.G0_iw:
    G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0

  S.solve(U, delta, n_cycles) # Solve the impurity problem

  G_sym = (S.G_iw['up'] + S.G_iw['down'])/2 # Impose paramagnetic solution
  S.G_iw << G_sym



DMFT computation in 1 slide 

• Accumulate the various iterations in a (hdf5) file

17

from pytriqs.gf.local import *
from pytriqs.applications.impurity_solvers.ctint_tutorial import CtintSolver
from pytriqs.archive import HDFArchive

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for it in range(n_iterations): # DMFT loop
  for sigma, G0 in S.G0_iw:
    G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0

  S.solve(U, delta, n_cycles) # Solve the impurity problem
 
  G_sym = (S.G_iw['up'] + S.G_iw['down'])/2 # Impose paramagnetic solution
  S.G_iw << G_sym

  with HDFArchive("dmft_bethe.h5",'a') as A:
    A['G%i'%it] = G_sym # Save G from every iteration to file as G1, G2, G3....



• Change the random generator at the last iteration !

DMFT computation in 1 slide 18

from pytriqs.gf.local import *
from pytriqs.applications.impurity_solvers.ctint_tutorial import CtintSolver
from pytriqs.archive import HDFArchive

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for it in range(n_iterations): # DMFT loop
  for sigma, G0 in S.G0_iw:
    G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0
  
  # Change random number generator on final iteration
  random_name = 'mt19937' if it < n_iterations-1 else 'lagged_fibonacci19937'

  S.solve(U, delta, n_cycles, random_name=random_name) # Solve the impurity problem

  G_sym = (S.G_iw['up']+S.G_iw['down'])/2 # Impose paramagnetic solution
  S.G_iw << G_sym

  with HDFArchive("dmft_bethe.h5",'a') as A:
     A['G%i'%it] = G_sym # Save G from every iteration to file



Look at the result (in IPython notebook) 19

A = HDFArchive("dmft_bethe.h5",'r') # Open file in read mode
for it in range(21):      
    if it%2: # Plot every second result 

oplot(A['G%i'%it], '-o', mode=’I’, name='G%i'%it) 

DMFT convergence

Imaginary part onlyRetrieve Gi from the file, 
and use it at once

oplot can plot 
many TRIQS 
objects via 
matplotlib

NB 
lines are guide to the eyes,  

only Matsubara  
frequency point matters



HDF5 file format

• De facto standard file format. 

• Language agnostic (python, C/C++, F90).

• Binary format hence compact, but also portable.

• Dump & reload objects in one line.  
Forget worrying about format, reading files, conventions.

• G(ω)(n1,n2) a 3d array of complex numbers, i.e. 4d array of reals.  
No natural convention in a 2d text file. 
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Thank you for your attention



Hands-on

• Assemble a DMFT computation yourself.

• First, I will do an example : DMFT, bethe lattice, CT-INT.

• Second, you will do a few DMFT computations:

• IPT solution of DMFT

• Use CTHYB solver for 1 band, DMFT.

• 2 bands Kanamori model with CTHYB.  
Effect of J on Uc

• 2 patch DCA computation with CTHYB.  
Selective Mott transition in k space.
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CT-INT demo code

• In addition, the CT-INT code used earlier is available as a demo 
code.

• < 200 lines of C++.  
With Python interface, MPI, …

• Cf intro in TRIQS paper, arXiv:1504.01952, Appendix A.
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https://github.com/TRIQS/ctint_tutorial.git

https://github.com/TRIQS/ctint_tutorial

