Lecture 3
 Impurity solvers for DMFT

Olivier Parcollet

Institut de Physique Théorique

CEA-Saclay

France

European Research Council Established by the European Commission

Outline

- Lecture I : Introduction to DMFT
- Lecture 2 : Beyond DMFT. Clusters.
- Lecture 3 : Impurity solvers :
- Why specific algorithm for DMFT effective impurities ?
- Continuous time Quantum Monte Carlo: CT-INT and CT-HYB
- Discussion

Solving DMFT : iterative method
Impurity solver

Why do we need specific algorithms ?

Impurity model : non-DMFT case

- Anderson impurity in a metallic host (structureless bath)
- Typical energy scale of the bath $\Delta=\mathrm{D} \sim \mathrm{eV}$ very high energy scale (U.V. cut-off).
- Low energy, universal regime: separation of scales, scaling laws

$$
T, \omega, T_{K} \ll D
$$

- Linearise the energy close to the Fermi level

$$
\epsilon(k) \propto\left(k-k_{F}\right)
$$

DMFT baths have a low-energy structure

- Gapped bath (insulator, superconductor) : no Kondo effect

DMFT bath evolution close to Mott transition

- DMFT bath is self-consistently determined and has a structure at low energy
- Cluster DMFT : bath can have pseudo-gap

A. Georges et al., Rev. Mod. Phys. 68, I3, (I996)

Field theory methods

- Integrability (Bethe Ansatz) in the universal regime A.Tsvelik, P.Wiegmann/ N. Andrei, I980;

Thermodynamics but Green function very hard to compute.

- Boundary Conformal Field Theory Cardy;Affleck, Ludwig, 1991 At low-energy fixed point.
- BUT both methods starts from a flat band.

Not sufficient to solve DMFT

Impurity solvers : a rich toolbox

- Continuous Time Quantum Monte Carlo family (CT-QMC)
- Algorithms based in Hamiltonian form
- Exact diagonalization (ED)
- Numerical Renormalization group (NRG)
- Density Matrix Renormalization group (DMRG).
- Approximate solvers :
- Iterated Perturbation Theory (IPT)
- NCA family (NCA, OCA, ...)
- Slave boson technique.

Quantum Monte Carlo

Monte Carlo sampling

Cf Lode's talk

- Partition function and operator averaging: (assume $p(x)>0)$

$$
Z=\int_{\mathcal{C}} d x p(x), \quad\langle A\rangle=\frac{1}{Z} \int_{\mathcal{C}} d x A(x) p(x)
$$

Configuration space

- Principle : use a Markov chain in configuration space.
- Average replaced by average over the Markov chain.
- Transition rate $W_{x \rightarrow y}$: probability to go from x to y
- Detailed balance :

$$
\frac{W_{x \rightarrow y}}{W_{y \rightarrow x}}=\frac{p(y)}{p(x)}
$$

- Ergodicity property :

It is possible to reach y from $x, \forall x, y$ in a finite number of steps.

Metropolis algorithm

- To build the Markov chain:
- Propose moves in the configuration space
- Accept them with some probability, such that :

The sign problem

- What if $p(x)$ is not always positive ? Use $|p(x)|$ as the probability !

$$
\langle A\rangle=\frac{1}{Z} \int_{\mathcal{C}} d x A(x) p(x)=\frac{\int_{\mathcal{C}} d x(A(x) \operatorname{sign}(p(x)))|p(x)|}{\int_{\mathcal{C}} d x(\operatorname{sign}(p(x)))|p(x)|}
$$

- The denominator (average of sign $(p(x))$ can decay exponentially as temperature is lowered or in large volume limit.
- The QMC is correct if $<$ sign $>\neq \mathrm{I}$, but becomes untractable when $<$ sign> ≈ 0 (large error bars).
- A major limitation of Quantum Monte Carlo (specially for fermions)
- The sign problem depends on the basis/rewriting of Z !

Monte Carlo

- A QMC algorithm :
- Rewrite Z, ideally as a sum of positive terms.
- Find local ergodic moves
- Advantages :
- QMC is a very flexible technique
- QMC is massively parallel by construction.
- Drawbacks :
- Convergence is slow, like $I / \sqrt{ }$ time
- Sign problem may be severe !

Monte Carlo is just a technique to compute sums. How to rewrite Z, which move to use, etc... is your choice !

Continuous Time QMC

- Perform an expansion in a coupling constant and sum it with MC
- Original idea by N. Prokofiev : continuous time QMC (1996)
- For impurity problems :
- Expansion in U: CT-INT
A.N. Rubtsov et al., Phys. Rev. B 72, 035 I22 (2005)
- Expansion in $\Delta(\omega)$, around the atomic limit : CT-HYB P. Werner, A. Comanac, L. de' Medici, M. Troyer, A. J. Millis, PRL 97, 076405 (2006); P . Werner, A.J. Millis, Phys. Rev. B 74, I55 IO7 (2006)
- Continuous time determinantal : CT-AUX E. Gull, P.Werner, O.P., M. Troyer EPL (2008)

Continuous time QMC : principle

- Write a perturbative expansion of the partition function :

$$
\begin{aligned}
H & =H_{a}+H_{b} \\
Z & =\operatorname{Tr} T_{\tau} e^{-\beta H_{a}} \exp \left[-\int_{0}^{\beta} d \tau H_{b}(\tau)\right] \\
& =\sum_{n \geq 0}(-1)^{n} \int_{0}^{\beta} d \tau_{1} \ldots \int_{\tau_{n-1}}^{\beta} d \tau_{n} \operatorname{Tr}\left[e^{-\beta H_{a}} H_{b}\left(\tau_{n}\right) H_{b}\left(\tau_{n-1}\right) \ldots H_{b}\left(\tau_{1}\right)\right] \\
& =\sum_{n \geq 0} \sum_{\tau_{1}<\tau_{2}<\ldots \tau_{n}} \sum_{\gamma \in \Gamma_{n}} \underbrace{\left(\Delta_{\tau}\right)^{n} w\left(n, \gamma, \tau_{1}, \ldots, \tau_{n}\right)}_{p(x)}=\sum_{x \in \mathcal{C}} p(x)
\end{aligned}
$$

Configurations

$$
x=\left(n, \gamma, \tau_{1}, \tau_{2}, \ldots \tau_{n}\right)
$$

Representation of the configurations

Continuous time QMC : principle (II)

A CT-QMC move

- Move :add/remove one interaction term (= change n by I), e.g. $x=(n, \ldots)$ configuration with n vertices $y=(n+1, \ldots)$ configuration with $n+I$ vertices

$$
W_{x \rightarrow y}^{\text {prop }}=\frac{\Delta_{\tau}}{\beta} \quad W_{y \rightarrow x}^{\text {prop }}=\frac{1}{n+1}
$$

- The Metropolis rate has a finite limit.

$$
R_{x \rightarrow y}=\frac{p(y) W_{y \rightarrow x}^{\mathrm{prop}}}{p(x) W_{x \rightarrow y}^{\mathrm{prop}}}=\frac{w(y)\left(\mathscr{A}_{\tau}\right)^{n+1}}{w(x)\left(\Delta_{\tau}\right)^{n}} \frac{\beta}{\boldsymbol{\beta}_{\tau}(n+1)}
$$

The algorithm can be formulated directly in continuous time

$$
\begin{gathered}
S_{\mathrm{eff}}=-\int_{0}^{\beta} c_{a}^{\dagger}(\tau) G_{0 a b}^{-1}\left(\tau-\tau^{\prime}\right) c_{b}\left(\tau^{\prime}\right)+\int_{0}^{\beta} d \tau H_{\text {local }}\left(\left\{c_{a}^{\dagger}, c_{a}\right\}\right)(\tau) \\
G_{0 a b}^{-1}\left(i \omega_{n}\right)=\left(i \omega_{n}+\mu\right) \delta_{a b}-\Delta_{a b}\left(i \omega_{n}\right) \\
a, b=I, N \text { Interaction } \\
\text { degree of freedom (e.g. spin, orbital index, ...) Bath }
\end{gathered}
$$

- CT-INT: Expansion in power of the interactions
- CT-HYB : Expansion in power of hybridization (around atomic limit)

Expansion in interaction

- Standard perturbative technique at finite temperature.

$$
\begin{gathered}
S_{\mathrm{eff}}=-\sum_{\sigma=\uparrow, \downarrow} \iint_{0}^{\beta} d \tau d \tau^{\prime} c_{\sigma}^{\dagger}(\tau) G_{0 \sigma}^{-1}\left(\tau-\tau^{\prime}\right) c_{\sigma}(\tau)+\int_{0}^{\beta} d \tau U n_{\uparrow}(\tau) n_{\downarrow}(\tau) \\
\frac{Z}{Z_{0}}=1-U \int_{0}^{\beta} d \tau_{1}\left\langle n_{\uparrow}\left(\tau_{1}\right) n_{\downarrow}\left(\tau_{1}\right)\right\rangle_{0}+\frac{U^{2}}{2} \iint_{0}^{\beta} d \tau_{1} d \tau_{2}\left\langle T_{\tau} n_{\uparrow}\left(\tau_{1}\right) n_{\downarrow}\left(\tau_{1}\right) n_{\uparrow}\left(\tau_{2}\right) n_{\downarrow}\left(\tau_{2}\right)\right\rangle_{0} \ldots
\end{gathered}
$$

- UsingWick Theorem :

$$
\frac{Z}{Z_{0}}=\sum_{n \geq 0} \frac{1}{n!} \int_{0}^{\beta} d \tau_{1} \ldots d \tau_{n} \underbrace{(-U)^{n} \prod_{\sigma=\uparrow, \downarrow} \operatorname{det}_{1 \leq i, j \leq n}\left[G_{\sigma}^{0}\left(\tau_{i}-\tau_{j}\right)\right]}_{w\left(n,\left\{\tau_{i}\right\}\right)}
$$

- With TRIQS (\&Hands on) package : a demo CT-INT code, I band.

Expansion in hybridization

$$
\begin{aligned}
S_{\mathrm{eff}}=-\int_{0}^{\beta} & c_{a}^{\dagger}(\tau) G_{0 a b}^{-1}\left(\tau-\tau^{\prime}\right) c_{b}\left(\tau^{\prime}\right)+\int_{0}^{\beta} d \tau H_{\text {local }}\left(\left\{c_{a}^{\dagger}, c_{a}\right\}\right)(\tau) \\
& G_{0 a b}^{-1}\left(i \omega_{n}\right)=\left(i \omega_{n}+\mu\right) \delta_{a b}-\Delta_{a b}\left(i \omega_{n}\right)
\end{aligned}
$$

- Expansion in hybridization :

$$
Z=\sum_{n \geq 0} \int_{<} \prod_{i=1}^{n} d \tau_{i} d \tau_{i}^{\prime} \sum_{a_{i}, b_{i}=1, N} \underbrace{\operatorname{det}_{i, j \leq n}\left[\Delta_{a_{i}, b_{j}}\left(\tau_{i}-\tau_{j}^{\prime}\right)\right] \operatorname{Tr}\left(\mathcal{T} e^{-\beta H_{\text {local }}} \prod_{i=1}^{n} c_{a_{i}}^{\dagger}\left(\tau_{i}\right) c_{b_{i}}\left(\tau_{i}^{\prime}\right)\right)}_{w\left(n,\left\{a_{i}, b_{i}\right\},\left\{\tau_{i}\right\}\right)}
$$

- w is positive in single impurity problem.
- Hlocal can be anything (but we need to compute the Trace ...)

Expansion in hybridization

$$
\begin{aligned}
S_{\mathrm{eff}}=-\int_{0}^{\beta} & c_{a}^{\dagger}(\tau) G_{0 a b}^{-1}\left(\tau-\tau^{\prime}\right) c_{b}\left(\tau^{\prime}\right)+\int_{0}^{\beta} d \tau H_{\text {local }}\left(\left\{c_{a}^{\dagger}, c_{a}\right\}\right)(\tau) \\
& G_{0 a b}^{-1}\left(i \omega_{n}\right)=\left(i \omega_{n}+\mu\right) \delta_{a b}-\Delta_{a b}\left(i \omega_{n}\right)
\end{aligned}
$$

- Expansion in hybridization :

$$
Z=\sum_{n \geq 0} \int_{<} \prod_{i=1}^{n} d \tau_{i} d \tau_{i}^{\prime} \sum_{a_{i}, b_{i}=1, N} \underbrace{\operatorname{det}_{1 \leq i, j \leq n}\left[\Delta_{a_{i}, b_{j}}\left(\tau_{i}-\tau_{j}^{\prime}\right)\right] \operatorname{Tr}\left(\mathcal{T} e^{-\beta H_{\text {local }}} \prod_{i=1}^{n} c_{a_{i}}^{\dagger}\left(\tau_{i}\right) c_{b_{i}}\left(\tau_{i}^{\prime}\right)\right)}_{w\left(n,\left\{a_{i}, b_{i}\right\},\left\{\tau_{i}\right\}\right)}
$$

- Green function computation (or higher order correlations functions):

$$
G_{a b}(\tau)=\frac{1}{Z} \frac{\delta Z}{\delta \Delta_{b a}(-\tau)}
$$

$$
G_{a b}(\tau)=\sum_{n \geq 0} \int_{<} \prod_{i=1}^{n} d \tau_{i} d \tau_{i}^{\prime} \sum_{a_{i}, b_{i}=1, N}[\Delta]_{a_{i}, b_{j}}^{-1}\left(\tau_{i}-\tau_{j}^{\prime}\right) \delta\left(\tau_{i}-\tau_{j}^{\prime}=\tau\right) \delta_{a_{i}=a} \delta_{b_{j}=b} w\left(\left\{\tau_{i}\right\}\right) / Z
$$

CT-QMC : efficient algorithms

Histogram of expansion order (CT-HYB, DMFT, $\beta t=100, \delta=0$, various U)

- Complexity $\approx<n>\wedge 3$

Typical matrix size vs β (DMFT, U/t=l)
E. Gull et al, Phys. Rev. B 76, 235I23 (2007)

- All diverge like I/T (singular at $\mathrm{T}=0$), but huge prefactor differences

CT-QMC is much more efficient than previous algorithm

Expansion in hybridization

$$
\begin{array}{r}
S_{\mathrm{eff}}=-\int_{0}^{\beta} c_{a}^{\dagger}(\tau) G_{0 a b}^{-1}\left(\tau-\tau^{\prime}\right) c_{b}\left(\tau^{\prime}\right)+\int_{0}^{\beta} d \tau H_{\text {local }}\left(\left\{c_{a}^{\dagger}, c_{a}\right\}\right)(\tau) \\
G_{0 a b}^{-1}\left(i \omega_{n}\right)=\left(i \omega_{n}+\mu\right) \delta_{a b}-\Delta_{a b}\left(i \omega_{n}\right) \\
\quad a, b=I, N
\end{array}
$$

- Expansion in hybridization :

$$
Z=\sum_{n \geq 0} \int_{<} \prod_{i=1}^{n} d \tau_{i} d \tau_{i}^{\prime} \sum_{a_{i}, b_{i}=1, N} \underbrace{\operatorname{det}_{i=1}\left[\Delta_{a_{i}, b_{j}}\left(\tau_{i}-\tau_{j}^{\prime}\right)\right] \operatorname{Tr}\left(\mathcal{T} e^{-\beta H_{\text {local }}} \prod_{i=1}^{n} c_{a_{i}}^{\dagger}\left(\tau_{i}\right) c_{b_{i}}\left(\tau_{i}^{\prime}\right)\right)}_{w\left(n,\left\{a_{i}, b_{i}\right\},\left\{\tau_{i}\right\}\right)}
$$

- Tr are correlators of the atomic problem
- Algorithmic issue : how to compute quickly atomic correlators?

Atomic correlators

- For density-density interaction

$$
\operatorname{Tr}\left(\mathcal{T} e^{-\beta H_{\text {local }}} \prod_{i=1}^{n} c_{a_{i}}^{\dagger}\left(\tau_{i}\right) c_{b_{i}}\left(\tau_{i}^{\prime}\right)\right)
$$

$$
\begin{array}{r}
H_{\mathrm{K}}=U \sum_{m} \hat{n}_{m \uparrow} \hat{n}_{m \downarrow}+U^{\prime} \sum_{m \neq m^{\prime}} \hat{n}_{m \uparrow} \hat{n}_{m^{\prime} \downarrow}+\left(U^{\prime}-J\right) \sum_{m<m^{\prime}, \sigma} \hat{n}_{m \sigma} \hat{n}_{m^{\prime} \sigma}+ \\
-J \sum_{m \neq m^{\prime}} d_{m \uparrow}^{+} d_{m} \downarrow d_{m^{\prime} \downarrow}^{+} d_{m^{\prime} \uparrow}+J \sum_{m \neq m^{\prime}} d_{m \uparrow}^{+} d^{+} / \downarrow d_{m^{\prime} \downarrow} d_{m^{\prime} \uparrow}
\end{array}
$$

- Take one of these correlators

$$
\operatorname{Tr}\left(\mathcal{T} e^{-\beta H_{\mathrm{local}}} c_{2}^{\dagger}\left(\tau_{8}\right) c_{1}^{\dagger}\left(\tau_{7}\right) c_{3}\left(\tau_{6}\right) c_{2}\left(\tau_{5}\right) c_{3}^{\dagger}\left(\tau_{4}\right) c_{1}\left(\tau_{3}\right) c_{2}^{\dagger}\left(\tau_{2}\right) c_{2}\left(\tau_{1}\right)\right)
$$

- For density-density interaction

The trace can be represented by overlapping "segments"
$\operatorname{Tr}\left(\mathcal{T} e^{-\beta H_{\text {local }}} c_{2}^{\dagger}\left(\tau_{8}\right) c_{1}^{\dagger}\left(\tau_{7}\right) c_{3}\left(\tau_{6}\right) c_{2}\left(\tau_{5}\right) c_{3}^{\dagger}\left(\tau_{4}\right) c_{1}\left(\tau_{3}\right) c_{2}^{\dagger}\left(\tau_{2}\right) c_{2}\left(\tau_{1}\right)\right)$
$\operatorname{Tr}\left(\mathcal{T} e^{-H\left(\beta-\tau_{8}\right)} c_{2}^{\dagger} e^{-H\left(\tau_{8}-\tau_{7}\right)} c_{1}^{\dagger} e^{-H\left(\tau_{7}-\tau_{6}\right)} c_{3} e^{-H\left(\tau_{6}-\tau_{5}\right)} c_{2} e^{-H\left(\tau_{5}-\tau_{4}\right)} c_{3}^{\dagger} \times\right.$

$$
\left.e^{-H\left(\tau_{4}-\tau_{3}\right)} c_{1} e^{-H\left(\tau_{3}-\tau_{2}\right)} c_{2}^{\dagger} e^{-H\left(\tau_{2}-\tau_{1}\right)} c_{2} e^{-H\left(\tau_{1}-0\right)}\right)
$$

- Density-density interaction,"segment picture" CT-HYB a lot faster
- General case.

$$
\begin{gathered}
\operatorname{Tr}\left(\mathcal{T} e^{-\beta H_{\text {local }}} \prod_{i=1}^{n} c_{a_{i}}^{\dagger}\left(\tau_{i}\right) c_{b_{i}}\left(\tau_{i}^{\prime}\right)\right) \\
H_{\mathrm{K}}=U \sum_{m} \hat{n}_{m \uparrow} \hat{n}_{m \downarrow}+U^{\prime} \sum_{m \neq m^{\prime}} \hat{n}_{m \uparrow} \hat{n}_{m^{\prime} \downarrow}+\left(U^{\prime}-J\right) \sum_{m<m^{\prime}, \sigma} \hat{n}_{m \sigma} \hat{n}_{m^{\prime} \sigma}+ \\
-J \sum_{m \neq m^{\prime}} d_{m \uparrow}^{+} d_{m \downarrow} d_{m^{\prime} \downarrow}^{+} d_{m^{\prime} \uparrow}+J \sum_{m \neq m^{\prime}} d_{m \uparrow}^{+} d_{m \downarrow}^{+} d_{m^{\prime} \downarrow} d_{m^{\prime} \uparrow}
\end{gathered}
$$

- Complex atom : this trace is the bottleneck
- Monte Carlo move. Insert or remove a pair of $\mathrm{c}^{+}, \mathrm{c}$ at any place...

Atomic correlators

- Monte Carlo move. Insert or remove a pair of $\mathrm{c}^{+}, \mathrm{c}$ at any place
- Algorithm question :
- I have a trace of a product of \mathbf{n} matrices. $\quad \operatorname{Tr}\left(\mathcal{T} e^{-\beta H_{\text {local }}} \prod_{i=1}^{n} c_{a_{i}}^{\dagger}\left(\tau_{i}\right) c_{b_{i}}\left(\tau_{i}^{\prime}\right)\right)$
\quad I insert/remove 2 matrices.
- How long does it take to recompute the trace?
- Log n if you use a balanced tree. E. Gull, PhD.

Atomic correlators

- In addition, controlled truncations on the tree (Yee et al., Sémon et al. 2014)
- Huge speed up, in particular at low temperatures
- Make calculation for 3, 5 bands feasible, with a general interaction.

TRIQS/CTHYB P. Seth et al. (2015)

- Sign problem
- Imaginary time. Analytic continuation.
- Inherently slow. Noise $\sim 1 / \sqrt{\text { Computing Time }}$
- Scaling with \# orbitals, \# sites.

Sign problem in QMC

- In some cases, there is no sign problem, i.e. $\quad \boldsymbol{s}=\boldsymbol{I}$
- Single band DMFT.
- Large clusters, more bands, spin-orbit : $\quad s \sim e^{-\beta L}$
- Example : large cluster \sim lattice problem
- Sign problem :
- can not really be predicted a priori
- is not physical
- depends on the basis, e.g. dimer studied above. Need to use the odd even basis.
- Usual QMC work in imaginary time/frequencies.
- Spectral representation

$$
\begin{aligned}
G\left(i \omega_{n}\right) & =\int d \epsilon \frac{A(\epsilon)}{i \omega_{n}-\epsilon}
\end{aligned} \quad A(\omega) \equiv-\frac{1}{\pi} \operatorname{Im} G^{R}\left(\omega+i 0^{+}\right)
$$

- Transport, response functions : need the real time A, not simply G, e.g. Cf example of lecture 2 for optical c-axis conductivity

$$
\sigma_{c}(\Omega)=\frac{2 e^{2} c}{\hbar a b} \int d \omega \frac{f(\omega)-f(\omega+\Omega)}{\Omega} \frac{1}{N} \sum_{\mathbf{k}} t_{\perp}^{2}(\mathbf{k}) A(\mathbf{k}, \omega) A(\mathbf{k}, \Omega+\omega)
$$

- Going from A to G is easy
- Going from G to A is very hard : ill-posed problem

Continuation methods

- Padé approximants
- Maximum entropy methods (MAXENT). Several variants
- Yield the most probable $A(\omega)$ given the $G(T)$, error bar and correlations.
- Only one true solution to this problem : develop/use other solvers which work directly in real time.
- Example. Cf lecture 2, 2 patch DCA. High quality comparison.

Padé vs DMRG solver
A. Wolf et al. 2014

Impurity solvers in the Hamiltonian form:

Exact diagonalization, NRG, DMRG

Hamiltonian representation of the Bath

- Represent the bath with a finite number of auxiliary sites

$$
\begin{gathered}
S=-\int_{0}^{\beta} d_{\sigma}^{\dagger}(\tau) G_{0 \sigma}^{-1}\left(\tau-\tau^{\prime}\right) d_{\sigma}\left(\tau^{\prime}\right)+\int_{0}^{\beta} d \tau U n_{d \uparrow}(\tau) n_{d \downarrow}(\tau) \\
H=\sum_{p \sigma} \tilde{\epsilon}_{p \sigma} \xi_{p \sigma}^{\dagger} \xi_{p \sigma}+\sum_{\sigma} \epsilon_{d} d_{\sigma}^{\dagger} d_{\sigma}+U n_{d \uparrow} n_{d \downarrow}+\sum_{p \sigma} \tilde{V}_{p \sigma}\left(\xi_{p \sigma}^{\dagger} d_{\sigma}+h . c .\right)
\end{gathered}
$$

- Exact Diagonalization (ED), NRG, DMRG.

Example: NRG vs CTQMC

- Im $\Sigma(\omega)$ by CTQMC (Werner's algorithm) and NRG for DMFT, I band, Bethe Lattice, Beta=400, U = 5.2 et $D=I$.
- Continued by Padé method to real axis from Matsubara $\operatorname{lm} \Sigma(\omega)$

ω

Approximated solvers

- Iterated Perturbation Theory (IPT)
- Anderson model : perturbation in U is regular (Yosida, Yamada, 70's.).
- Use first non-trivial order (Kotliar-Georges, 1992).

$$
\Sigma\left(i \omega_{n}\right) \simeq \frac{U}{2}+U^{2} \int_{0}^{\beta} d \tau e^{i \omega_{n} \tau} \hat{\mathscr{G}}(\tau)^{3}
$$

- NCA, OCA
- First/second bold diagram in the hybridisation expansion.
- Best close to the atomic limit
- Rotationally invariant slave bosons
- Generalization of slave bosons for multiorbital systems

Which solver should I use?

- CTQMC :
- Finite temperature. Flexible
- Potential sign problem. Imaginary time."Slow"
- DMRG, NRG :
- Real time
- Low T only, limited to $2 / 3$ bands ?
- Approximate solvers:IPT, NCA, Slave Bosons
- Very fast.To e.g. explore phase diagram.
- Not exact.

Thank you for your attention

