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• Why specific algorithm for DMFT effective impurities ?

• Continuous time Quantum Monte Carlo: CT-INT and CT-HYB
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Solving DMFT : iterative method 3
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Why do we need specific algorithms ?



Impurity model : non-DMFT case

• Anderson impurity in a metallic host (structureless bath)

• Typical energy scale of the bath Δ =  D ∼ eV  
very high energy scale (U.V. cut-off).

• Low energy, universal regime: separation of scales, scaling laws 
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DMFT baths have a low-energy structure

• Gapped bath (insulator, superconductor) : no Kondo effect

6

disappears continuously (at T=0) at a critical value
Uc2/D�2.92, as explained in more detail in Sec. VII.E.

2. Insulating phase

When U/t is large, we begin with a different ansatz
based on the observation that in the ‘‘atomic limit’’ t=0
(U/t=⌥), the spectral function has a gap equal to U . In
this limit the exact expression of the Green’s function
reads

G⇤ i�n↵at�
1/2

i�n⇥U/2
⇥

1/2
i�n⇤U/2

. (232)

Since ImG(�⇥i0⇥) also plays the role of the density of
states of the effective conduction electron bath entering
the impurity model, we have to deal with an impurity
embedded in an insulator [�(�=0)=0]. It is clear that an
expansion in powers of the hybridization t does not lead
to singularities at low frequency in this case. This is very
different from the usual expansion in the hybridization
V with a given (flat) density of states that is usually con-
sidered for an Anderson impurity in a metal. Here, t
also enters the conduction bath density of states (via the
self-consistency condition) and the gap survives an ex-
pansion in t/U . An explicit realization of this idea is to
make the following approximation for the local Green’s
function (Rozenberg, Zhang, and Kotliar, 1992):

G⇤ i�n↵�
1/2

G 0
⇤1⇤ i�n↵⇤U/2

⇥
1/2

G 0
⇤1⇤ i�n↵⇥U/2

, (233)

which can be motivated as the superposition of two mag-
netic Hartree-Fock solutions or as a resummation of an
expansion in �/U . This implies that G(i�)�i� for small

�, and the substitution into the self-consistency condi-
tion implies that G 0

�1�i� , which is another way of say-
ing that the effective bath in the Anderson model pic-
ture has a gap. We know from the theory of an
Anderson impurity embedded in an insulating medium
that the Kondo effect does not take place. The impurity
model ground state is a doubly degenerate local mo-
ment. Thus, the superposition of two magnetic Hartree-
Fock solutions is qualitatively a self-consistent ansatz. If
this ansatz is placed into Eq. (221), we are led to a
closed (approximate) equation for G(i�n):

D4G3⇤8D2�G2⇥4⇤4�2⇥D2⇤U2↵G⇤16��0.
(234)

This approximation corresponds to the first-order ap-
proximation in the equation of motion decoupling
schemes reviewed in Sec. VI.B.4. It is similar in spirit to
the Hubbard III approximation Eq. (173) (Hubbard,
1964), which would correspond to pushing this scheme
one step further. These approximations are valid for
very large U but become quantitatively worse as U is
reduced. They would predict a closure of the gap at
Uc�D for (234) (Uc�)D for Hubbard III). The fail-
ure of these approximations, when continued into the
metallic phase, is due to their inability to capture the
Kondo effect which builds up the Fermi-liquid quasipar-
ticles. They are qualitatively valid in the Mott insulating
phase however.

The spectral density of insulating solutions vanish
within a gap ⇤�g/2⌅�⌅⇥�g/2. Inserting the spectral
representation of the local Green’s function into the self-
consistency relation, Eq. (221) implies that ⌦(�+i0+)
must be purely real inside the gap, except for a
⇧-function piece in Im⌦ at �=0, with

Im⌦⇤�⇥i0⇥↵�⇤ ⌃2⇧⇤�↵ for ��⇥⇤�g/2,�g/2�
(235)

and that Re⌦ has the following low-frequency behavior:

Re⌦⇤�⇥i0⇥↵⇤U/2�
⌃2

�
⇥O⇤�↵. (236)

In these expressions, ⌃2 is given by

1
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⇥⌥

d⌅
⌃⇤⌅↵
⌅2 . (237)

⌃2 can be considered as an order parameter for the insu-
lating phase [the integral in Eq. (237) diverges in the
metallic phase]. A plot of the spectral function and self-
energy in the insulating phase, obtained within the iter-
ated perturbation theory approximation, is also dis-
played in Figs. 30 and 31. The accuracy of these results is
more difficult to assess than for the metal, since exact
diagonalization methods are less efficient in this phase.
A plot of the gap �g vs U estimated by the iterated
perturbation theory and exact diagonalization is given in
Fig. 32. Within both methods, the insulating solution is
found to disappear for U⌅Uc1(T�0), with Uc1

ED

� 2.15D (while the iterated perturbation theory method
yields Uc1

IPT � 2.6D). As discussed below in more detail
(Sec. VII.F), the precise mechanism for the disappear-

FIG. 30. Local spectral density  D⌃(�) at T=0, for several
values of U , obtained by the iterated perturbation theory ap-
proximation. The first four curves (from top to bottom, U/D
=1,2,2.5,3) correspond to an increasingly correlated metal,
while the bottom one (U/D=4) is an insulator.

64 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

DMFT bath evolution close  
to Mott transition

• Cluster DMFT : bath can have pseudo-gap

• DMFT bath is self-consistently determined  
and has a structure at low energy

A. Georges et al., Rev. Mod. Phys. 68, 13, (1996)

metal

insulator



Field theory methods

• Integrability (Bethe Ansatz) in the universal regime  
A. Tsvelik, P. Wiegmann/ N. Andrei,1980;  
Thermodynamics but Green function very hard to compute. 

• Boundary Conformal Field Theory Cardy; Affleck, Ludwig, 1991  
At low-energy fixed point. 

• BUT both methods starts from a flat band.
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Impurity solvers : a rich toolbox

• Continuous Time Quantum Monte Carlo family (CT-QMC)

• Algorithms based in Hamiltonian form

• Exact diagonalization (ED)

• Numerical Renormalization group (NRG)

• Density Matrix Renormalization group (DMRG).

• Approximate solvers :

• Iterated Perturbation Theory (IPT)

• NCA family (NCA, OCA, …)

• Slave boson technique.
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Quantum Monte Carlo



• Principle : use a Markov chain in configuration space.

• Average replaced by average over the Markov chain.

• Transition rate Wx→y : probability to go from x to y 

• Detailed balance : 

• Ergodicity property :  
It is possible to reach y from x, ∀x,y in a finite number of steps.

Monte Carlo sampling 10

• Partition function and operator averaging :     (assume p(x) >0) 

Z =
�

C
dx p(x), �A⇥ =

1
Z

�

C
dx A(x)p(x)

Cf Lode’s talk

Configuration space 
Probability of configuration x  
e.g. in classical model :  p(x) � e��E(x)

Wx�y

Wy�x
=

p(y)
p(x)



Metropolis algorithm

• To build the Markov chain:

• Propose moves in the configuration space 

• Accept them with some probability, such that :

11

Proposition  
probability  
(chosen)

Acceptance  
probability  
(computed)

N. Metropolis et al. J. Chem. Phys. 1953

Wx�y = W prop
x�y �W acc

x�y
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x�y ⇥ min

�
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p(y)W prop
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x�y⇧ ⌅⇤ ⌃
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The sign problem 

• The denominator (average of sign (p(x)) can decay exponentially as 
temperature is lowered or in large volume limit.

• The QMC is correct if <sign>≠1, but becomes untractable when 
<sign>≈0 (large error bars). 

• A major limitation of Quantum Monte Carlo (specially for fermions)

• The sign problem depends on the basis/rewriting of Z  !
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• What if p(x) is not always positive ? Use |p(x)| as the probability !

�A⇥ =
1
Z

⌥

C
dx A(x)p(x) =

⌃
C dx

⌅
A(x) sign(p(x))

⇧⇤⇤p(x)
⇤⇤

⌃
C dx

�
sign(p(x))

⇥⇤⇤p(x)
⇤⇤



Monte Carlo 

• A QMC algorithm : 

• Rewrite Z, ideally as a sum of positive terms.

• Find local ergodic moves

• Advantages : 

• QMC is a very flexible technique

• QMC is massively parallel by construction.

• Drawbacks : 

• Convergence is slow, like 1/√time

• Sign problem may be severe !
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Monte Carlo is just a technique to compute sums.  
How to rewrite Z, which move to use, etc... is your choice !



Continuous Time QMC

• Perform an expansion in a coupling constant and sum it with MC

• Original idea by N. Prokofiev : continuous time QMC (1996)

• For impurity problems :

• Expansion in U  : CT-INT  
A.N. Rubtsov et al., Phys. Rev. B 72, 035122 (2005) 

• Expansion in Δ(ω), around the atomic limit : CT-HYB  
P.  Werner, A. Comanac, L. de’ Medici, M. Troyer, A. J. Millis, PRL 97, 076405 (2006); P . 
Werner, A.J. Millis, Phys. Rev. B 74, 155107 (2006)

• Continuous time determinantal  : CT-AUX  
E.Gull, P. Werner, O.P., M. Troyer EPL (2008) 
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Continuous time QMC : principle
• Write a perturbative expansion of the partition function :
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x = (n, �, ⇥1, ⇥2, ...⇥n)

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  
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C. Diagrammatic Monte Carlo – the sampling of path
integrals and other diagrammatic expansions

The partition function Eq. 16 may be expressed as a
sum of integrals in a diagrammatic expansion:

Z =
∞∑

k=0

∑

γ∈Γk

∫ β

0
dτ1 . . .

∫ β

0
dτkw(k, γ, τ1, . . . , τk), (29)

which has the form of Eq. (17). The individual configu-
rations are of the form

x = (k, γ, (τ1, . . . , τk)), (30)

where k is the expansion or diagram order and
τ1, . . . , τk ∈ [0, β) are the times of the k vertices in the
path. The parameter γ ∈ Γk includes all discrete vari-
ables, such as spin, orbital, lattice site, and auxiliary
spins at the interaction vertices.

A configuration x has a weight

p(x) = w(k, γ, τ1, . . . , τk)dτ1 · · · dτk, (31)

which we will assume to be non-negative for now. The
case of negative weights is discussed in Sec. II.D. Al-
though these weights are well-defined probability den-
sities they involve infinitesimals dτ , which one might
worry could cause difficulties with proposal and accep-
tance of steps in the random walk in configuration space.
As (Beard and Wiese, 1996; Prokof’ev et al., 1996, 1998)
showed, this is not the case.

The various algorithms reviewed here differ in the rep-
resentations, weights, and updates but all express the
partition function in the general form (29). To illustrate
the Monte-Carlo sampling of such continuous-time parti-
tion function expansions and in particular to demonstrate
that the infinitesimal does not cause problems, we start
with a very simple partition function

Z =
∞∑

k=0

∫ β

0
dτ1

∫ β

0
dτ2 · · ·

∫ β

0
dτk

w(k)

k!
(32)

which using time ordering can be rewritten as

Z =
∞∑

k=0

∫ β

0
dτ1

∫ β

τ1

dτ2 · · ·
∫ β

τk−1

dτkw(k). (33)

The distribution describing the probability of a dia-
gram of order k with vertices at times {τj} is (here we
make the times explicit)

p((k, τ1, . . . , τk)) = w(k)
k∏

i=1

dτi (34)

In the following we will always assume time-ordering τ1 ≤
τ2 ≤ . . . ≤ τk and visualize the configurations using a
diagrammatic representation as in Fig. 1.

Updates of the configurations that are typically re-
quired in diagrammatic Monte Carlo codes involve:

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

a)

0 β

b)

0 β
τ1

c)

0 β
τ1 τ2

d)

0 β
τ1 τ2 τ3

FIG. 1 Diagrammatic representation of configurations x =
{(k; τ1, . . . τk)} ∈ C showing examples with orders k = 0, 1, 2, 3
and vertices (represented by dots) at times τ1, . . . , τ3.

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  
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τ1 τ3 τ2
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FIG. 2 An insertion update (top to bottom) inserting a vertex
at time τ3 and the corresponding removal update (bottom to
top), removing the interaction vertex at τ3.

1. updates that increase the order k by inserting an
additional vertex at a time τ .

2. updates that decrease the order k by removing a
vertex τj .

These insertion and removal updates are necessary to sat-
isfy the ergodicity requirement and are often sufficient:
we can reach any configuration from another one, simply
removing all the existing vertices and then inserting new
ones. Additional updates keeping the order k constant
are typically not required for ergodicity but sometimes
are added to speed up equilibration and sampling. In
the following we will focus on the insertion and removal
updates, illustrated in Fig. 2.

For the insertion let us start from a configuration
(k, τ⃗) = (k, τ1, . . . , τk) of order k. We propose to insert a
new vertex at a time τ uniformly chosen in the interval
[0, β), to obtain a new time-ordered configuration (k +
1, τ⃗ ′) = (k + 1, τ1, . . . , τ, . . . , τk) ≡ (k + 1, τ ′

1, . . . , τ
′
k+1).

The proposal rate for this insertion is given by the prob-
ability density

W prop
(k,τ⃗),(k+1,τ⃗ ′) =

dτ

β
. (35)

The reverse move is the removal of a randomly chosen
vertex. The probability of removing a particular vertex
to go back from (k + 1, τ⃗ ′) to (k, τ⃗) is just one over the
number of available vertices:

W prop
(k+1,τ⃗ ′),(k,τ⃗) =

1

k + 1
. (36)

To obtain the Metropolis acceptance rates we first cal-

Representation of the configurationsConfigurations

H = Ha + Hb

Z = TrT⇤e��Ha exp

�
�

⌅ �

0
d⇥Hb(⇥)

⇥

=
⇤

n⇥0

(�1)n

⌅ �

0
d⇥1 . . .

⌅ �

⇤n�1

d⇥n Tr
⇧
e��HaHb(⇥n)Hb(⇥n�1) . . .Hb(⇥1)

⌃

=
⇤

n⇥0

⇤

⇤1<⇤2<...⇤n

⇤

⇥⇤�n

(�⇤ )nw(n, �, ⇥1, . . . , ⇥n) �⌥ ⌦
p(x)

=
⇤

x⇤C
p(x)



Continuous time QMC : principle (II)

• Move : add/remove one interaction term (= change n by 1 ), e.g.  
x = (n, ...) configuration with n vertices  
y = (n+1, ...) configuration with n+1 vertices

16

A CT-QMC move

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  
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C. Diagrammatic Monte Carlo – the sampling of path
integrals and other diagrammatic expansions

The partition function Eq. 16 may be expressed as a
sum of integrals in a diagrammatic expansion:

Z =
∞∑

k=0

∑

γ∈Γk

∫ β

0
dτ1 . . .

∫ β

0
dτkw(k, γ, τ1, . . . , τk), (29)

which has the form of Eq. (17). The individual configu-
rations are of the form

x = (k, γ, (τ1, . . . , τk)), (30)

where k is the expansion or diagram order and
τ1, . . . , τk ∈ [0, β) are the times of the k vertices in the
path. The parameter γ ∈ Γk includes all discrete vari-
ables, such as spin, orbital, lattice site, and auxiliary
spins at the interaction vertices.

A configuration x has a weight

p(x) = w(k, γ, τ1, . . . , τk)dτ1 · · · dτk, (31)

which we will assume to be non-negative for now. The
case of negative weights is discussed in Sec. II.D. Al-
though these weights are well-defined probability den-
sities they involve infinitesimals dτ , which one might
worry could cause difficulties with proposal and accep-
tance of steps in the random walk in configuration space.
As (Beard and Wiese, 1996; Prokof’ev et al., 1996, 1998)
showed, this is not the case.

The various algorithms reviewed here differ in the rep-
resentations, weights, and updates but all express the
partition function in the general form (29). To illustrate
the Monte-Carlo sampling of such continuous-time parti-
tion function expansions and in particular to demonstrate
that the infinitesimal does not cause problems, we start
with a very simple partition function

Z =
∞∑

k=0

∫ β

0
dτ1

∫ β

0
dτ2 · · ·

∫ β

0
dτk

w(k)

k!
(32)

which using time ordering can be rewritten as

Z =
∞∑

k=0

∫ β

0
dτ1

∫ β

τ1

dτ2 · · ·
∫ β

τk−1

dτkw(k). (33)

The distribution describing the probability of a dia-
gram of order k with vertices at times {τj} is (here we
make the times explicit)

p((k, τ1, . . . , τk)) = w(k)
k∏

i=1

dτi (34)

In the following we will always assume time-ordering τ1 ≤
τ2 ≤ . . . ≤ τk and visualize the configurations using a
diagrammatic representation as in Fig. 1.

Updates of the configurations that are typically re-
quired in diagrammatic Monte Carlo codes involve:
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τ1 τ2
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τ1 τ2 τ3

FIG. 1 Diagrammatic representation of configurations x =
{(k; τ1, . . . τk)} ∈ C showing examples with orders k = 0, 1, 2, 3
and vertices (represented by dots) at times τ1, . . . , τ3.

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

0 β
τ1 τ2

0 β
τ1 τ3 τ2

rem
o
v
e

in
sert

FIG. 2 An insertion update (top to bottom) inserting a vertex
at time τ3 and the corresponding removal update (bottom to
top), removing the interaction vertex at τ3.

1. updates that increase the order k by inserting an
additional vertex at a time τ .

2. updates that decrease the order k by removing a
vertex τj .

These insertion and removal updates are necessary to sat-
isfy the ergodicity requirement and are often sufficient:
we can reach any configuration from another one, simply
removing all the existing vertices and then inserting new
ones. Additional updates keeping the order k constant
are typically not required for ergodicity but sometimes
are added to speed up equilibration and sampling. In
the following we will focus on the insertion and removal
updates, illustrated in Fig. 2.

For the insertion let us start from a configuration
(k, τ⃗) = (k, τ1, . . . , τk) of order k. We propose to insert a
new vertex at a time τ uniformly chosen in the interval
[0, β), to obtain a new time-ordered configuration (k +
1, τ⃗ ′) = (k + 1, τ1, . . . , τ, . . . , τk) ≡ (k + 1, τ ′

1, . . . , τ
′
k+1).

The proposal rate for this insertion is given by the prob-
ability density

W prop
(k,τ⃗),(k+1,τ⃗ ′) =

dτ

β
. (35)

The reverse move is the removal of a randomly chosen
vertex. The probability of removing a particular vertex
to go back from (k + 1, τ⃗ ′) to (k, τ⃗) is just one over the
number of available vertices:

W prop
(k+1,τ⃗ ′),(k,τ⃗) =

1

k + 1
. (36)

To obtain the Metropolis acceptance rates we first cal-

W prop
x�y =

��

�
W prop

y�x =
1

n + 1

Rx�y =
p(y)W prop

y�x

p(x)W prop
x�y

=
w(y)(�� )n+1

w(x)(�� )n

�

�� (n + 1)

The algorithm can be formulated directly in continuous time 

• The Metropolis rate has a finite limit. Prokofiev (1996)  



17Which perturbative expansion ?

• CT-INT: Expansion in power of the interactions

• CT-HYB : Expansion in power of hybridization (around atomic limit)

a,b = 1,N : degree of freedom (e.g. spin, orbital index, ...)

Se� = �
� �

0
c†a(⇤)G�1

0ab(⇤ � ⇤ ⇥)cb(⇤ ⇥) +
� �

0
d⇤Hlocal({c†a, ca})(⇤)

G�1
0ab(i⌅n) = (i⌅n + µ)�ab ��ab(i⌅n)

Bath

Interaction



Expansion in interaction

• Standard perturbative technique at finite temperature.
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Z

Z0
= 1 � U

� �

0
d�1 ⇥n�(�1)n⇥(�1)⇤0 +

U2

2

�� �

0
d�1d�2 ⇥T⇥n�(�1)n⇥(�1)n�(�2)n⇥(�2)⇤0 . . .

• Using Wick Theorem :

Se� = �
�

⇥=⇥,⇤

⇥⇥ �

0
d�d� ⌅c†⇥(�)G�1

0⇥ (� � � ⌅)c⇥(�) +
⇥ �

0
d�Un⇥(�)n⇤(�)

Z

Z0
=

�

n⇥0

1
n!

⇤ �

0
d�1 . . . d�n (�U)n

⇥

⇥=⇤,⌅
det

1�i,j�n

⌅
G0

⇥(�i � �j)
⇧

� ⌥⌃  
w(n, {�i})

• With TRIQS (&Hands on) package : a demo CT-INT code, 1 band.



Expansion in hybridization 19

• Expansion in hybridization :

• w is positive in single impurity problem.

• Hlocal can be anything (but we need to compute the Trace … )

Se� = �
� �

0
c†a(⇤)G�1

0ab(⇤ � ⇤ ⇥)cb(⇤ ⇥) +
� �

0
d⇤Hlocal({c†a, ca})(⇤)

G�1
0ab(i⌅n) = (i⌅n + µ)�ab ��ab(i⌅n)

Z =
⇧

n⇤0

⌥

<

n⌃

i=1

d�id� ⌅i
⇧

ai,bi=1,N

det
1⇥i,j⇥n

�
�ai,bj (�i � � ⌅j)

⇥
Tr

⇤
T e��Hlocal

n⌃

i=1
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• Expansion in hybridization :

• Green function computation (or higher order correlations functions): 
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calculate the determinant ratios and the new enlarged
(reduced) matrices in a time O!k2". We store and manipu-
late M, the inverse of Eq. (5), because M allows easy
access to the determinant ratios in Eqs. (6) and (7) and is
required for measuring the Green function, since

 G!!" #
!
1

"

Xk

i#1

Xk

j#1

Mj;i!!!; !ei $ !sj"
"
; (8)

 !!!; !0" #
#
#!!$ !0" !0 > 0
$#!!$ !0 $ "" !0 < 0

: (9)

The end points G!0" and G!"" can be measured accurately
from the average total length of the segments.

In the form given here, the algorithm generalizes
straightforwardly to any model with interaction terms
which are diagonal in an occupation number basis (for
models with exchange, see Ref. [14]). One simply intro-
duces one collection of segments for each spin or orbital
state, and the weight of a configuration now also depends
on the segment overlap. For example, in the one-orbital
Hubbard model with on-site interaction U, there is one
collection of segments for spin-up and one for spin-down,
while in Eqs. (6) and (7) one has to add a factor
exp!$#ovU" on the right-hand side, where #ov denotes
the change in overlap between up and down segments.

We have used the new method to study the paramagnetic
phase of the Hubbard model with semicircular density of
states of bandwidth 4t, for interactions of the order of the
Mott critical value Uc2 and temperatures as low as "t #
400. For this model the self-consistency condition reduces
to F!!" # t2G!$!". Simulations for temperatures down to
"t % 50 can be run on a laptop. For calculations at "t #
400, we typically used 10 CPU hours for each iteration
in order to accurately resolve the short- and long-time
behavior.

Figure 2 shows the impurity model Green function for
U=t # 3:5

$$$
2

p
, "t # 20, 31.4, 200, and 400 and n # 1 (half

filling). The lower two temperatures are out of reach of the
Hirsch-Fye algorithm. We collected the data on a grid of
104 points for "t # 200, 400, and 103 points for "t # 20,
31.4. The lines with symbols show that the method accu-
rately captures the steep short-time drop of G; the lines
without symbols demonstrate clearly the difference in
long-time behavior between the insulating (high-T) and
metallic (low-T) solutions.

Despite the almost perfect resolution, the typical size, k,
of the matrices, M, which are generated during the simu-
lation, remains reasonable even at low temperatures. This
property explains the superior performance of the strong-
coupling expansion method. Figure 3 shows the probability
distribution p!k" for "t # 100 and different values of the
interaction strength. While the peak value of the distribu-
tion is proportional to ", it shifts to lower order as the
interaction strength is increased, in contrast to Hirsch-Fye
or the method of Ref. [13], where the matrix size scales

approximately as 5"U and 0:5"U, respectively. The inset
of Fig. 3 shows that the linear size of the matrix in our
method can easily be a factor 100 smaller than in a Hirsch-
Fye calculation or a factor 10 smaller than in the weak-
coupling approach of Ref. [13]. The cubic scaling of the
computational effort with matrix size implies a dramati-
cally improved efficiency at couplings of the order of the
Mott critical value, making low T behavior accessible.

To verify the accuracy of the method we show in Fig. 4
the kinetic energy K # 2t2

R"
0 d!G!!"G!$!" obtained via

the new approach, the exact diagonalization method [15],
and the Hirsch-Fye method. The results are plotted against
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FIG. 2. Green functions for n # 1, U=t # 3:5
$$$
2

p
, "t # 400,

200, 31.4, and 20. Lines without symbols (upper and right axes)
show G!!" on a semilog scale over the wide time interval ["=2,
"] revealing marked differences between metallic ("t # 200,
400) and insulating ("t # 20, 31.4) solutions. Lines with sym-
bols (lower and left axes) show the same data on a linear scale in
the very narrow ! range [0, "=2000], revealing the accurate
representation of the rapid drop of G!!".
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Ref. [13] (%0:5"U).

PRL 97, 076405 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
18 AUGUST 2006

076405-3

Histogram of expansion order  
(CT-HYB, DMFT, βt=100, δ=0, various U)

5

0 10 20 30 40 50 60 70
!t

0

50

100

150

M
at

ri
x

 S
iz

e

Weak Coupling Algorithm
Hybridization Expansion
Hirsch Fye

0 1 2 3 4 5 6 7
U/t

0

50

100

M
a
tr

ix
 S

iz
e

Weak Coupling Algorithm
Hybridization Expansion

FIG. 2: Scaling of the matrix size with inverse temperature
and interaction strength. Upper panel: temperature depen-
dence for U/t = 4. In the case of Hirsch-Fye, the resolution
N = βU has been chosen as a compromise between reasonable
accuracy and acceptable speed, while the average matrix size
is plotted for the continuous-time solvers. Lower panel: de-
pendence on U/t for fixed βt = 30. The solutions for U ≤ 4.5
are metallic, while those for U ≥ 5.0 are insulating. The much
smaller matrix size in the relevant region of strong interactions
is the reason for the higher efficiency of the hybridization ex-
pansion method.

Spin and charge susceptibilities, or more generally
the density-density correlators can be obtained in-
dependently and accurately (and with negligible
computational effort) from the segment configurations.
These segments, shown in the lower panel of Fig. 1,
represent the occupation of the orbital.

IV. RESULTS

A. Matrix size

For all three algorithms, the computational effort
scales as the cube of the matrix size, which for the
Hirsch-Fye solver is determined by the time discretiza-
tion ∆τ = β/N and in the case of the continuous-time

solvers is determined by the perturbation order k, which
is peaked roughly at the mean value determined by the
probability distribution p(k). In Fig. 2, we plot these
matrix sizes as a function of inverse temperature β for
fixed U/t = 4 and as a function of U/t for fixed βt = 30.
All our simulation results are for a semi-circular density
of states with band-width 4t.

It is obvious from the upper panel of Fig. 2 that the
matrix size in all three algorithms scales linearly with β.
The Hirsch-Fye data are for N = βU , which is apparently
a common choice, although Figs. 3 and 5 show that it
leads to considerable systematic errors. Thus, the grid
size should in fact be chosen much larger (N ! 5βU).

While the matrix size in the weak coupling approach
is approximately proportional to U/t, as in Hirsch-Fye,
the U -dependence of the hybridization expansion algo-
rithm is very different: a decrease in average matrix size
with increasing U/t leads to much smaller matrices in
the physically interesting region 4 " U/t " 6, where the
Mott transition occurs. The results in Fig. 2 and the
cubic dependence of the computational effort on matrix
size essentially explain why the continuous-time solvers
are much more powerful than Hirsch-Fye and why the
hybridization expansion is best suited to study strongly
correlated systems.

There is of course a prefactor to the cubic scaling,
which depends on the computational overhead of the dif-
ferent algorithms and on the details of the implementa-
tion. Blümer [16] has demonstrated substantial optimiza-
tions of the Hirsch-Fye code and has in particular shown
that extrapolating results at non-zero time step ∆τ to the
∆τ = 0 limit considerably improves the accuracy. Of the
continuous time codes investigated here, only the weak
coupling results have been optimized. We estimate that
similar modifications in the code for the hybridization ex-
pansion algorithm would provide a speed-up of at least
a factor of 10. However, the results presented here in-
dicate large enough difference between the methods that
the effects of optimization can be ignored.

B. Accuracy for constant CPU time

The three quantum Monte Carlo algorithms considered
in this study work in very different ways. Not only are
the configuration spaces and hence the update procedures
entirely different, but also the measurements of the Green
functions and other observables.

In order to study the performance of the different im-
purity solvers, we therefore decided to measure the accu-
racy to which physical quantities can be determined for
fixed CPU time (in this study 7h on a single Opteron
244 per iteration). This is the question which is rele-
vant to people interested in implementing either of the
methods and avoids the tricky (if not impossible) task of
separating the different factors which contribute to the
uncertainty in the measured results. Because the vari-
ance of the observables measured in successive iterations

Typical matrix size vs β 
(DMFT, U/t=1)

<n>

• Complexity ≈ <n>^3 
• All diverge like 1/T (singular at T=0), but huge prefactor differences

CT-QMC is much more efficient than previous algorithm

E. Gull et al, Phys. Rev. B 76, 235123 (2007)

P. Werner et al, Phys. Rev. Lett 97, 076405 (2006)
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• Expansion in hybridization :

• Tr are correlators of the atomic problem

• Algorithmic issue : how to compute quickly atomic correlators ?
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• For density-density interaction
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6 Georges, de’ Medici& Mravlje

many-body atomic hamiltonian for t2g states takes the Kanamori form [29] :

HK = U
X

m

n̂m"n̂m# + U 0
X

m 6=m0

n̂m"n̂m0# + (U 0 � J)
X

m<m0,�

n̂m�n̂m0� +

�J
X

m 6=m0

d+m"dm# d
+
m0#dm0" + J

X

m 6=m0

d+m"d
+
m# dm0#dm0" (2)

The first three terms involve only density-density interactions, between electrons with opposite

spins in the same orbital (U), opposite spins in di↵erent orbitals (U 0 < U) and parallel spins in

di↵erent orbitals. The latter case has the smallest coupling U 0 � J , reflecting Hund’s first rule.

For later use, it will be useful to consider a generalization of this Kanamori multi-orbital hamil-

tonian to a form in which all coupling constants are independent:

HGK = U
X

m

n̂m"n̂m# + U 0
X

m 6=m0

n̂m"n̂m0# + (U 0 � J)
X

m<m0,�

n̂m�n̂m0� +

�JX
X

m 6=m0

d+m"dm# d
+
m0#dm0" + JP

X

m 6=m0

d+m"d
+
m# dm0#dm0" (3)

Defining the total charge, spin and orbital isospin generators (~⌧ are the Pauli matrices):

N̂ =
X

m�

n̂m� , ~S =
1

2

X

m

X

��0

d†m�~⌧��0dm�0 , Lm = i
X

m0m00

X

�

✏mm0m00d†m0�dm00�, (4)

the generalized Kanamori hamiltonian (3) can be rewritten as:

HGK = 1
4(3U

0 � U)N̂(N̂ � 1) + (U 0 � U)~S2 + 1
2(U

0 � U + J)~L2 + (74U � 7
4U

0 � J)N̂ +

+(U 0 � U + J + JP )
P

m 6=m0 d+m"d
+
m# dm0#dm0" + (J � JX)

P
m 6=m0 d+m"dm# d

+
m0#dm0" (5)

It thus has full U(1)C ⌦ SU(2)S ⌦ SO(3)O symmetry provided JX = J and JP = U � U 0 � J ,

in which case the hamiltonian reduces to the first line in Eq. (5). We shall loosely refer to such

symmetry as ‘rotational invariance’. Note that rotational invariance of HGK does not imply that

U 0 and U are related. In particular for JX = J and U 0 = U � J (JP = 0), one obtains a minimal

rotationally-invariant hamiltonian (U � 3J/2)N̂(N̂ � 1)/2� J ~S2 involving only N̂2 and ~S2, to be

discussed in more details below (Eqs. (12) and (27)). This actually holds for an arbitrary number

M of orbitals.

Using (5), the physical t2g hamiltonian (2) which has JX = JP = J is seen to be rotationally

invariant provided:

U 0 = U � 2J (6)

in which case the hamiltonian takes the form:

Ht
2g = (U � 3J)

N̂(N̂ � 1)

2
� 2J ~S2 � J

2
~L2 +

5

2
J N̂ (7)

In this form, Hund’s first two rules (maximal S, then maximal L) are evident. The spectrum of

this hamiltonian is detailed in Table 1.

Condition (6) is realized if U,U 0, J are calculated assuming a spherically symmetric interaction

and the t2g wave-functions resulting from simple crystal-field theory. In this approximation, these

• Take one of these correlators
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• For density-density interaction 
The trace can be represented by overlapping “segments”
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• Density-density interaction, “segment picture” CT-HYB a lot faster
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• General case.
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6 Georges, de’ Medici& Mravlje

many-body atomic hamiltonian for t2g states takes the Kanamori form [29] :

HK = U
X

m

n̂m"n̂m# + U 0
X

m 6=m0

n̂m"n̂m0# + (U 0 � J)
X

m<m0,�

n̂m�n̂m0� +

�J
X

m 6=m0

d+m"dm# d
+
m0#dm0" + J

X

m 6=m0

d+m"d
+
m# dm0#dm0" (2)

The first three terms involve only density-density interactions, between electrons with opposite

spins in the same orbital (U), opposite spins in di↵erent orbitals (U 0 < U) and parallel spins in

di↵erent orbitals. The latter case has the smallest coupling U 0 � J , reflecting Hund’s first rule.

For later use, it will be useful to consider a generalization of this Kanamori multi-orbital hamil-

tonian to a form in which all coupling constants are independent:

HGK = U
X

m

n̂m"n̂m# + U 0
X

m 6=m0

n̂m"n̂m0# + (U 0 � J)
X

m<m0,�

n̂m�n̂m0� +

�JX
X

m 6=m0

d+m"dm# d
+
m0#dm0" + JP

X

m 6=m0

d+m"d
+
m# dm0#dm0" (3)

Defining the total charge, spin and orbital isospin generators (~⌧ are the Pauli matrices):

N̂ =
X

m�

n̂m� , ~S =
1

2

X

m

X

��0

d†m�~⌧��0dm�0 , Lm = i
X

m0m00

X

�

✏mm0m00d†m0�dm00�, (4)

the generalized Kanamori hamiltonian (3) can be rewritten as:

HGK = 1
4(3U

0 � U)N̂(N̂ � 1) + (U 0 � U)~S2 + 1
2(U

0 � U + J)~L2 + (74U � 7
4U

0 � J)N̂ +

+(U 0 � U + J + JP )
P

m 6=m0 d+m"d
+
m# dm0#dm0" + (J � JX)

P
m 6=m0 d+m"dm# d

+
m0#dm0" (5)

It thus has full U(1)C ⌦ SU(2)S ⌦ SO(3)O symmetry provided JX = J and JP = U � U 0 � J ,

in which case the hamiltonian reduces to the first line in Eq. (5). We shall loosely refer to such

symmetry as ‘rotational invariance’. Note that rotational invariance of HGK does not imply that

U 0 and U are related. In particular for JX = J and U 0 = U � J (JP = 0), one obtains a minimal

rotationally-invariant hamiltonian (U � 3J/2)N̂(N̂ � 1)/2� J ~S2 involving only N̂2 and ~S2, to be

discussed in more details below (Eqs. (12) and (27)). This actually holds for an arbitrary number

M of orbitals.

Using (5), the physical t2g hamiltonian (2) which has JX = JP = J is seen to be rotationally

invariant provided:

U 0 = U � 2J (6)

in which case the hamiltonian takes the form:

Ht
2g = (U � 3J)

N̂(N̂ � 1)

2
� 2J ~S2 � J

2
~L2 +

5

2
J N̂ (7)

In this form, Hund’s first two rules (maximal S, then maximal L) are evident. The spectrum of

this hamiltonian is detailed in Table 1.

Condition (6) is realized if U,U 0, J are calculated assuming a spherically symmetric interaction

and the t2g wave-functions resulting from simple crystal-field theory. In this approximation, these
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• Monte Carlo move. Insert or remove a pair of c+, c at any place…

• Complex atom :  this trace is the bottleneck
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• Monte Carlo move. Insert or remove a pair of c+, c at any place

• Algorithm question : 

• I have a trace of a product of n matrices.  
I insert/remove 2 matrices.

• How long does it take to recompute the trace ?

• Log n if you use a balanced tree.
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Figure 4: (Color online) The representation of a configuration by a tree. Each node
represents an operator at the time that determines the node’s key. The nodes are sorted
according to decreasing time to reflect the time-ordering of the trace. When the removal
of the pair of operators at ⌧ = 33.88 and ⌧ = 6.65 (highlighted in green) is proposed,
only the contents (specifically the partial product of matrices) of the nodes between
these nodes up to the root node at ⌧ = 26.42 (highlighted in red) need to be updated.
Specifically, the matrix stored at each node contains the product of the partial product
on each of its subtree nodes, the operator of the node itself and the respective time
evolution operators as shown in the figure.

We implement the left-leaning red-black tree (LLRBT), as explained in Refs. 24, 25.
Our C++ implementation of the LLRBT is adapted from the Java code given in Ref. 26.

In particular, the basic implementation of a LLRBT was adapted to minimise the
rebalancing of the tree for a Metropolis Monte Carlo algorithm in which attempted
moves are not always accepted. At each proposed Monte Carlo step, we add and/or
remove nodes in the tree and determine the corresponding trace without rebalancing the
tree. If the proposed move is accepted, the tree is balanced.

As seen in Fig. 4, the evaluation of a single insertion/removal requires at most log
2

(K)
matrix products (i.e., the height of the tree from the root node to the deepest nodes)
where K is the order of the configuration. The cost of the trace computation scales
logarithmically with the perturbation order of the configuration rather than linearly in
the linear algorithm.

The average perturbation order of the partition function increases approximately
linearly with the inverse temperature � as shown in Ref. 13 and in Fig. 5. At low �,
the cost of computing the trace dominates over that of the determinant. For su�ciently
large �, we expect that the computation of the determinants, which scales as K3, to
dominate in each Monte Carlo step.

14

E. Gull, PhD.

TRIQS/CTHYB  P. Seth et al. (2015)
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• In addition, controlled truncations on the tree  
(Yee et al., Sémon et al. 2014)

• Huge speed up, in particular at low temperatures

• Make calculation for 3, 5 bands feasible, with a general interaction.
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Figure 3: (Color online) Scaling of computational time with the inverse temperature �
for a system with three electrons in five bands in a Bethe lattice with a fully rotationally-
invariant Hamiltonian for two algorithms: a) the linear case in which the trace is recom-
puted from the full linear chain of operator matrices and b) the tree algorithm proposed
here, in which the number of matrix products necessary is reduced. The overall scaling
depends both on the scaling of the tree (O(log

2

�)) and that of the determinants (O(�3)).
The same number of Monte Carlo steps is used in all calculations.

Further e�ciency gains are also made by using bound properties of the trace to quickly
reject proposed moves [17]. Additionally, by summing over the blocks that contribute
to the trace in order of increasing importance (i.e., increasing energies), one is able
to truncate the trace evaluation once further contributions are smaller than machine
precision [15].

Each configuration in the Markov chain is described by a tree with operators as nodes
consisting of a key-value pair. The key, based on which the tree is sorted, is given by
the imaginary time ⌧ of the operator. The value consists of the operator and the matrix
product of the subtree (using a block structure). The tree for a configration is depicted
in Fig. 4.

13

Figure 6: (Color online) The scaling of the cost of solving the impurity problem for
Kanamori and fully rotationally-invariant Slater Hamiltonians with the inverse temper-
ature �. The same number of Monte Carlo steps is used in all calculations.

6. Four-operator moves and ergodicity considerations

Introduction of more complex moves beyond the commonly used insertion/removal
of a single pair of operators were shown to be important in symmetry-broken cases [19].
We have implemented Monte Carlo moves in which four operators are simulataneously
inserted/removed, and moreover, we show that such moves are crucial for proper sampling
of the configuration space even in cases without symmetry-breaking. One example is a
two-band Kanamori model with o↵-diagonal components in the hybridization function.
In Fig. 7, we show the results of the calculation without double moves, with double moves
and using exact diagonalisation [27]. When double moves are not used, the results are
clearly incorrect. The use of double moves is necessary to arrive at the correct result.
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Limitations of CT-QMC

• Sign problem

• Imaginary time.  Analytic continuation.

• Inherently slow. Noise ∿ 1/√Computing Time

• Scaling with # orbitals, # sites.
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Sign problem in QMC

• In some cases, there is no sign problem, i.e.    s = 1

• Single band DMFT.  

• Large clusters, more bands, spin-orbit : 

• Example : large cluster ∿ lattice problem

• Sign problem :

• can not really be predicted a priori

• is not physical

• depends on the basis, e.g.  
dimer studied above. Need to use the odd even basis.
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s ⇠ e��L

Bath     



Need of analytic continuation

• Usual QMC work in imaginary time/frequencies.

• Spectral representation
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G(i!n) =

Z
d✏

A(✏)

i!n � ✏

G(⌧) = �
Z

d✏A(✏)
e�✏⌧

1 + e��✏

A(!) ⌘ � 1

⇡
ImGR(! + i0+)

• Going from A to G is easy

• Going from G to A is very hard : ill-posed problem

+ω)

dom describing the antinodal regions becomes insulating
while that associated to the nodal quasiparticles remains me-
tallic. The orbital-selective mechanism responsible for the
pseudogap has also been confirmed in studies involving
larger clusters.18–20 In Refs. 14 and 15, we used the VB-
DMFT to compute tunneling and ARPES spectra in good
agreement with experiments.

II. INTERPLANE OPTICAL CONDUCTIVITY

We first compute the frequency-dependent c-axis optical
conductivity !c!"", given by

!c!"" =
2e2c

#ab
# d$

f!$" − f!$ + ""
"

1
N$

k
t!
2 !k"A!k,$"A!k,"

+ $" , !2"

where f is the Fermi function, A!k ,$" the in-plane spectral

function, N the number of lattice sites, e the electronic
charge, a ,b the in-plane lattice constants, c the interplane
distance, and t!!k"= t0%cos!kx"−cos!ky"&2 the interplane tun-
neling matrix element.21,22 Note that in this expression t!!k"
has a strong k dependence with contributions stemming
mainly from the antinodal region of the Brillouin zone. For
convenience, we will express energies in units of the half-
bandwidth D of the electronic dispersion and the optical con-
ductivity in units of !"=2e2ct0

2 /#abD2. In YBa2Cu3Oy
compounds, D'1 eV'8000 cm−1 and !" is of order
!"'50 "−1 cm−1.

In the left panel of Fig. 2, we display the computed !c!""
for three levels of hole doping and several temperatures. Our
results show three distinctive behaviors. At high doping
%&16%, the conductivity displays a metalliclike behavior
with the buildup of a Drude-type peak as the temperature is
decreased. Note that as the peak increases additional spectral
weight appears at low energy. At low doping %'10%, !c!""
is characterized by a gaplike depression at low frequencies
where spectral weight is suppressed with decreasing tem-
perature. The width of the gap when it opens at high tem-
perature is '0.15D and remains approximately the same as
the temperature is lowered. Note that the spectral weight that
is lost in the gap is redistributed over a wide range of ener-
gies. The appearance of the depression in the spectra can be
directly linked to the formation of a pseudogap in the antin-
odal region.14,15 Indeed, the matrix element t! appearing in
the expression of the optical conductivity Eq. !2" essentially
probes the region25 close to !() ,0" , !0, ()" so that a loss
of coherent antinodal quasiparticles results in a loss of low-
energy spectral weight in the c-axis optical conductivity. In
Refs. 14 and 15, it has been shown that in a zero-temperature
analysis of VB-DMFT, coherent quasiparticles disappear in
the antinodal region at a doping '16%. This is consistent
with !c showing a depression only for doping levels below

�

�

�

�

� � � � � � � � � �

� � � � � � � � � �

FIG. 1. !Color online" The two patches dividing the Brillouin
zone. The line shows a noninteracting Fermi surface for the disper-
sion *k of Eq. !1". The central !red" patch covers the nodal region of
the Fermi surface while the border !blue" patch covers the antinodal
region.
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FIG. 2. !Color online" Left panel: the c-axis optical conductivity !c!"" calculated within VB-DMFT for three doping levels. !c is
displayed in units of !" as defined in the text !!" is of order 50 "−1 cm−1 for YBa2Cu3Oy". Frequency is normalized to the half-bandwidth
D'1 eV=8000 cm−1. Right panel: experimental data for the c-axis optical conductivity of YBa2Cu3Oy. The data for YBa2Cu3O7.00 is
taken from Ref. 8 where the phonon contribution was subtracted by fitting to five Lorentzian oscillators. The data for YBa2Cu3O6.95 and
YBa2Cu3O6.67 are taken from Refs. 23 and 24.
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• Transport, response functions : need the real time A, not simply G,  
e.g. Cf example of lecture 2 for optical c-axis conductivity 



Continuation methods

• Padé approximants

• Maximum entropy methods (MAXENT). Several variants

• Yield the most probable A(ω) given the G(τ), error bar and 
correlations.

• Only one true solution to this problem :  
develop/use other solvers which work directly in real time.

• Example. Cf lecture 2, 2 patch DCA. High quality comparison.
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normal phase of the high-temperature superconductors, using a
minimal two patches DCA cluster. It leads to a simple physical
picture of the pseudogap phase in terms of a selective Mott
transition in the momentum space. We choose this model
here as a benchmark since its solution contains low energy
features in the spectral functions (pseudogap), which have
required high-precision QMC computations followed by a
careful Padé analytic continuation. Moreover, real-frequency
computations are very important for the comparison with
experiments that measure, e.g., the optical conductivity along
c axis [45]. It is therefore a nontrivial case where DMRG
impurity solvers would bring significant improvements over
the QMC in practice.

To set up the VBDMFT, one splits the Brioullin zone into
a central patch P+ = {k||kx | < k0 ∧ |ky | < k0}, where k0 =
π (1 − 1/

√
2), and a border patch P− = {k|k /∈ P+}. In the

DCA, the k dependence of the self-energy "κ (ω) within each
patch is neglected and one computes a Green’s function for a
patch by averaging over all k vectors in the patch

Gκ (ω) = 1
|Pκ |

∑

k∈Pκ

1
ω + µ − εk − "κ (ω)

, (28a)

"κ (ω) = G0κ (ω)−1 − Gκ (ω)−1. (28b)

Representing the noninteracting baths in a chain-geometry,
and taking the two impurities to be the first of two chains
cκσ ≡ c0κσ , the model Hamiltonian that needs to be solved is

H = Hd + Hb,+ + Hb,−,

Hd =
∑

κ=±
σ=↑,↓

(tκ + ε0)nκσ + U

2

∑

κ=±
κ=−κ

(nκ↑nκ↓ + nκ↑nκ↓

+ c
†
κ↑c

†
κ↓cκ↓cκ↑ + c

†
κ↑c

†
κ↓cκ↓cκ↑),

Hb,κ =
Lκ−2∑

i=0,σ

tiκ (c†iκσ ci+1,κσ + H.c.) +
Lκ−1∑

i=1,σ

εiκniκσ , (29)

where ε0 = −µ and the term tκ = 1
|Pκ |

∑
k∈Pκ

εk accounts for
high-frequency contributions of the hybridization function (see
Appendix D4).

The κ-space interaction term in (29) arises when diago-
nalizing the hybridization function of a real-space two-site
cluster c±σ = 1√

2
(c1σ ± c2σ ), where c1σ ,c2σ are annihilation

operators for the cluster sites in real space, and c±σ for the
cluster sites in κ space. In real space, the interaction is a simple
Hubbard expression, but then the hybridization function is
nondiagonal. A diagonal hybridization function, which leads
to two uncoupled baths for the patches and by that allows a
simple chain geometry for the whole system, is therefore only
possible in κ space. The more complex form of the interaction
in κ space does not affect the efficiency of DMRG.

We iteratively solve the self-consistency equation obtained
by inserting the self-energy estimates of the impurity model
(29) into the lattice Green functions (28a). We do that on
the real-energy axis with an unbiased energy resolution. The
details of this calculation are described in Appendix D.

In Figs. 6(a) and 6(b), we compare our CheMPS results
for the spectral densities of the two momentum patches with
those of Ferrero et al. [44] obtained using CTQMC and

FIG. 6. (Color online) Spectral functions [(a) and (b)] and
Green’s functions on the imaginary axis [(c) and (d)] within VBDMFT
[44] for U = 2.5D and n = 0.96. We compare our zero-temperature
CheMPS results (solid lines) with CTQMC data for T = 1/200
(dashed lines) from Ferrero et al. [44]. For this computation, we
used the b = 0 setup, a chain length of L = 30 per patch, a truncation
error of εcompr = 10−3, N/a = 60/D, and a = 40D.

analytical continuation. We observe a good overall agreement
between the two methods, in particular at low frequencies.
Low-energy features (pseudogap), in particular in A−(ω), are
well reproduced by both methods. At high energy (Hubbard
bands), however, there are some differences between QMC
and CheMPS (and also between the two variants of CheMPS).
This is to be expected since the Padé analytic continuation
technique used on the QMC data in Ref. [44] is not a precision
method at high energy.

In Figs. 6(c) and 6(d), we do the analogous comparison
on the imaginary axis, and find much better agreement.

115124-9

Padé vs DMRG solver  
A. Wolf et al. 2014
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Impurity solvers in the Hamiltonian form:

Exact diagonalization, NRG, DMRG



Hamiltonian representation of the Bath

• Represent the bath with a finite number of auxiliary sites
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H =
⇤

p�

�̃p�⇥†p�⇥p� +
⇤

�

�dd
†
�d� + Und�nd⇥ +

⇤

p�

Ṽp�

�
⇥†p�d� + h.c.

⇥

S = �
� �

0
d†⇥(�)G�1

0⇥ (� � � ⌅)d⇥(� ⌅) +
� �

0
d�Und⇥(�)nd⇤(�)

• Exact Diagonalization (ED),  NRG, DMRG.



Example: NRG vs CTQMC

• Im Σ(ω) by CTQMC (Werner’s algorithm) and NRG  
for DMFT, 1 band, Bethe Lattice, Beta=400, U = 5.2 et D = 1. 

• Continued by Padé method to real axis from Matsubara
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Approximated solvers

• Iterated Perturbation Theory (IPT)

• Anderson model : perturbation in U is regular (Yosida, Yamada, 70’s.).

• Use first non-trivial order (Kotliar-Georges, 1992).
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impurity orbital Green’s function at all energies, and can
be used for an approximate quantitative solution of the
LISA equations.

2. The iterated perturbation theory approximation

The first approximation method that we describe has
turned out to be very useful in investigating the half-
filled Hubbard model and the physics of the Mott tran-
sition (Sec. VII). This method relies on early weak-
coupling studies of the half-filled single-impurity
Anderson model (Yosida and Yamada, 1970, 1975; Ya-
mada, 1975; Salomaa, 1981; Zlatić, Horvatić, and
Sokcević, 1985). In these works, it was shown that the
second-order perturbation theory in U is a very good
approximation up to values of U/�(0)�6. In particular,
it succeeds in capturing not only the quasiparticle
(Abrikosov-Suhl) resonance, but also the upper and
lower incoherent bands. Motivated by this observation,
Georges and Kotliar (1992) first studied the d=⌅ Hub-
bard model by solving the effective impurity model us-
ing the second-order weak-coupling approximation to ⌥
(for a given Weiss field G 0). Explicitly, one makes use of
the approximate form for the self-energy:

⌥⇥ i⇧n⌦�
U
2

⇥U2⇥
0

⌃
d� ei⇧n�Ĝ 0⇥�⌦

3 (157)

in which the shift Ĝ 0
⇥1(i⇧n)�G 0

⇥1⇥U/2 has been made to
enforce particle-hole symmetry. A self-consistent solu-
tion (G ,G 0) is then found by going through the usual
iteration. This is the iterated perturbation theory (IPT)
approximation. The method is easily implemented by
using fast Fourier transforms on the Matsubara axis. At
zero temperature, it is most conveniently implemented
by working with real-frequency Green’s functions. Pro-
grams for both the zero-temperature and the finite-
temperature iterated perturbation theory approximation
are provided with this article (cf. Appendix D).

It was later realized (Zhang, Rozenberg, and Kotliar,
1993) that this method is actually not limited to moder-
ate couplings (at half-filling), but it also correctly repro-
duces the exact strong-coupling limit. This is easily
shown by considering the atomic limit D/U�0,
for which Ĝ 0

⇥1 i⇧n , and the exact Green’s func-
tion and self-energy read G(i⇧n) 1

2 [1/(i⇧n⇥U/2)
⇥1/(i⇧n⇤U/2)], ⌥(i⇧n) U/2⇥U2Ĝ 0(i⇧n)/4. Hence,
Eq. (157) correctly reproduces this limit. Thus, the iter-
ated perturbation theory approximation provides an ‘‘in-
terpolation’’ scheme between the weak-coupling and
strong-coupling limits that are both captured exactly.
The fact that a weak coupling expansion happens to
work in the strong coupling case is a ‘‘fortunate’’ coinci-
dence. It no longer holds in the particle-hole asymmetric
case. At half filling, the iterated perturbation theory ap-
proximation displays a Mott transition of the paramag-
netic solution, as will be reviewed in detail in Sec. VII.
The iterated perturbation theory approximation gives
results in very good agreement with the QMC and exact
diagonalization results (except very close to the Mott
transition point), as reviewed in Sec. VI.A.4 and de-

tailed in the studies of Zhang, Rozenberg, and Kotliar,
1993; Georges and Krauth, 1993; Rozenberg, Kotliar,
and Zhang, 1994. The rationale behind this success is
that the Anderson impurity model is analytic in U irre-
spectively of the nature of the bath, so that it can be
treated perturbatively. The nonanalyticities (such as the
opening of a gap) stem from the lattice aspects of the
problem and are brought in by the self-consistency con-
dition. The value of the iterated perturbation theory ap-
proximation relies largely on its simplicity: it is much
easier to implement than the full numerical solution of
the model, and allows a fast scan of parameter space.
The iterated perturbation theory approximation has
been successfully extended to various other models in
the LISA framework, such as the Holstein model (Fre-
ericks and Jarrell, 1994a, 1994b; cf. Sec. VIII.E).

Various other methods based on weak-coupling ap-
proximations have been used in the literature for d=⌅
lattice models, namely (i) the direct weak-coupling per-
turbation theory to O(U2) in which the free local
Green’s function GU�0�D̃(i⇧n) is used in (157) in
place of Ĝ 0 (Schweitzer and Czycholl, 1991a); and (ii)
the ‘‘self-consistent’’ weak-coupling approaches, which
look for a solution with the interacting G replacing Ĝ 0 in
Eq. (152) (Müller-Hartmann, 1989b; Schweitzer and
Czycholl, 1991b), and has also been generalized to in-
clude bubble and ladder summations by Menge and
Müller-Hartmann (1991). [See Freericks (1994) for a
comparison of various methods.]

These approaches should not be confused with the
iterated perturbation theory approximation. All three
methods of course coincide for small values of U . How-
ever, only the iterated perturbation theory provides an
interpolation scheme between weak and strong coupling
at half-filling and therefore correctly captures the forma-
tion of the incoherent band and the physics of the Mott-
Hubbard transition. Specifically, it is found (Georges
and Kotliar, 1992) that already for intermediate values
of U , the metallic spectral density displays incoherent
features around energies �U/2, corresponding to the
upper and lower Hubbard bands. As will be shown in
Sec. VI.A.4, these features are indeed present in the
spectral density obtained numerically (with which the
iterated perturbation theory approximation is in good
agreement). In contrast, they are absent from the self-
consistent weak-coupling approximations. Note that, for
intermediate coupling, these features are indeed pre-
dicted by the direct weak-coupling expansion. This re-
mark has been known for a long time in the context of
the single impurity Anderson model (for recent work,
see, e.g., White, 1992).

It would be quite interesting and of great practical use
to develop a reliable extension of the iterated perturba-
tion theory approximation away from half-filling. How-
ever, this is not so easy to achieve because naive exten-
sions of the original iterated perturbation theory method
do not automatically fulfill the Luttinger theorem away
from half-filling. Specifically, if one computes the total
density at T=0 from n/2�↵ ⇤⌅

0 d⇧⇤(⇧), the iterated per-
turbation theory approximation for ⌥ does not satisfy in
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• NCA, OCA

• First/second bold diagram in the hybridisation expansion.

• Best close to the atomic limit

• Rotationally invariant slave bosons

• Generalization of slave bosons  
for multiorbital systems

2

and t′/t = −0.3, which are values commonly used for
modeling hole-doped cuprates in a single-band frame-
work. All energies (and temperatures) are expressed
in units of D = 4t = 1, and the doping is denoted
by δ. We use a two-site effective Anderson impurity
problem, involving the on-site interaction U and two hy-
bridization functions: a local one ∆11(ω) = ∆22(ω) and
an inter-site one ∆12(ω), which are self-consistently de-
termined by relating the two-impurity problem to the
original lattice one. We have investigated several such
embeddings, both of the dynamical cluster approxima-
tion (DCA) and cellular-DMFT (CDMFT) type [4, 12]
with similar results. Here, we focus on a somewhat gen-
eralized form of the DCA embedding, which preserves
the symmetries of the square lattice, in which the Bril-
louin zone is decomposed into two patches of equal sur-
face: a central square (denoted P+) centered at momen-
tum (0, 0) and the complementary region (P−) extend-
ing to the edge of the BZ and containing in particular
the (π, π) momentum. From the lattice Green’s func-
tion, two coarse-grained Green’s functions in momen-
tum space are constructed: G±(ω) =

∑
k∈P±

G(k, ω)

(with momentum summations normalized to unity within
each patch). Following the DCA construction, the in-
ner (resp. outer) patch self-energy is associated with the
even- (resp. odd) parity self-energy of the two-impurity
effective problem, i.e to the even (resp. odd) orbital com-
binations (c†1 ± c†2)/

√
2. Indeed, the states close to (0, 0)

have more bonding character while those close to (π, π)
have more antibonding character. The self-consistency
condition reads: GK(ω) =

∑
k∈PK

[ω+µ−εk−ΣK(ω)]−1.
In this expression, the index K = ± refers both to the in-
ner/outer patch index and to the even/odd orbital combi-
nations. We solve the self-consistent two-impurity prob-
lem using both continuous-time quantum Monte Carlo
(CTQMC) [20] which sums the perturbation theory in
∆ab(iωn) on the Matsubara axis, and an approximate
method geared at low-energy properties: the rotation-
ally invariant slave-boson formalism (RISB) presented
in [19]. The RISB method introduces slave-boson ampli-
tudes φΓn, a density matrix connecting the eigenstates
|Γ⟩ of the isolated dimer to the quasiparticle Fock states
|n⟩, determined by minimizing (numerically) an energy
functional.

In Fig. 1, we display the real part of the even- and
odd-orbital self-energy at zero frequency, as determined
by both methods, as a function of δ. We find a rather re-
markable agreement between the CTQMC solution and
the low-energy RISB. The two orbitals behave in a simi-
lar way at high doping δ ! 25%. Below this doping level,
we observe an onset of orbital differentiation, which is a
manifestation of momentum differentiation in the lattice
model. This differentiation increases as δ is reduced, un-
til a transition is reached at δ ≃ 16% (in CTQMC). At
this characteristic doping, µ − Σ ′
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FIG. 1: (Color online) Left: real part of Σ±(0) as a function of
doping level, computed with RISB (lines) and CTQMC (sym-
bols). µ − Σ ′

−(0) (diamonds) reaches the odd-orbital band
edge (dotted line), which becomes empty at low energy be-
low δ ∼ 16%. Right: statistical weights of the various dimer
cluster eigenstates. S is the intra-dimer singlet, 1+ the (spin-
degenerate) state with one electron in the even orbital, E the
empty state and T the intra-dimer triplet. β = 100.

edge corresponding to the odd orbital, and the latter be-
comes empty at low energy and remains so for all lower
dopings. G(k, ω) no longer has poles at ω = 0 in the
outer patch, and low-energy quasiparticles exist only in-
side the inner patch. Hence, at low doping, momentum-
space differentiation becomes strong and manifests itself
as an orbital-selective transition in VB-DMFT.

In order to gain further qualitative insight, we also
plot in Fig. 1 (right part) the statistical weight of several
cluster eigenstates |Γ⟩, given within slave bosons by the
amplitude pΓ =

∑
n |φΓn|2. We compare it to a simi-

lar estimate [21] from CTQMC. The agreement between
CTQMC and RISB is again very good, and even quanti-
tative for the two states with highest weights. At large
doping, the empty state and the two spin-degenerate
states with one electron in the even orbital dominate, as
expected. As doping decreases, these states lose weight
and the intra-dimer singlet prevails, reflecting the strong
tendency to valence-bond formation. The states with
immediately lower weights are the one-electron states
and the valence-bond breaking triplet excitation which
dominates over the empty state. Therefore, the orbital
(momentum) differentiation at low doping is governed by
intra-dimer singlet formation, reminiscent of the singlet
regime of the two-impurity Anderson model.

The gaping of the odd orbital (outer patch) is actu-
ally a crude description of the pseudogap phenomenon.
To illustrate this, we compute the tunneling conduc-
tance dI/dV as a function of voltage V . This calcula-
tion is made possible by the high quality, low-noise, of
the CTQMC results on the Matsubara axis, allowing for
reliable analytical continuations to the real axis at low
and moderate energy, using simple Padé approximants.
The conductance is displayed on Fig. 2 together with
the gap ∆ in the odd Green’s function, obtained from
∆ = Σ ′

−(∆) + εmin − µ, with εmin the lower edge of the
band dispersion εk in the outer patch. Note the overall

β=200



Which solver should I use ?

• CTQMC :

• Finite temperature. Flexible

• Potential sign problem. Imaginary time. “Slow”

• DMRG, NRG :

• Real time

• Low T only, limited to 2/3 bands ?

• Approximate solvers : IPT, NCA, Slave Bosons

• Very fast. To e.g. explore phase diagram.

• Not exact.
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