
 Slow heating, effective Hamiltonians, prethermalization 



Kapitza pendulum 

Rapidly oscillating suspension point: “inverted” pendulum 

Periodic driving à new states, not possible in static systems  



Realization of topological states by driving 

Driving à topological Bloch bands 
 
Bands with non-zero Chern number  
(recently measured) 
 
 
 
Many theory works: Floquet topological insulators, fractional Chern insulators, SPTs 
 Oka, Aoki’09, Lindner, Refael, Galitski’10, Kitagawa, Rudner, Berg, Demler’10, Caysoll, Moessner’12, 

Rudner et al’13, Neupert, Grushin’14, many others 

Chern number  

BUT: Theory mostly limited to single-particle physics 
 
           This talk: Driven many-body systems 

Jotzu et al’14, Aidelsburger et al’14 



Driven many-body systems 

NO! Driven MBL systems do not heat up (at high enough driving frequency) 
Is this the fate of all driven systems? 

-Many-body systems heat up to infinite T -- a challenge for “Floquet engineering” 

How rapid is heating in driven lattice ergodic systems?  
 -At fast driving, heating is exponentially slow (theorem for spins and fermions) 
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Conventional approach: Magnus expansion 

T = 1
νValidity of Magnus expansion in many-body 

systems? Asymptotic expansion?  
 
Optimal order of expansion? Rigorous results? 
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E.g.: Doublon decay in large-U Hubbard model is slow (exp+perturbation th.) 

Strohmaier et al’10; Sensarma et al’10 



General bound for the heating rate 

Heating rate (golden rule) 
Γβ (ω)∝ g
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The idea of the proof 
1) Consider the case of a local operator V. Rewrite 

A(ω) ~ µ V η
η,µ
∑

2
δ(ω − (Eµ −Eη )) =

µ [V,H ] η
ω 2

η,µ
∑

2

δ(ω − (Eµ −Eη )) =

=
µ [V,H,H,...,H ] η

ω 2k
η,µ
∑

2

δ(ω − (Eµ −Eη ))

k commutators 

2) Use locality of H to bound the commutators 

[V,H,H,...,H ] <Ckk!
3) Choose optimal                        
 
 
4) Bound:   
 
 
5) For global driving, use Lieb-Robinson bounds to estimate “cross-terms” 
involving             with large  

k* ≈
ω
Ce

A(ω)< e−κω κ =
2
ce

Vi,Vj | i− j |
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Fundamental reason: locality of quantum dynamics 

Driven many-body lattice system H (t) = H + gV cosωt
Locality: 

DA, Huveneers,  
De Roeck, arXiv:1507.01474 

    Result can be made fully non-perturbative  
(in driving strength and not only in interaction!) 
à Controlled version of high-frequency expansion 
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Very long heating times 
 
What governs dynamics at intermediate times?  

τ * ~ e
Cω

t ≤ τ *

H* = H0 +
1
ω
H1 +

1
ω 2 H2 +...+

1
ω n Hn n ~ Cω >>1

Conservation breaks down only at exponentially long times t ~ τ *

t

Prethermalization 
 

Heating to  
 

0 τ *

T =∞

Applies to: driven systems of spins and fermions with local interactions 

Rapidly driven many-body systems show a long prethermalization regime 

Dynamics is described by a quasi-conserved effective Hamiltonian  



Driven many-body systems: idea of the approach 
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ψ(t) = Q̂(t) ϕ(t)1)“Gauge transformation”: 
Q̂+Q̂ = I
Q̂(t +T ) = Q̂(t)

Stroboscopic evolution not affected, but Hamiltonian changed: 
 

H '(t) = Q̂+H (t)Q̂− iQ̂+ dQ̂
dt

2) Goal: choose        to minimize the driving term 
 
Result:   
Using locality, can find                                          for                                          
that decreases driving term exponentially, by 
 
3) Obtain the quasi-conserved quantity           using (1)  
 
       
 

Q̂

Q̂ = eTΩ1+T
2Ω2+..+T

nΩn

e−Cω

H*

n ~ Cω

(1) 



Numerics on finite-size systems 

 
 
 

Kick protocol:  UF = e
−iH0te−iH1t

E
rr

or
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H0 = h
i
∑ si

z
i
z + Jsi

z
i
zsi+1

z
i
z

H1 = Jsi
z
i
xsi+1

x

i
∑t -driving period 

-Confirmed that this is an asymptotic expansion 

Prosen model ‘97 

n* =Cω The bound is saturated 



Implications 

 
 
 

1) Broad prethermalization regime in driven many-body systems 
 
2) Optimal order of the Magnus expansion 
 
3) “Floquet topological insulators” can be very long-lived 
 
4) Suggests ways of experimental preparation of “Floquet fractional Chern 
insulators” and other correlated states in driven systems 
 
 
OTHER APPLICATIONS:  
-Bounds of heating in bosonic lattice systems 
-Some rigorous results about quasi-adiabatic behavior in Floquet systems 

n* ~ Cω



Part II: MBL in periodically driven systems 



Kicked rotor: localization in a periodically driven system 
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Quasi-random à dynamical localization! Hopping decays with  | n−m |
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Driven many-body systems: ergodic vs MBL 

L spins +local driving V̂ U = e−iH0T0e−2iV
Mapping onto an effective hopping problem; sites=eigenstates of  H0

ergodic 

Hopping 

Effective level 
spacing 

Δ ~ 1
D
~ 1
2L

tnm ~
1
D
~ 1
2L/2

MBL 

Δ ~ 1
2L

tnm ~
e−L/ξ

2L

H0 H0

(from ETH) 

tnm >> Δ
Nonlocal hopping 
delocalization 

tnm << Δ localization 



Periodically driven many-body localized systems 

 
1) Construct Floquet Hamiltonian iteratively (different from Magnus!)  
Show convergence and MBL at high driving frequency 
 
2) Argue delocalization at low driving frequency  
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1) Construct Floquet Hamiltonian iteratively (different from Magnus!)  
Show convergence and MBL at high driving frequency 
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3) Establish phase diagram (fixed disorder, interactions, and g) 
 
 
 
 
 
 
4) Driving: probe MBL (little/no heating), access MBL-ergodic transition  
 
 
 
 

H (t) = HMBL + gV (t) many-body localized  HMBL

ω driving frequency 

ω

Delocalized 
 

MBL 
 

0 ωc



Driven MBL systems: numerical results 

1)  Spectral statistics: transition  
Between Poisson and Wigner-Dyson 
 
2) Area-law for eigenstates in MBL phase 
 
3) Log-growth of entanglement 
 
4) Constructed a set of local integrals  
of motion 

Kicked spin chain 

Confirms analytical theory 



Iterative procedure and its convergence 

i d
dt
U(t) = H (t)U(t)Evolution operator: 

Decompose U(t) = P(t)e−iHeff t P(t +T ) = P(t)

P+(t) H (t)− i d
dt

"

#
$

%

&
'P(t) = Heff

Solve for            iteratively, gradually eliminating time-dependent terms 
 
Perturbation theory in  

P(t)

g
ν
<<1 g2

νW
<<1

 
Quasi-local Floquet Hamiltonian, which itself is MBL 
 

Convergence criteria 

Higher orders: combinatorics equivalent to time-independent MBL problem 



Low frequency: delocalization via Landau-Zener transitions 

Change 

Consider instantaneous eigenstates of  

H (λ) = HMBL + gV (λ)

λ =
t
T

Multi-level Landau-Zener problem 

Diabatic crossing: not dangerous 
 
“Intermediate” crossings:  
the state get mixed, delocalization 
 
 

At low frequency, many intermediate/adiabatic crossings à delocalization 
DA, De Roeck, Huveneers, arXiv:1412.4752 
 
 See also: Khemani, Nandkishore, Sondhi’14 (local ramp) 


