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General introduction:
From “real” materials to cold atoms



Quantum Simulation with cold atoms: From real materials to optical lattices

Real materials Theoretical models Cold atoms in optical lattices

Superconductors

Graphene

Topological insulators

optical lattice
cold atoms

confinement

Some examples:

Control over microscopic parameters:      ,      , ...

Clean: no impurity, no phonons,...

additional
laser coupling 
(or shaking, rotation, ...)

Weyl semimetals

Control lattice geometry through light-field intensity

: optical dipole potential

[Ref: Bloch et al. RMP ʻ08]

Load Fermi gases, or Bose gases, or mixtures...



Quantum Simulation with cold atoms: From real materials to optical lattices

Real materials Theoretical models Cold atoms in optical lattices

Superconductors

Graphene

Topological insulators

optical lattice
cold atoms

confinement

Some examples:

Control over microscopic parameters:      ,      , ...

Clean: no impurity, no phonons,...

   Identify cold-atom setups that simulate systems of interest (real materials, but also high-energy physics?)

   Detect the effects using available probes (imaging techniques, single-site addressing, spectroscopy,...)

   Go beyond solid-state physics: “observe things that canʼt be created or seen in solids”, identify new effects, ...

A few goals and challenges... 

additional
laser coupling 
(or shaking, rotation, ...)

Weyl semimetals

Control lattice geometry through light-field intensity

: optical dipole potential

[Ref: Bloch et al. RMP ʻ08]

Load Fermi gases, or Bose gases, or mixtures...



V I

magnetic field

edge states

I: current V: voltage

Xia et al. Nat. Phys. 2009

Helical edge states

Our main interest in these lectures: topological states of matter

The quantum Hall effect

2D topological insulators (quantum spin Hall effect)

3D topological insulators (Dirac-fermion surface states, axion electrodyn.)

Helical Dirac fermion
(on the surface)

Topological superconducting wires (Majorana fermions at the edges) 

[Refs: Hasan & Kane RMP �10, Qi & Zhang RMP �11]

strong 
magnetic field!

strong 
spin-orbit coupling!

strong 
spin-orbit coupling!

spin-orbit coupling
+ s-wave supercond.



J. Dalibard, F. Gerbier, G. Juzeliunas, P. Ohberg, Rev. Mod. Phys. (2011)  

Electrons in a solid Neutral atoms in optical lattices

atom-light coupling
(or rotation/shaking)

......

: the electron charge : coupling constant
: gauge potential : synthetic gauge potential

Synthetic gauge potentials: a route towards topological atomic states

Ex: Magnetic field
              

             Spin-orbit coupling

synthetic magnetic field for neutral atoms

synthetic spin-orbit coupling for neutral atoms

N Goldman, G. Juzeliunas, P. Ohberg, I. B. Spielman, Rep. Prog. Phys. (2014)  
Reviews:



V I

control parameter 

edge states

I: current V: voltage

Xia et al. Nat. Phys. 2009

Helical edge states

Topological states using synthetic gauge potentials

Synthetic magnetic field          The quantum Hall effect with cold atoms!

Synthetic spin-orbit coupling  

Helical Dirac fermion
(on the surface)

Synthetic spin-orbit coupling (+ Zeeman splitting and s-wave interactions) 

The quantum spin Hall effect, 2D/3D topological insulators

topological superconductivity with Majorana modes



General overview of the schemes considered (so far) in experiments...

Rotation

...

Hamiltonian in the rotating frame:

Ref: N. Cooper, Adv. Phys. �08

Ref: N. Goldman et al., Rep. Prog. Phys. (2014)  

Dalibard et al. �00



General overview of the schemes considered (so far) in experiments...

Rotation

...

Hamiltonian in the rotating frame:

Ref: N. Cooper, Adv. Phys. �08

Raman dressing

atom-light coupling

The adiabatic motion of atoms in a dressed state (local energy eigenstates)

Berry connection

synthetic magnetic fields, 
synthetic spin-orbit coupling, ...

Ref: N. Goldman et al., Rep. Prog. Phys. (2014)  

Dalibard et al. �00

Spielman et al. �09



General overview of the schemes considered (so far) in experiments...

Rotation

...

Hamiltonian in the rotating frame:

Ref: N. Cooper, Adv. Phys. �08

Raman dressing

atom-light coupling

The adiabatic motion of atoms in a dressed state (local energy eigenstates)

Berry connection

Mimic the Aharonov-Bohm phase in optical lattices Induce complex tunneling matrix elements

: Peierls phase-factors

synthetic magnetic fields, 
synthetic spin-orbit coupling, ...

synthetic magnetic flux in lattices,
lattice gauge theory (e.g. non-Abelian), 
synthetic spin-orbit coupling, ...

Ref: N. Goldman et al., Rep. Prog. Phys. (2014)  

Dalibard et al. �00

Spielman et al. �09



Different ways to induce/control the hopping in optical lattices

The goal:

Option 1: Use the internal states

Option 2: Shake!

Option 3: Combine superlattices and resonant time-modulations

Jaksch & Zoller, NJP ʻ03
Gerbier & Dalibard, NJP ʻ10

Theory (proposals):

Experiments (since 2011):
Struck, Eckardt, Sengstock, 
Lewenstein et al. (Hamburg)
Jotzu, Esslinger et al. (Zurich)

Experiments (since 2011):
Aidelsburger, Bloch et al. (MPQ)
Miyake, Ketterle et al. (MIT)

Dalibard, Gerbier, Juzeliunas, Ohberg, RMP ʻ10
Goldman, Juzeliunas, Ohberg, Spielman, RPP ʻ14

Reviews:



Outline

Generating effective Hamiltonians: “Floquet” engineering
Part 1: Shaking atoms!

Part 2: Seeing topology in the lab!

Topological matter by shaking atoms
Some final remarks about energy scales

Loading atoms into topological bands
Anomalous velocity and Chern-number measurements
Seeing topological edge states with atoms

Part 3: Using internal atomic states!
Cold Atoms = moving 2-level systems
Internal states in optical lattices: laser-induced tunneling
Synthetic dimensions: From 2D to 4D quantum Hall effects



Part 1: Shaking atoms!
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The general picture : A static system is modulated periodically in time

Ĥ(t) = Ĥ0 + V̂ (t), V̂ (t+ T ) = V̂ (t), T = 2π/ω : the period

Cold atoms in optical lattices Shaking the lattice,
Modulating the hopping (lattice depth),
Time-dependent magnetic fields,
Additional lasers, ...

Cold atoms on the surface of a chip Modulating the currents,...

Electrons in a material 
(ex: graphene, semiconductors,...)

Radiation, mechanical deformation,...

From: Suarez Morrel and Foa Torres, PRB 2012

From: Rechtsman et al., Nature 2013

Light in photonic crystals Helical waveguides 
(time=a spatial direction)

Refs: Cayssol, Dora, Simon and Moessner (Phys. Status Solidi RRL 2013), 
M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan and V. Pellegrini (Nat. Nanotech. 2013).

Ref: I. Carusotto and C. Ciuti (Rev. Mod. Phys. 2013).
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: Peierls phase-factors

Our goal: designing topological models by shaking atoms

The basic concept:

Example 1: The Harper-Hofstadter model

: uniform flux per plaquette 
  (in units of flux quantum)

mimic the A-B effect



: Peierls phase-factors

Our goal: designing topological models by shaking atoms

The basic concept:

Example 1: The Harper-Hofstadter model

Example 2: The Haldane model

: uniform flux per plaquette 
  (in units of flux quantum)

mimic the A-B effect



Generating effective Hamiltonians:
“Floquet” engineering



The central notion : the effective time-independent Hamiltonian

• A static system Ĥ0 is modulated periodically in time

Ĥ(t) = Ĥ0 + V̂ (t), V̂ (t+ T ) = V̂ (t), T = 2π/ω : the period

• Generally, one adopts a stroboscopic view [T � tcharact] : t = NT , N ∈ N

|ψ(t = NT )〉 =
[
Û(T )

]N
|ψ0〉 =

[
T e−i

∫ T
0 Ĥ(τ)dτ

]N
|ψ0〉

=
(
e−iT Ĥeff

)N
|ψ0〉

• Over each period T , the system evolves according to a time-independent
Hamiltonian Ĥeff

• Driving is interesting : Ĥ0 (“normal”)→ Ĥeff (potentially) Super !

• Tuning V̂ (t) : A versatile tool to engineer gauge fields, topological bands, . . .

Ĥeff =
1

2m

[(
p̂x + Âx

)2
+
(
p̂y + Ây

)2
]

+ . . .

• In general, the effective Hamiltonian Ĥeff cannot be derived exactly...

e−iT Ĥeff = T e−i
∫ T
0 Ĥ(τ)dτ = ...?
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The effective Hamiltonian and the Magnus expansion
• We want to evaluate the time-evolution operator between times t0 and tf

Û(tf ; t0) = T exp

(
−i
∫ tf

t0

Ĥ(τ)dτ
)
, Ĥ(t+ T ) = Ĥ(t).

• Stroboscopic evolution (i.e. neglect micro-motion) : tf = t0+NT with N ∈ N

Û(tf ; t0) = [Û(t0 + T ; t0)]N , where Û(t0 + T ; t0) = T exp

(
−i
∫ t0+T

t0

Ĥ(τ)dτ
)

• The time-ordered integral can be expanded through the Magnus formula

Û(t2; t1) = exp

{
−i
∫ t2

t1

Ĥ(t)dt−
i

2

∫ t2

t1

∫ t

t1

[Ĥ(t), Ĥ(τ)]dτdt+ . . .

}
• Setting Û(t0 + T ; t0) = e−iTĤF , the effective Hamiltonian is given by the series

ĤF = (1/T )

∫ T+t0

t0

Ĥ(t)dt−
i

2T

∫ t0+T

t0

∫ t

t0

[Ĥ(t), Ĥ(τ)]dτdt+ . . . (1)

• If we expand Ĥ(t) into its Fourier components,

Ĥ(t) = Ĥ0 + V̂ (t) = Ĥ0 +
∑
j 6=0

V̂ (j) exp(ijωt),

and perform the integrals in Eq. 1, we obtain the equivalent expression

ĤF = Ĥ0 +
1

ω

∑
j>0

1

j

{[
V̂ (+j), V̂ (−j)]− eijωt0[V̂ (+j), Ĥ0

]
+ e−ijωt0

[
V̂ (−j), Ĥ0

]}
+ . . .
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, Ĥ(t+ T ) = Ĥ(t).
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Û(tf ; t0) = T exp

(
−i
∫ tf

t0
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Ĥ(t)dt−
i

2T

∫ t0+T

t0

∫ t

t0

[Ĥ(t), Ĥ(τ)]dτdt+ . . . (1)

• If we expand Ĥ(t) into its Fourier components,
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]}
+ . . .



The effective Hamiltonian and the Magnus expansion

• The effective Hamiltonian is given by a perturbative expansion in powers of (1/ω) :

ĤF = Ĥ0 +
1

ω

∑
j>0

1

j

{[
V̂ (+j), V̂ (−j)]− eijωt0[V̂ (+j), Ĥ0

]
+ e−ijωt0

[
V̂ (−j), Ĥ0

]}
+O(1/ω2)

• Useful to calculate effective Hamiltonians in the high-frequency regime ω � !

• Useful to identify interesting time-modulated (cold-atom) setups [i.e. Ĥ0, V̂ (t)] !

• Several issues and subtleties should be addressed :

• The effective Hamiltonian ĤF(t0) explicitly depends on the initial time t0...

−→What is the role of t0-terms ?

• Is micro-motion really irrelevant ? How can this be evaluated ?

• Is the convergence of the series guaranteed ? What if Ĥ0, V̂ (j) ∼ ω ?
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ĤF = Ĥ0 +
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The t0-dependent terms : a simple illustration

• Consider a particle driven by a time-modulated force F :

Ĥ(t) = Ĥ0 + V̂ (t) =
p̂2

2m
+ F cos(ωt)x̂

• The Magnus expansion provides the (exact) effective Hamiltonian

ĤF(t0) =
1

2m
[p̂+A(t0)]2 + cst, where A(t0) =

F

ω
sin(ωt0).

• The driving only modifies the initial mean velocity : v(t0)→ v(t0) +A(t0)/m

• The t0-dependent terms can be removed by a unitary (gauge) transformation

ĤF(t0) = Ŝ†(t0)Ĥ0Ŝ(t0) where Ŝ(t0) = exp [iA(t0)x̂]

−→ Û(T + t0; t0) = e−iTĤF(t0) = Ŝ†e−iTĤ0 Ŝ

t

x(t)

-1000

0

100 2000

1000

t

x(t)

-1000

0

100 2000

1000

: initial kick

After a long time:
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• In general, there are three distinct notions :

• (1) The initial kick related to the initial phase of the modulation
• (2) The long-time dynamics ruled by an effective Hamiltonian Ĥeff 6= ĤF(t0)

• (3) The micro-motion (i.e. what happens within a period)

ψ(tf ) = M̂(tf )︸ ︷︷ ︸
(3)

e−i(tf−ti)Ĥeff︸ ︷︷ ︸
(2)

Ŝ(t0)︸ ︷︷ ︸
(1)

ψ(t0)

time

x(t)
(1)

(2)

(3)

• We can formally separate these effects by using a unitary transformation

ψ(t)→ φ(t) = eiK̂(t)ψ(t), i∂tφ(t) = Ĥeffφ(t),

ψ(tf ) = Û(t0 → tf )ψ(ti) = e−iK̂(tf )e−i(tf−t0)ĤeffeiK̂(t0)ψ(t0)

• Question : Is it possible to compute Ĥeff and K̂(t) explicitly ?
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ψ(tf ) = Û(t0 → tf )ψ(ti) = e−iK̂(tf )e−i(tf−t0)ĤeffeiK̂(t0)ψ(t0)
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Deriving the effective Hamiltonian [see Rahav et al. PRA ’03, Goldman-Dalibard PRX ’14]

• We consider the time-dependent unitary transformation

i∂tψ(t) = Ĥ(t)ψ(t), ψ(t)→ φ(t) = eiK̂(t)ψ(t),

• In the new frame the Hamiltonian is imposed to be time-independent :

i∂tφ(t) = Ĥeffφ(t)

• The relation between Ĥ(t) and Ĥeff is given by the usual transformation

Ĥeff = eiK̂(t)Ĥ(t)e−iK̂(t) + i

(
∂eiK̂(t)

∂t

)
e−iK̂(t) (∗)

• We expand Ĥeff and K̂(t) in powers of 1/ω

Ĥeff =
∞∑
n=0

1

ωn
Ĥ

(n)
eff , K̂(t) =

∞∑
n=1

1

ωn
K̂(n)

−→ insert into Eq. (∗) to get Ĥ(0)
eff , Ĥ(1)

eff , Ĥ(2)
eff , . . . and K̂(1), K̂(2), . . .

• We then have the full time-evolution :

ψ(tf ) = Û(t0 → tf )ψ(ti) = e−iK̂(tf )e−i(tf−t0)ĤeffeiK̂(t0)ψ(t0)
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General formulas [see Goldman-Dalibard PRX ’14]

• For a general time-periodic problem

Ĥ(t) = Ĥ0 +
∞∑
j=1

V (j)eijωt + V (−j)e−ijωt,

the long-time dynamics is well-captured by the effective Hamiltonian :

Ĥeff = Ĥ0 +
1

ω

∞∑
j=1

1

j
[V (j), V (−j)] +

1

2ω2

∞∑
j=1

1

j2

(
[[V (j), Ĥ0], V (−j)] + h.c.

)

+
1

3ω2

∞∑
j,l=1

1

jl

(
[V (j), [V (l), V (−j−l)]]− [V (j), [V (−l), V (l−j)]] + h.c.

)
+ . . . ,

−→ good basis to identify schemes leading to topological properties !

• The micro-motion + initial-kick effects are well described by the kick operator :

K̂(t) =
1

iω

∞∑
j=1

1

j

(
V (j)eijωt − V (−j)e−ijωt

)
+ . . .

−→ good basis to estimate the effects due to micro-motion on observables !



Dealing with the convergence of the series [Goldman, Dalibard et al., PRA ’15]

• The perturbative approach works fine if Ĥ(t) remains finite for ω →∞
• However, we might deal with systems of the form

Ĥ(t) = Ĥregular(t) + ωÔ(t),

Examples : strong-driving regime, static (resonant) energy offset ∆ = ~ω

• Solution : perform a unitary transformation that removes all diverging terms !

|ψ〉 → |ψ′〉 = R̂(t)|ψ〉, R̂(t) = T exp

{
iω

∫ t

0
Ô(τ)dτ

}
Ĥ(t)→ Ĥ(t)=R̂(t)Ĥ(t)R̂†(t)− iR̂(t)∂tR̂

†(t)=R̂(t)ĤregularR̂
†(t)

• If R̂(t) and Ĥ(t) can be computed explicitly, i.e. [Ô(t), Ô(t′)]=0, then we are fine :

Ĥ(t) = Ĥ0 +

∞∑
j=1

V̂(j)eijωt + V̂(−j)e−ijωt : is regular in the limit ω →∞

and we can apply our formula for the effective Hamiltonian (in the moving frame) :

Ĥeff = Ĥ0 +
1

ω

∞∑
j=1

1

j
[V̂(j), V̂(−j)] +

1

2ω2

∞∑
j=1

1

j2

(
[[V̂(j), Ĥ0], V̂(−j)] + h.c.

)
. . . ,
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• However, we might deal with systems of the form
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Topological “Floquet” matter by shaking atoms 



: Peierls phase-factors

Our goal: designing topological models by shaking atoms

The basic concept:

Example 1: The Harper-Hofstadter model

Example 2: The Haldane model

: uniform flux per plaquette 
  (in units of flux quantum)

mimic the A-B effect



Useful example ... in view of creating fluxes in optical lattices

• Let us simplify the problem of the time-modulated superlattice (N integer)

• We write the Hamiltonian of the two-level system as

Ĥ(t) = J (|0〉〈1|+ |1〉〈0|) +Nω|1〉〈1|+ κ cos(ωt+ φ)|0〉〈0|, J � ω

• In the strong-driving regime, κ = K0ω with K0 ∼ 1 : two diverging terms !
• Let us perform the unitary transformation to remove them :

R̂(t) = exp {i [Nωt|1〉〈1|+K0 sin(ωt+ φ)] |0〉〈0|}

→ Ĥ(t) = J |0〉〈1|
∞∑

j=−∞
eijωtJN+j(K0)ei(j+N)φ + h.c.

eix sin(y) =
∞∑

n=−∞
Jn(x)einy


• To lowest order, the effective Hamiltonian is given by

Ĥeff ≈ Ĥ0 = JJN (K0)eiNφ |0〉〈1|+ h.c.

• No offset N = 0→ Ĥeff ≈ JJ0(K0) |0〉〈1|+ h.c. : the effective coupling is real !
• N = 1→ Ĥeff ≈ JJ1(K0)eiφ |0〉〈1|+ h.c. : the effective coupling is complex !
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• No offset N = 0→ Ĥeff ≈ JJ0(K0) |0〉〈1|+ h.c. : the effective coupling is real !
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Ĥ(t) = J (|0〉〈1|+ |1〉〈0|) +Nω|1〉〈1|+ κ cos(ωt+ φ)|0〉〈0|, J � ω

• In the strong-driving regime, κ = K0ω with K0 ∼ 1 : two diverging terms !
• Let us perform the unitary transformation to remove them :

R̂(t) = exp {i [Nωt|1〉〈1|+K0 sin(ωt+ φ)] |0〉〈0|}
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The shaken optical lattices
• Let us now consider the full 1D shaken lattice without offset (∆ = 0)

• In the tight-binding approximation, the Hamiltonian is written as

Ĥ(t) = −J
∑
m

(|m〉〈m+ 1|+ h.c.) + κ cos(ωt+ φ)
∑
m

|m〉m〈m|,

• The effective Hamiltonian is exactly given by

Lignier, Arimondo et al. 2007

• Our goal is to create some fluxes in 2D... impossible by shaking the lattice ?

: Peierls phase-factors
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Shaking a 2D optical lattices circularly

• We consider a 2D honeycomb lattice, shaken circularly, in the moving frame

• The tight-binding Hamiltonian : NN tunneling + shaking

Ĥ(t) = −J
∑
〈j,k〉

â†j âk −
∑
j

F (t) · rj â†j âj ,

• For a strong-driving amplitude κ = Fd ∼ ω, we perform a unitary transformation :

R̂(t) = exp

i(F/ω)
∑
j

rj · [sin(ωt)ex − cos(ωt)ey ] â†j âj


→ Ĥ(t) =

∞∑
n=−∞

Ĥ(n)einωt, Ĥ(n) = −JJn(κ/ω)
∑
〈j,k〉

â†j âke
−inθjk

where we have introduced the link-angles : rj − rk = d
[
cos(θjk)ex + sin(θjk)ey

]
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Shaking a 2D optical lattices circularly
• We have the time-dependent Hamiltonian in the moving frame

Ĥ(t) =
∞∑

n=−∞
Ĥ(n)einωt, Ĥ(n) = −JJn(κ/ω)

∑
〈j,k〉

â†j âke
−inθjk

• We can calculate the effective Hamiltonian

Ĥeff = Ĥ(0) +
1

ω

∞∑
j=1

1

j
[Ĥ(j), Ĥ(−j)] +O(1/ω2)

• To lowest order : nothing very special...

Ĥeff ≈ Ĥ(0) = −JJ0(κ/ω)
∑
〈j,k〉

â†j âk : the NN tunneling is renormalized

• The first correction to Ĥeff : NNN complex tunneling terms !

1

ω

∞∑
j=1

1

j
[Ĥ(j), Ĥ(−j)] ≈

√
3J2

ω
J 2

1 (κ/ω)
∑
〈〈j,k〉〉

â†j âk e
±iπ/2

• The effective Hamiltonian Ĥeff corresponds to the Haldane model !

This experiment was realized at ETH Zurich in the group of T. Esslinger
Ref: Jotzu et al. Nature 2014
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Combining superlattices and resonant modulation

• We have seen that resonant driving naturally leads to complex coupling elements

• Kolovsky’s idea [EPL ’11] : Wannier-Stark-ladder + resonant modulation

2D:

1D:

• This system would be equivalent to the Harper-Hofstadter model

: uniform flux per plaquette 
  (in units of flux quantum)

energy
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The Munich experiment by Aidelsburger et al. PRL ’13 [see also Miyake et al. PRL ’13]
• The Wannier-Stark ladder is created by a magnetic field gradient

y

x
B x

Δ

: magnetic field gradient

Lattice modulation: 2 running waves

Δ

• Setting |k1| = |k2| = π/2d, the Hamiltonian reads

Ĥ(t) = −J
∑
m,n

â†m±1,nâm,n+â†m,n±1âm,n+
∑
m,n

n̂m,n
{
ωm+ 2κ cos

[
ωt+

π

2
(m+ n)

]}

• The effective Hamiltonian is given by the Harper-Hofstadter form

Ĥeff = −
∑
m,n

Jxâ
†
m+1,nâm,ne

iΦn + Jy â
†
m,n+1âm,n + h.c.,

Jx = JJ1

(
2
√

2κ

ω

)
, Jy = JJ0

(
2
√

2κ

ω

)
, Φ =

π

2
(= qyd)
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Schemes leading to spin-orbit coupling ? Physics of topological insulators ?

• The Munich setup : two internal states | ↑, ↓〉 with opposite magnetic moment

y

x
B x B x

Δ

k1, ω1

k2, ω2

−Δ

⎥↑〉 ⎥↓〉

The synthetic gauge potential equivalent to a spin-orbit-coupling effect:

It is the form required to observe the quantum spin Hall effect

[see Bernevig & Zhang PRL ʻ06; also Kane & Mele PRL ʼ05]

• Is it possible to generate a Rashba spin-orbit coupling : ĤR = λR (p̂xσ̂x + p̂yσ̂y)

• We apply the effective Hamiltonian formula for Ĥ(t) = Ĥ0 + Â cos(ωt) + B̂ sin(ωt)

Ĥeff = Ĥ0 +
1

ω

∞∑
j=1

1

j
[V̂ (j), V̂ (−j)] + . . .

= Ĥ0 +
i

2ω
[Â, B̂] + . . .

• A possible solution : Ĥ0 = p̂2

2m
, Â =

p̂2x−p̂
2
y

2m
, B̂ = κ(x̂σ̂x − ŷσ̂y)

Ĥeff =
p̂2

2m
+ λR (p̂xσ̂x + p̂yσ̂y) , with the Rashba strength : λR =

κ

2mω
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Schemes leading to Rashba spin-orbit coupling ? [Goldman-Dalibard PRX ’14]

• A possible solution : Ĥ0 = p̂2

2m
, Â =

p̂2x−p̂
2
y

2m
, B̂ = κ(x̂σ̂x − ŷσ̂y)

Ĥeff =
p̂2

2m
+ λR (p̂xσ̂x + p̂yσ̂y) , with the Rashba strength : λR =

κ

2mω

• In practice ? We approximate the driving Â cos(ωt) + B̂ sin(ωt) by square waves

• It corresponds to the following repeated sequence{
p̂2
x

m
,
p̂2
x + p̂2

y

2m
+ κ(x̂σ̂x − ŷσ̂y),

p̂2
y

m
,
p̂2
x + p̂2

y

2m
− κ(x̂σ̂x − ŷσ̂y)

}
.

• Physical realization : a pulsed optical lattice with space-dependent magnetic field
Ĥ0 = T̂x + T̂y (where Tx,y : hopping terms ∼ J , with J � ω bounded !)

sequence :
{

2T̂x , Ĥ0 + κ(x̂σ̂x − ŷσ̂y) , 2T̂y , Ĥ0 − κ(x̂σ̂x − ŷσ̂y)
}
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Some final remarks about energy scales



Some remarks about energy scales, temperature requirements

• Consider a standard optical lattice (retro-reflected laser light)

V (x) = U0 cos2(kx), laser wavelength : λ = 2π/k, lattice spacing : d = λ/2

• The energy scales on the lattice are set by the recoil energy

ER =
~2k2

2m
=

h2

8md2
, ER/h ∼ 10 kHz −→ ER/kB ∼ 100 nK

• The amplitude of tunneling matrix elements is well approximated by

J =
4ER√
π

(
U0

ER

)3/4

exp

[
−2

(
U0

ER

)1/2
]

∼ 0.01− 0.1ER in the tight-binding regime

• The topological gaps (e.g. Harper-Hofstadter model) :

∆top ∼ J −→ ∆top/kB ∼ 10nK −→ very cold ! ! !

• Would it be possible to increase all energy scales ?

Sub-wavelength lattices : dnew � d = λ/2 −→ ẼR =
h2

8m(dnew)2
� ER =

h2

8md2



Some remarks about energy scales, temperature requirements

• Consider a standard optical lattice (retro-reflected laser light)

V (x) = U0 cos2(kx), laser wavelength : λ = 2π/k, lattice spacing : d = λ/2

• The energy scales on the lattice are set by the recoil energy

ER =
~2k2

2m
=

h2

8md2
, ER/h ∼ 10 kHz −→ ER/kB ∼ 100 nK

• The amplitude of tunneling matrix elements is well approximated by

J =
4ER√
π

(
U0

ER

)3/4

exp

[
−2

(
U0

ER

)1/2
]

∼ 0.01− 0.1ER in the tight-binding regime

• The topological gaps (e.g. Harper-Hofstadter model) :

∆top ∼ J −→ ∆top/kB ∼ 10nK −→ very cold ! ! !

• Would it be possible to increase all energy scales ?

Sub-wavelength lattices : dnew � d = λ/2 −→ ẼR =
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• Idea based on time-modulated systems [Nascimbene et al., to appear in PRL ’15]

0

1

0 ≤ t < T/4

V
(x
,t
)

0

1

T/4 ≤ t < T/2

0

1

T/2 ≤ t < 3T/4

0

1

3T/4 ≤ t < T

0 1 2
0

0.25

x[d]

V
e
ff
(x
)

• In practice : we propose to use a moving spin-dependent lattice

V (x, t) = VL cos(2kx− ωt)σ̂z + VB cos(Nωt)σ̂x, N ∈ N

Ĥeff =
p2

2m
+
Ueff

2
cos(2Nkx)σ̂x, Ueff = JN

(
2VL

~ω

)
VB,

• This generates a lattice of spacing dnew = d/N , where N ∈ N.
• Can be extended in 2D to create Chern bands...
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h2

8m(dnew)2
� ER =

h2

8md2

• Idea based on time-modulated systems [Nascimbene et al., to appear in PRL ’15]

0

1

0 ≤ t < T/4

V
(x
,t
)

0

1

T/4 ≤ t < T/2

0

1

T/2 ≤ t < 3T/4

0

1

3T/4 ≤ t < T

0 1 2
0

0.25

x[d]

V
e
ff
(x
)

• In practice : we propose to use a moving spin-dependent lattice

V (x, t) = VL cos(2kx− ωt)σ̂z + VB cos(Nωt)σ̂x, N ∈ N
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