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General introduction:
From “real” materials to cold atoms




Quantum Simulation with cold atoms: From real materials to optical lattices

Real materials

Zal

Some examples:

@ Superconductors

@ Graphene

@ Topological insulators

® Weyl semimetals

Theoretical models
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Cold atoms in optical lattices

confinement

additional
laser coupling
(or shaking, rotation, ...)

cold atoms  [Ref: Bloch et al. RMP ‘08]

® Huodel = Hatom

@ Control lattice geometry through light-field intensity
1
V(r) = 504()\)\E(r)|2 : optical dipole potential

@ Control over microscopic parameters: [/, .J , ...
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e ® Load Fermi gases, or Bose gases, or mixtures...



Quantum Simulation with cold atoms: From real materials to optical lattices

Real materials
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Some examples:

@ Superconductors
@ Graphene

@ Topological insulators

® Weyl semimetals

A few goals and challenges...
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Cold atoms in optical lattices

confinement

additional
laser coupling
(or shaking, rotation, ...)

optical lattice

cold atoms  [Ref: Bloch et al. RMP ‘08]

® Huodel = Hatom

@ Control lattice geometry through light-field intensity
1
V(r) = §a(>\)\E(r)|2 : optical dipole potential
@ Control over microscopic parameters: [/, .J , ...

@ Clean: no impurity, no phonons,...

@ Load Fermi gases, or Bose gases, or mixtures...

@ |dentify cold-atom setups that simulate systems of interest (real materials, but also high-energy physics?)

® Detect the effects using available probes (imaging techniques, single-site addressing, spectroscopy,...)

@ Go beyond solid-state physics: “observe things that can’t be created or seen in solids”, identify new effects, ...



Our main interest in these lectures: topological states of matter

e The quantum Hall effect
o =1/pg =V x (¢*/h) 6

B
edge states | r——
PH strong
magnetic field!

V: voltage magnetic field

I: current

strong
spin-orbit coupling!

@ 2D topological insulators (quantum spin Hall effect)

m = T I
Hso =Y ayy kuby
Helical edge states v

@ 3D topological insulators (Dirac-fermion surface states, axion electrodyn.)

/\w()
E strong
E ~ vk spin-orbit coupling!
Helical Dirac fermion k,,
(on the surface) :
Xia et al. Nat. Phys. 2009
@ Topological superconducting wires (Majorana fermions at the edges)
spin-orbit coupling
5 + s-wave supercond.

it o - N .
—o—o o o o o oo T/)edge = ('yl + l’yL)/Q
[Refs: Hasan & Kane RMP ‘10, Qi & Zhang RMP ’11]
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Synthetic gauge potentials: a route towards topological atomic states

Electrons in a solid

i = Z 5= (9 — 0A@))” + V(w)) +

q: the electron charge
A : gauge potential

Neutral atoms in optical lattices

atom-light coupling
(or rotation/shaking)

— i A(®))” + V() +

+ : coupling constant
A synthetic gauge potential

Ex: Magnetic field B =V x A

Spin-orbit coupling A, ~ 65, , € su(2) —>

—— synthetic magnetic field for neutral atoms

Reviews: J. Dalibard, F. Gerbier, G. Juzeliunas, P. Ohberg, Rev. Mod. Phys. (2011)
N Goldman, G. Juzeliunas, P. Ohberg, I. B. Spielman, Rep. Prog. Phys. (2014)

synthetic spin-orbit coupling for neutral atoms



Topological states using synthetic gauge potentials

@ Synthetic magnetic field—» The quantum Hall effect with cold atoms!

. B
A
edge states E o =1/pu =V x (e?/h)
) PH ii

I: current V: voltage control parameter

® Synthetic spin-orbit coupling

—> The quantum spin Hall effect, 2D/3D topological insulators

jspin :jT 7jj,

Helical edge states

E ~ vk

Helical Dirac fermion ky
(on the surface)
Xia et al. Nat. Phys. 2009
@ Synthetic spin-orbit coupling (+ Zeeman splitting and s-wave interactions)

—> topological superconductivity with Majorana modes



General overview of the schemes considered (so far) in experiments...

® Rotation

Qo

Ref: N. Goldman et al., Rep. Prog. Phys. (2014)

Hamiltonian in the rotating frame:

1 .
o (P A@)) 4+ V(@) + Wi () + ..

&
A=mQ xx —> |gB =2m Qo '

Ref: N. Cooper, Adv. Phys. ‘08 Dalibard et al. ‘00



General overview of the schemes considered (so far) in experiments...
Ref: N. Goldman et al., Rep. Prog. Phys. (2014)

® Rotation Hamiltonian in the rotating frame:

Dot
s 1 2 .
H= %(P —A®))" 4+ V(@) + Wanticerap (@) + ..
A=mQ xx —> |gB =2m Qo
\/
Ref: N. Cooper, Adv. Phys. ‘08 Dalibard et al. ‘00
® Raman dressing The adiabatic motion of atoms in a dressed state (local energy eigenstates)
Ucoupi ()
\I\N\I\N w ea(x) Berry connection
2 — (@) :
1) ﬁ e(e) — | A(x) = ’Lh(Xl‘VXﬁ
Yy

T+ Spielman et al. ‘09
ligh m » synthetic gnetic fields,
atom-light coupling synthetic spin-orbit coupling, ...




General overview of the schemes considered (so far) in experiments...

® Rotation

Dot
\/
® Raman dressing
I—f"unm](m:)

atom-light coupling

Ref: N. Goldman et al., Rep. Prog. Phys. (2014)

Hamiltonian in the rotating frame:

S 1 2 .
H = %(P—A(ﬂ})) +V($)+”<\mi—1m|>($)+... 1
A=mQo xx —> |gB =2m Qo 4

Ref: N. Cooper, Adv. Phys. ‘08 Dalibard et al. ‘00

The adiabatic motion of atoms in a dressed state (local energy eigenstates)

‘w ea(x) Berry connection
| .
X"‘.‘ “1(@) ——> [A(w) = lh<xl\Vxl>]

Yy
x Spielman et al. ‘09
—— synthetic magnetic fields,

synthetic spin-orbit coupling, ...

@ Mimic the Aharonov-Bohm phase in optical lattices  Induce complex tunneling matrix elements

i eifoBas,

id(2) . pai _
Vo(z) J = Jer € : Peierls phase-factors

E—
©

T

——> synthetic magnetic flux in lattices,
lattice gauge theory (e.g. non-Abelian),
synthetic spin-orbit coupling, ...



Different ways to induce/control the hopping in optical lattices

J = T '@

The goal:  Vj(z) /_\

©

Option 1: Use the internal states g«

Option 2: Shake!

Reviews:
Dalibard, Gerbier, Juzeliunas, Ohberg, RMP ‘10
Goldman, Juzeliunas, Ohberg, Spielman, RPP ‘14

Theory (proposals):
Jaksch & Zoller, NJP ‘03
Gerbier & Dalibard, NJP ‘10

Experiments (since 2011):

Struck, Eckardt, Sengstock,
Lewenstein et al. (Hamburg)

Jotzu, Esslinger et al. (Zurich)

Experiments (since 2011):
Aidelsburger, Bloch et al. (MPQ)
Miyake, Ketterle et al. (MIT)



Outline
Part 1: Shaking atoms!

Generating effective Hamiltonians: “Floquet” engineering
Topological matter by shaking atoms
Some final remarks about energy scales
Part 2: Seeing topology in the lab!
Loading atoms into topological bands
Anomalous velocity and Chern-number measurements
Seeing topological edge states with atoms
Part 3: Using internal atomic states!
Cold Atoms = moving 2-level systems
Internal states in optical lattices: laser-induced tunneling

Synthetic dimensions: From 2D to 4D quantum Hall effects



Part 1: Shaking atoms!

2015 Arnold Sommerfeld School, August-September 2015



The general picture : A static system is modulated periodically in time

Ht)=Ho+V({®), V@E+T)=V(t), T=2nr/w:the period



The general picture : A static system is modulated periodically in time
Ht)=Ho+V({®), V@E+T)=V(t), T=2nr/w:the period
Hy 40)

Cold atoms in optical lattices Shaking the lattice,
Modulating the hopping (lattice depth),
Time-dependent magnetic fields,
Additional lasers, ...

Cold atoms on the surface of a chip Modulating the currents,...

Electrons in a material Radiation, mechanical deformation,...
(ex: graphene, semiconductors,...)

Refs: Cayssol, Dora, Simon and Moessner (Phys. Status Solidi RRL 2013),
M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan and V. Pellegrini (Nat. Nanotech. 2013).

Light in photonic crystals Helical waveguides
(time=a spatial direction)

From: Rechtsman et al., Nature 2013 Ref: I. Carusotto and C. Ciuti (Rev. Mod. Phys. 2013).



Our goal: designing topological models by shaking atoms
» The basic concept:

\ i oifoBas,,
Volz) J = Ju¢'?®) ; peierls phase-factors i 0 mimic the A-B effect

—% to(zg)

* Example 1: The Harper-Hofstadter model

B a=1/5 o 0
H =-J% i T Na
\@ \@ \@ ; et . Vo # U
n+1 2o A . w
+n @ \@ @ te ’ a1n+1,nam,n + H.c. ]]\\2‘: I(()]

@ @ @ a = ®/® : uniform flux per plaquette

Nch ;é 0
(in units of flux quantum)




Our goal: designing topological models by shaking atoms

* The basic concept:

i cilnBds,,
Vo(z) J = Jeg ¢'®) : Peierls phase-factors ' ’ 0 mimic the A-B effect

Ps —> Vo(zo) "
x 2
* Example 1: The Harper-Hofstadter model o — '1/5
PR Bl Na#0
== am,n+1amﬂ
\@ \@ \@ m,n —ommmemew N 70
i 2rangt o SSSBBBES NV, £ 0
+e a am,n + H.c. ©

. @ \@ @ kLt L)

@ @ @ a = ®/® : uniform flux per plaquette

(in units of flux quantum)

Nchséo

m m+1

* Example 2: The Haldane model
*—0

o

(l (LA

ﬁ[:—JZa}ak
j.k)

+)\ Z i©
((3,k))




Generating effective Hamiltonians:
“Floquet” engineering




The central notion : the effective time-independent Hamiltonian

« A static system H is modulated periodically in time

Ht)=Ho+ V), Vt+T)=V(), T =2r/w:the period

e Generally, one adopts a stroboscopic view [T < tcharact] 1t = NT, N € N

ot = NT)) = [00)] " o) = [Tt 4 97 )



The central notion : the effective time-independent Hamiltonian

« A static system H is modulated periodically in time

Ht)=Ho+ V), Vt+T)=V(), T =2r/w:the period

e Generally, one adopts a stroboscopic view [T < tcharact] 1t = NT, N € N

it = NTY) = [00)] " i) = [Te= 5 B gy = (=i e ) ™ )

e Over each period T', the system evolves according to a time-independent
Hamiltonian Hg¢



The central notion : the effective time-independent Hamiltonian

A static system Hy is modulated periodically in time

Ht)=Ho+ V), Vt+T)=V(), T =2r/w:the period
Generally, one adopts a stroboscopic view [T < teparact] 1t = NT, N € N
N N O N o AN
lY(t = NT)) = [U(T)] o) = [Teﬂjo H(T)dT] o) = <671T7-Le”) o)
Over each period 7', the system evolves according to a time-independent
Hamiltonian Hg¢

Driving is interesting : Hy (“normal”) — He (potentially) Super !

Tuning V(t) : A versatile tool to engineer gauge fields, topological bands, ...

7:[eff = ﬁ |:<ﬁz +Az)2 + (f)y Jrj\y)z} + ...



The central notion : the effective time-independent Hamiltonian

A static system Hy is modulated periodically in time

Ht)=Ho+ V), Vt+T)=V(), T =2r/w:the period

Generally, one adopts a stroboscopic view [T < teparact] 1t = NT, N € N
N N O N o AN
lY(t = NT)) = [U(T)] o) = [Teﬂjo H(T)dT] o) = <671T7-Le”) o)

Over each period 7', the system evolves according to a time-independent
Hamiltonian Hg¢
Driving is interesting : Hy (“normal”) — He (potentially) Super !
Tuning V(t) : A versatile tool to engineer gauge fields, topological bands, ...

7:[eff = ﬁ |:<ﬁz +Az)2 + (f)y +Ay)2} + ...

In general, the effective Hamiltonian # cannot be derived exactly...

e~ i THett — Te—ilg HT)dr _ 9



The effective Hamiltonian and the Magnus expansion
» We want to evaluate the time-evolution operator between times to and ¢ ¢

N tyo N N

U(tyg;to) =T exp (—i H(T)d’r) , H(t+T)=H(®).
to

» Stroboscopic evolution (i.e. neglect micro-motion) : ty =to+NT with N € N

. . . to+T
Ultgsto) = [U(to + T;t0)]™, where Ulto + T;to) = T exp (—2/ ’ H(T)d’r)

to



The effective Hamiltonian and the Magnus expansion
» We want to evaluate the time-evolution operator between times to and ¢ ¢
N tyo N N
U(tyg;to) =T exp (—i H(T)dT) , H(t+T)=H(®).
to
» Stroboscopic evolution (i.e. neglect micro-motion) : ty =to+NT with N € N
N N . to+T
Ultgsto) = [U(to + T;t0)]™, where Ulto + T;to) = T exp (—2/ H(T)d’r)

to

e The time-ordered integral can be expanded through the Magnus formula

Uta;t1) = exp { ® e - ; '/;2 tL[H(t), H(r)drdt + ... }

—i
ty



The effective Hamiltonian and the Magnus expansion
We want to evaluate the time-evolution operator between times to and ¢ ¢
t

U(tf;to):’Texp (—z fI(T)dT) , Ht+T)=H(®).

to
Stroboscopic evolution (i.e. neglect micro-motion) : ty =to+NT with N € N

N N N to+T

Ultgsto) = [U(to + T;t0)]™, where Ulto + T;to) = T exp (—2/ H(T)d’r)
to

The time-ordered integral can be expanded through the Magnus formula

to

U(tg;tl):exp{—i _ﬁ(t)dt—%‘/tlu J[ﬁ(t),ﬁ(r)]dﬂ'dt—‘—...}

ty

Setting U (to + T;t0) = e—iTHF the effective Hamiltonian is given by the series

T+to & o+T
HFZ(I/T)/ . (dtf—/tJr /H(t)H (Mldrdt+... (1)

to



The effective Hamiltonian and the Magnus expansion
» We want to evaluate the time-evolution operator between times to and ¢ ¢
t

U(tf;to):'Texp (—z ﬁ(T)dT) , Ht+T)=H(®).

to

Stroboscopic evolution (i.e. neglect micro-motion) : ty =to+NT with N € N

N N N to+T

Ultgsto) = [U(to + T;t0)]™, where Ulto + T;to) = T exp (—2/ H(T)d’r)
to

e The time-ordered integral can be expanded through the Magnus formula

H(f)df——/t /[H(f A (r)drdt + .. }

to
U(fg,fl) = exp {—1

ty
o Setting U(to + T;to) = e~*THr  the effective Hamiltonian is given by the series
N T+to A to+T
e = (l/T)/ t — = / / (), H(Pdrdt +... (1)
to
o If we expand H (t) into its Fourier components,
H(t) = Ho+ V(t) = Ho+ Y _ VY exp(ijwt),
J#0
and perform the integrals in Eq. 1, we obtain the equivalent expression
Hf = Hy + - Z j{[V<+J>’V(J)] _ gliwto [V(“),Ho} 4 e Uiwto [V(J>7H0]} +...
i>0



The effective Hamiltonian and the Magnus expansion
o The effective Hamiltonian is given by a perturbative expansion in powers of (1/w) :

HF =Hy+ = = Z ; { v (+5) V( J)] etiwto [‘A/(Jrj)7 E[O] + e Wwto [‘A/'(*j)7 HO]}
j>0

+0O(1/w?)

o Useful to calculate effective Hamiltonians in the high-frequency regime w > !

o Useful to identify interesting time-modulated (cold-atom) setups [i.e. Ho, V' (¢)]!



The effective Hamiltonian and the Magnus expansion

o The effective Hamiltonian is given by a perturbative expansion in powers of (1/w) :

HF — HO 4= = Z ; { v (+5) V( J)] etiwto [‘A/(Jrj)7 E[O] + e tiwto [‘A/'(*j)7 ]f[o]}
7>0

O(1/w?)
o Useful to calculate effective Hamiltonians in the high-frequency regime w > !
o Useful to identify interesting time-modulated (cold-atom) setups [i.e. Ho, V' (¢)]!
o Several issues and subtleties should be addressed :

The effective Hamiltonian (o) explicitly depends on the initial time ...

— What is the role of to-terms ?
Is micro-motion really irrelevant ? How can this be evaluated ?

Is the convergence of the series guaranteed ? What if o, V() ~ w ?



The to-dependent terms : a simple illustration
o Consider a particle driven by a time-modulated force F :

»”

Ht)=Ho+V(t) = o

+ F cos(wt)Z
e The Magnus expansion provides the (exact) effective Hamiltonian

F
He(to) = ﬁ [p+ AGo)]* + ost,  where A(io) = — sin(wlo).

o The driving only modifies the initial mean velocity : v(to) — v(to) + A(to)/m

1000
u)t() =+ 7T/2
x(t) 0
wt() = 771'/2
-1000
0 100 200




The to-dependent terms : a simple illustration

Consider a particle driven by a time-modulated force F :

H(t)=Ho +V(t) = ﬁ— + F cos(wt)&

The Magnus expansion provides the (exact) effective Hamiltonian
- 1 F
He(to) = o~ [p+ A(to))? +cst, where A(ty) = — sin(wtp).
m w

The driving only modifies the initial mean velocity : v(to) — v(to) + A(to)/m

The tp-dependent terms can be removed by a unitary (gauge) transformation
to) = exp [1A(t0)#]

He(to) = ST(to)HoS(to)  where S(
— U(T + to; to) = e~ THr(t0) = gi—iTHo g

1000
u)t() =+ 7T/2
x(t) 0
wt() = 771'/2
-1000
0 100 200



The to-dependent terms : a simple illustration

Consider a particle driven by a time-modulated force F :

H(t)=Ho +V(t) = ﬁ— + F cos(wt)&

The Magnus expansion provides the (exact) effective Hamiltonian
- 1 F
He(to) = o~ [p+ A(to))? +cst, where A(ty) = — sin(wtp).
m w

The driving only modifies the initial mean velocity : v(to) — v(to) + A(to)/m

The tp-dependent terms can be removed by a unitary (gauge) transformation
to) = exp [1A(t0)#]

He(to) = ST(to)HoS(to)  where S(
— U(T + to; to) = e~ THr(t0) = gi—iTHo g

1000
After along time: ty = tg + NT
wtp :+7T/2

Xt 0 [(t)) = STem™NTHo SJyso)
wt() = 771'/2

-1000 S(t()) = exp [Z.A(f(])i’] :initial kick
0 100 200




¢ In general, there are three distinct notions :
(1) The initial kick related to the initial phase of the modulation
(2) The long-time dynamics ruled by an effective Hamiltonian A # He(to)
(3) The micro-motion (i.e. what happens within a period)
Wlty) = NI(ty) e~ '8~ e S(to) (o)
N—— N——
(3) (2) (1)

(2

X(t 3
(1)

time



¢ In general, there are three distinct notions :
(1) The initial kick related to the initial phase of the modulation
(2) The long-time dynamics ruled by an effective Hamiltonian Hyy # HF(to)
(3) The micro-motion (i.e. what happens within a period)
Wltg) = M(tg) 710~ Hen §(20) (ko)
—_—

(3) (2) (1)
()
Vad
X(t 3
(1)
time

* We can formally separate these effects by using a unitary transformation

B(t) = $(t) = e KDy(t),  i0d(t) = Hond(t),

Blty) = Ulto — ty)(ts) = e K (tp) gmilts —to) He giK (t0) ) (1)



¢ In general, there are three distinct notions :
(1) The initial kick related to the initial phase of the modulation
(2) The long-time dynamics ruled by an effective Hamiltonian Hyy # HF(t(J)
(3) The micro-motion (i.e. what happens within a period)
Wltg) = M(tg) 710~ Hen §(20) (ko)
—_—

(3) (2) (1)
()
Vad
X(t 3
(1)
time

* We can formally separate these effects by using a unitary transformation

B(t) = $(t) = e KDy(t),  i0d(t) = Hond(t),

Blty) = Ulto — ty)(ts) = e K (tp) gmilts —to) He giK (t0) ) (1)

« Question : Is it possible to compute H; and K (t) explicitly ?



Deriving the effective Hamiltonian [see Rahav et al. PRA 03, Goldman-Dalibard PRX ’14]

* We consider the time-dependent unitary transformation
0ep(t) = H)p(t), () — ¢(t) = e Dp(t),
¢ In the new frame the Hamiltonian is imposed to be time-independent :
i0rp(t) = Hefiop(t)

e The relation between H(t) and Hg is given by the usual transformation

. aezK(t) L
Hyy = zK(t)H(t)e—zK(t) ; o e—zK(t) (*)

o We expand He and K (t) in powers of 1/w

=01 (n) <1
N n N X
Heff = Z Heff ’ K(t) = Z wn K(n)
n= 0 n=1

—» insertinto Eq. (x) toget 1), AL, A, ... and KW, K@), ..

eff * “Teff ?



Deriving the effective Hamiltonian [see Rahav et al. PRA 03, Goldman-Dalibard PRX ’14]

* We consider the time-dependent unitary transformation
0ep(t) = H)p(t), () — ¢(t) = e Dp(t),
¢ In the new frame the Hamiltonian is imposed to be time-independent :
i0rp(t) = Hefiop(t)

The relation between H(t) and Hg is given by the usual transformation

. aezK(t) L
Hyy = zK(t)H(t)e—zK(t) ; o e—zK(t) (*)

o We expand He and K (t) in powers of 1/w

=01 (n) <1
N n N X
Heff = Z Heff ’ K(t) = Z wn K(n)
n= 0 n=1

—» insertinto Eq. (x) toget 1), AL, A, ... and KW, K@), ..

eff » “Teff
e We then have the full time-evolution :

W(tp) =Ulto — tp)(t;) = e —iK(tp) =ity —t0) Her oK (t0) (1)



General formulas [see Goldman-Dalibard PRX ’14]

e For a general time-periodic problem

H(t)=Ho+ > Velwt yy(=i)emidwt,
j=1

the long-time dynamics is well-captured by the effective Hamiltonian :

Ao = Ho + = Z Lv@ v QL Z iQ (v, o], VD) 4+ hie.)
J 17 j=1

1 1 . ) . .
il 4) ) y(=3i=07 — vy (=0 y(=3)

— good basis to identify schemes leading to topological properties !

» The micro-motion + initial-kick effects are well described by the kick operator :

1 . .
(J) ijwt _ v/ (—7) —ijwt
K(t) p ]E ; (V V e ) + ...

— good basis to estimate the effects due to micro-motion on observables !

ey



Dealing with the convergence of the series [Goldman, Dalibard et al., PRA *15]

o The perturbative approach works fine if H(t) remains finite for w — co
e However, we might deal with systems of the form

H(t) = ﬁregular(t) + Wo(t)’

Examples : strong-driving regime, static (resonant) energy offset A = hw



Dealing with the convergence of the series [Goldman, Dalibard et al., PRA *15]

o The perturbative approach works fine if H(t) remains finite for w — co
e However, we might deal with systems of the form

H(t) = ﬂregular(t) + Wo(t)’

Examples : strong-driving regime, static (resonant) energy offset A = hw
e Solution : perform a unitary transformation that removes all diverging terms !

[¥) = |¢') = R(t)hﬁ), R(t) =T exp {iw /Ot O(T)dT}

H() = A(t) = ROA® R (£) — iR R (8) = R(t) Hraguiar B (1)



Dealing with the convergence of the series [Goldman, Dalibard et al., PRA *15]

o The perturbative approach works fine if H(t) remains finite for w — co
e However, we might deal with systems of the form

H(t) = I:Iregular(t) + wO(t),

Examples : strong-driving regime, static (resonant) energy offset A = hw
e Solution : perform a unitary transformation that removes all diverging terms !

~ A t N
) = W) = R, R = Texp {iw [ Oryor}
H(t) — H(t)=R() H(t)R' (t) — iR(t) 0, R (t) = R(t) Hroguar BT (1)
o If R(t) and #L(t) can be computed explicitly, i.e. [O(t), O(t')] =0, then we are fine :

H(t) =Ho+ D VWeiiwt 4 P(=i)e=iiwt - is regular in the limit w — oo
j=1

and we can apply our formula for the effective Hamiltonian (in the moving frame) :

e R
(1) (=9) (4) (=3)
Heff*’HO-'rw?l VO VD) ;:1 = ([[v Hol, ¥ ]+h.c.)...,



Topological “Floquet” matter by shaking atoms




Our goal: designing topological models by shaking atoms

* The basic concept:

i cilnBds,,
Vo(z) J = Jeg ¢'®) : Peierls phase-factors ' ’ 0 mimic the A-B effect

Ps —> Vo(zo) "
x 2
* Example 1: The Harper-Hofstadter model o — '1/5
PR Bl Na#0
== am,n+1amﬂ
\@ \@ \@ m,n —ommmemew N 70
i 2rangt o SSSBBBES NV, £ 0
+e a am,n + H.c. ©

. @ \@ @ kLt L)

@ @ @ a = ®/® : uniform flux per plaquette

(in units of flux quantum)

Nchséo

m m+1

* Example 2: The Haldane model
*—0

o

(l (LA

ﬁ[:—JZa}ak
j.k)

+)\ Z i©
((3,k))




Useful example ... in view of creating fluxes in optical lattices
o Let us simplify the problem of the time-modulated superlattice (N integer)
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e We write the Hamiltonian of the two-level system as
H(t) = J(J0){1] + |1)(0]) + Nw|1)(1] + r cos(wt + ¢)[0){0], J < w
e In the strong-driving regime, x = Kow with Ky ~ 1 : two diverging terms !
e Let us perform the unitary transformation to remove them :
R(t) = exp {i [Nwt|1)(1] + Ko sin(wt + ¢)] 0)(0[}
S AHE) = J0)A] S € Ty (Ko)eUTN? fhe,  |eimsin@ = ST 7 (2)einy
j=—00 n=-—oo
o To lowest order, the effective Hamiltonian is given by
Heit = Ho = JTIN (Ko)e!N?[0)(1] + h.c.

o Nooffset N = 0 — Heir = JJo(Ko) [0)(1] + h.c. : the effective coupling is real !
o N =1 Hei = JIJ1(Ko)e® [0)(1] + h.c. : the effective coupling is complex !



The shaken optical lattices
» Let us now consider the full 1D shaken lattice without offset (A = 0)
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H(t) = 3 + Uopili — 0(0) i) =1

e In the tight-binding approximation, the Hamiltonian is written as
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The shaken optical lattices
Let us now consider the full 1D shaken lattice without offset (A = 0)

@ “ Uf_’“» e

2 2

H(t) = 3 + Uopili — 0(0) i) =1

In the tight-binding approximation, the Hamiltonian is written as

+ Uopt(2) — F(t)&

H(t) = —JZ(\m (m 4+ 1] + h.c.) + & cos(wt + ¢) Z|mmm|

The effective Hamiltonian is exactly given by *:b

[err/ J]

Her = —JTo(k/w) Z (Im){(m + 1| + h.c.)

m

Kjw
Lignier, Arimondo et al. 2007

Our goal is to create some fluxes in 2D... impossible by shaking the lattice ?

i6(®) . pa i eiJoBdS,,
J = TJeic : Peierls phase-factors /’

Vo()
/ (
6 \ —_—> U’U(zt))\' ‘
x %o




Shaking a 2D optical lattices circularly
* We consider a 2D honeycomb lattice, shaken circularly, in the moving frame
n2 2
- Pz + Dy .
H(l) = —— one -F .
(1) = =5 + Unoney (@) = F(t) - &

dl F(t) = —F [cos(wt)e, + sin(wt)e,]
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Shaking a 2D optical lattices circularly
» We consider a 2D honeycomb lattice, shaken circularly, in the moving frame

A2 A2
- Dy + 1, .
H(t) = S Y+ Unoney(z) — F(t) - &

dl F(t) = —F [cos(wt)e, + sin(wt)e,]

e The tight-binding Hamiltonian : NN tunneling + shaking

At)y=-J Y alay — Y F(t)-rjala;,

(4,k) J

e For a strong-driving amplitude « = F'd ~ w, we perform a unitary transformation :

R(t) = exp {z(F/w) Z r; - [sin(wt)ey — cos(wt)ey] &;r.dj }

J

— H(t) = Z A einwt ) — _J T, (k)w) Z &}&ke’inefk

n=—oo (3.k)

where we have introduced the link-angles : 7 — rj, = d [cos(0;x)ex + sin(0;;) ey |



Shaking a 2D optical lattices circularly
¢ We have the time-dependent Hamiltonian in the moving frame

o0
Ay = S AMemt A = 1 Tu(m/w) 3 d;&ke_mejk
n=Tee (4,k)
e We can calculate the effective Hamiltonian

N N R
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Shaking a 2D optical lattices circularly
¢ We have the time-dependent Hamiltonian in the moving frame

oo
Hit)= Y AMemet 70 = )7, (s/w) > alage 0x
n=—o0 (4:k)

» We can calculate the effective Hamiltonian

Hett = HO + — Z [H@ HED + 0(1/w?)
j 1
» To lowest order : nothing very special...
Heit = HO = —JTo(r/w) Z &;f.[zk : the NN tunneling is renormalized
(3:k)

o The first correction to Hci : NNN complex tunneling terms !

1 1~y i 3J2 )
- Z E[H(J)7H(*J)] ~ \/; T2 (r/w) Z &;&k otim/2
=1 ((3,k))

The effective Hamiltonian 7 corresponds to the Haldane model !

ﬁ:*JZaCLk + A Z
(4,k) ({3:k))

This experiment was realized at ETH Zurich in the group of T. Esslinger

Ref: Jotzu et al. Nature 2014




Combining superlattices and resonant modulation

* We have seen that resonant driving naturally leads to complex coupling elements

N § )
E e IA = w 'ﬂcﬁ ~ J (Ko)f’,i'c’ ‘0><1| + h.c.

lo\® fa=w) wi |0)
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Combining superlattices and resonant modulation

* We have seen that resonant driving naturally leads to complex coupling elements

1)
IA =w |t~ JR(Ko) [0)(1] +hc.
wi 10)

1D: Heg~ JJi(Ko) D al, a;¢' + hc

J

2D HeHNle(KU)Z Hlka]k(,u(k +JZ ! ek 4 hec.
j.k 3.k

* This system would be equivalent to the Harper-Hofstadter model

\@ @ \@ H :7'12 &Lz,nJr]afm,n

n+1 m,n

@ @ @ + ("’Izﬂ””d]\ m+1, nam n+ H.c.
\@ \@ @ o= <I>/<b0 uniform flux per plaquette

(in units of flux quantum)

m m41 energy



The Munich experiment by Aidelsburger et al. PRL 13 [see also Miyake et al. PRL "13]
o The Wannier-Stark ladder is created by a magnetic field gradient

‘ksz

Lattice modulation: 2 running waves

ki wq a1 ~ ik rtwit) V. t) =2 t .
- ”+ S Eq(r,t) e. N mod(T, 1) = 2K cos(wt +q - 1)
d ? Ey(r,t) ~ eilhamtwst) qg=ki -k
m m+l wW=w; —WwWy = A
y \/\/K/\/ A

ol Bx magnetic field gradient

> X



The Munich experiment by Aidelsburger et al. PRL 13 [see also Miyake et al. PRL "13]
o The Wannier-Stark ladder is created by a magnetic field gradient

Lattice modulation: 2 running waves

k1w 1 ~ pilkrrtwit) V. t) =2 t .
- ”+ > Ey(r,t) e. N mod (7, 1) = 2K cos(wt +q - 1)
d 2 Ea(r,t) ~ eilhortet) q=Fky —k;
m  m+1
., p Ww=w; —wy =A
y VAV L\, A

Ml Bx : magnetic field gradient

» X
o Setting |k1| = |k2| = 7/2d, the Hamiltonian reads

ﬁ(t) =_J Z d;rn:tl,ndmvn—‘rdin,n:tldmvn—"_z m,n {wm + 2k cos [wt + g(m + n)] }

m,n m,n



The Munich experiment by Aidelsburger et al. PRL 13 [see also Miyake et al. PRL "13]
e The Wannier-Stark ladder is created by a magnetic field gradient

‘kgwg

Lattice modulation: 2 running waves

s ¢
ki s * M‘() Ey(r,t) ~ eiRrmtwt) N Vinod (7, t) = 2K cos(wt +q - )
) Z> Ba(r,t) ~ei®2amtet) gk K,
m mtl w=w —ws =A

VAVAVAVAYY

Tl B x magnetic field gradient

> X

e Setting |k1| = |k2| = 7/2d, the Hamiltonian reads

N T
H(t)=—-J Z d;rn:tl,n&mvn—"_din,nildmvn—‘rz m,n {wm + 2k cos [wt + E(m + n)] }

m,n m,n

» The effective Hamiltonian is given by the Harper-Hofstadter form

Hett =— Y Jx&jn+17n&m,nezq>n + JydL7n+1dm,n +h.c.,

m,n

Jo = JT (2‘@“) Jy =T <2‘/§H> . = "(=q,d)
w w 2




Schemes leading to spin-orbit coupling ? Physics of topological insulators ?
o The Munich setup : two internal states | 1, |) with opposite magnetic moment

DR 2 DR 2

DI @@, | The synthetic gauge potential equivalent to a spin-orbit-coupling effect:
ks, an —
BIKDIKS A

N BN Aci = (—Berry,0,0) — | Aet = 6.(—Berry,0,0)

It is the form required to observe the quantum spin Hall effect
PERVAVAVAV A -a WANN,

— — [see Bernevig & Zhang PRL ‘06; also Kane & Mele PRL "05]
— X il x
X
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Schemes leading to spin-orbit coupling ? Physics of topological insulators ?
» The Munich setup : two internal states | 1, /) with opposite magnetic moment

DR 2 DR |

IO D, (D, (D The synthetic gauge potential equivalent to a spin-orbit-coupling effect:

DI =) D, (D, |(®

BIKDIKS D, | (@, (®

It is the form required to observe the quantum spin Hall effect
y WV\/ YA -A #V\/\/\J

ol 5 5 [see Bernevig & Zhang PRL ‘06; also Kane & Mele PRL "05]
x

Aci = (=Bery,0,0) — | Aeg = 7.(—Berry,0,0)

o Is it possible to generate a Rashba spin-orbit coupling : Hr = AR (Px62 + Pydy)
o We apply the effective Hamiltonian formula for () = Ho + A cos(wt) + B sin(wt)

N N i R
Hep=Ho+~ > ~[VO, V4.
w <
Jj=1
= Ho+ o~ [4,B]+...
2w

, , A 52 i Pa—PY A s
o Apossible solution: Hyo = £~ A= %Y B = k(265 — J6y)

2m’ 2m

52

Hef = LA AR (Pz6a + Pyby), With the Rashba strength : A\g = A
2m 2mw



Schemes leading to Rashba spin-orbit coupling ? [Goldman-Dalibard PRX ’14]
A ~ ~ 52 —_ 52 A
» A possible solution : Hy = %,A =2

52

Het = 2~ + g (pe6z + Pyéy), with the Rashba strength : \g = ——
2m mw
o In practice ? We approximate the driving A cos(wt) 4+ B sin(wt) by square waves

+A +B -A -B +A4 +B o o
W R
H(t):px+py+ 0 e 2m
2m . B P .
0

s = k(&6 — §0y)
T t
* |t corresponds to the following repeated sequence
A ~2 n2 52 82 ~2
+ +
{p“»pz % | w6, - goy), 2, P2 TP
m 2m

G y&y)} .



Schemes leading to Rashba spin-orbit coupling ? [Goldman-Dalibard PRX ’14]
» A possible solution : Ay =

A2 ~2

~ P2 —p ~

PoA=" p
2m’ 2m

A2

Hegt = T + AR P26z + Dyby) ,

with the Rashba strength : Ag = B

mw
In practice ? We approximate the driving A cos(wt) 4+ B sin(wt) by square waves

+B

— —+ . R
. Pr Dy
2+ ] o
H(t) = 062my+ 0 . A
B PO
0 t

* |t corresponds to the following repeated sequence

A9 | A9 52 52 52
Py Dz +D . ..\ by Dz +DP

{ Lt (860 — §6y), =, ———L
m 2m m

S (b y&y)} .

~
A 4
2
I3
Q
8
|
<
S
N

» Physical realization : a pulsed optical lattice with space-dependent magnetic field
Hy="1T, + Ty (where T, : hopping terms ~ J, with J < w bounded !)

sequence : {21} , Ho + k36, — §6y), 20y, Ho — (@6, — g&y)}



Some final remarks about energy scales




Some remarks about energy scales, temperature requirements

» Consider a standard optical lattice (retro-reflected laser light)
V(x) = Up cos?(kz), laser wavelength : \ = 2 /k, lattice spacing : d = A/2
e The energy scales on the lattice are set by the recoil energy

h2K2 h?2
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e The amplitude of tunneling matrix elements is well approximated by
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~ 0.01 — 0.1 ER in the tight-binding regime
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» Consider a standard optical lattice (retro-reflected laser light)
V(x) = Up cos?(kz), laser wavelength : \ = 2 /k, lattice spacing : d = A/2
e The energy scales on the lattice are set by the recoil energy
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Some remarks about energy scales, temperature requirements
e Would it be possible to increase all energy scales ?
- h? h?
Sub-wavelength lattices : dnew < d = A/2 — Eg = W > ER = P}
e |ldea based on time-modulated systems [Nascimbene et al., to appear in PRL "15]

— 1 T
U_‘ 0<t<T/4 ’_‘
0

1

Vit
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{ ﬂ T/2<f< 37/4
0

]
]
1
T m

a[d]
e In practice : we propose to use a moving spin-dependent lattice
V(zx, t) = V|_ cos(2kx — wt)d, + Vg cos(Nwt)éz, N €N
eff

U, Vi
Hoy = 2 — 4 1 cos(2Nka)ow,  Uet = Iy ( }WL) Va,

e This generates a lattice of spacing dnew = d/N, where N € N.



Some remarks about energy scales, temperature requirements
e Would it be possible to increase all energy scales ?
- h? h?
Sub-wavelength lattices : dnew < d = A/2 — Eg = W > ER = P}
e |ldea based on time-modulated systems [Nascimbene et al., to appear in PRL "15]

— 1 T
U_‘ 0<t<T/4 ’_‘
0
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Vit

{ ﬂ T/A<t<T/2 ﬂ
{ ﬂ T/2<f< 37/4
0

]
]
1
T m

a[d]
e In practice : we propose to use a moving spin-dependent lattice
V(zx, t) = V]_ cos(2kx — wt)d, + Vg cos(Nwt)éz, N €N
U, W
Hep = — —+ —e” cos(2Nkz)6w, Uett = TN ( }ML) Ve,

e This generates a lattice of spacing dnew = d/N, where N € N.
e Can be extended in 2D to create Chern bands...
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