
Confinement/deconfinement Phase Transitions

Here we study  a confinement/deconfinement phase transition

to see if the HEE can be an order parameter.  One of the simplest 

gravity duals of confining gauge theories is the AdS soliton.  

The AdS5 soliton⇔ (2+1) dim. pure SU(N) gauge theory.
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The metric of AdS soliton is given by the double Wick rotation of 

the AdS black hole solution.   
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[Nishioka-TT 06’, Klebanov-Kutasov-Murugan 07’]
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In the holographic calculation, two different surfaces
compete and this leads to the phase transition. 
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Lattice Results for 4D Pure YM
[4d SU(3):  Nakagawa-Nakamura-Motoki-Zakharov 0911.2596] Phase Transition

[4d SU(2):  Buividovich-Polikarpov 0802.4247]

Phase Transition

[See for other calculations of EE in lattice gauge 
theory: Velytsky 0801.4111, 0809.4502;
Buividovich-Polikarpov 0806.3376, 0811.3824]



⑧ AdS/MERA

(8-1) Basic Motivation

Relation between the metric and wavefunction

a CFT state  ⇔ Information  (~EE) =  Minimal Areas ⇔metric

One candidate of such frameworks is so called the entanglement 

renormalization (MERA) [Vidal 05 (for a review see 0912.1651)] as 

pointed out by [Swingle 09].   
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(8-2) Tensor Network (TN)  

[See e.g. the review Cirac-Verstraete 09]

Recently, there have been remarkable progresses in numerical 

algorithms for quantum lattice models, based on so called 

tensor product states.

This leads to various nice variational ansatzs for  the ground state 

wave functions in various quantum many-body systems. 

⇒ An ansatz is good if it respects the quantum entanglement    

of the true ground state.



Ex. Matrix Product State (MPS) [DMRG: White 92,…, 

Rommer-Ostlund 95,..]

 



)(M

1 2 n


1 2 3 n

Spinsn

nn

n

MMM
  

21

,,,

21 ,,, ])()()(Tr[
21








.  or    

,1,2,...,





i

i





Spin chain



MPS and TTN are not so suitable near quantum critical points 

(CFTs)  because their entanglement entropies are too small:

In general,   
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(8-3)  AdS/CFT and (c)MERA 

MERA (Multiscale Entanglement Renormalization Ansatz):

An efficient variational ansatz to find CFT ground states have been 

developed recently.  [Vidal 05 (for a review see 0912.1651)].

To respect its large entanglement in a CFT,  we add (dis)entanglers.
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Calculations of EE in 1+1 dim. MERA

A= an interval (length L)

A

A

CFTs. 2d with agrees  

     log]Bonds[#Min



 LS A

L

Llog

0u

1u

2u

3u

4u



A conjectued relation to AdS/CFT [Swingle 09]
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Now, to make the connection to AdS/CFT clearer,  we would like 

to consider the MERA for quantum field theories. 

Continuous MERA (cMERA)
[Haegeman-Osborne-Verschelde-Verstraete 11]
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Conjecture

K(u) : disentangler,     L: scale transformation





(8-4) Emergent Metric from cMERA

We focus on gravity duals of translational invariant  static states, 

which are not conformal in general. 

We conjecture that the metric in the extra direction is given by 

using the Bures metric (or Fisher information metric):

[Nozaki-Ryu-TT 12]
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Bures Metric

The Bures distance between two states is defined by

More generally, for two mixed states ρ1 and ρ2,

When the state depends on the parameters {ξi},  

the Bures metric (Fisher information metric) is defined as   

⇒ Reparameterization invariant  (in our case: coordinate u) 
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The operation           removes the coarse-graining procedure 

to extract the strength of unitary transformations (disentanglers ).

⇒ Our metric = the density of disentanglers

= the metric  guu in the gravity dual 

Understandable from the HEE:
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(8-5) Emergent Metric in a (d+1) dim. Free Scalar Theory

Hamiltonian:

Ground state             :  

Moreover,  we introduce the `IR state’          which has no real 

space entanglement. 
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For a free scalar theory, the ground state corresponds to

For the excited states,            becomes time-dependent. 

One might be tempting to guess 

Indeed, the previous proposal for guu lead to
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Explicit metric

(i) Massless scalar  (E=k)

(ii)   Lifshitz scalar    (E=kν)

(iii) Massive scalar  
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(8-6) Excited states  after quantum quenches

To realized these states, we need to extend the ansatz such that  
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For a given UV state           or equally              ,

the intermediate state              or               is determined 

up to an ambiguity. 

This stems from the phase factor ambiguity of wave function:

Our conjecture:

the phase ambiguity

⇔ the choice of the time slice
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Time dependent metric  from the Quantum Quench

t

Light cone

looks like a propagation of 
gravitational wave.
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We can also (analytically) confirm the linear growth:  SA∝t.
This is consistent with the known CFT (2d) [Calabrese-Cardy 05]

and recent holographic results in 2 or higher dimensions

z

[Arrastia-Aparicio-Lopez 10 , Albash-Johnson 10, Balasubramanian-
Bernamonti-de Boer-Copland-Craps- Keski-Vakkuri-Müller-Schäfer-
Shigemori-Staessens 10, 11, Hartman-Maldacena 13, Liu-Suh 13]



(8-7) Towards Holographic Dual of Flat Space

If  we consider the (almost) flat metric

the corresponding dispersion relation reads

This leads to the highly non-local Hamiltonian:

[cf. Li-TT 10]
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