Confinement/deconfinement Phase Transitions

Here we study a confinement/deconfinement phase transition
to see if the HEE can be an order parameter. One of the simplest
gravity duals of confining gauge theories is the AdS soliton.

The AdS5 soliton < (2+1) dim. pure SU(N) gauge theory.
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The metric of AdS soliton is given by the double Wick rotation of
the AdS black hole solution.
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In the holographic calculation, two different surfaces

compete and this leads to the phase transition.
[Nishioka-TT 06’, Klebanov-Kutasov-Murugan 07’]
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Lattice Results for 4

D Pure YM

[4d SU(3): Nakagawa-Nakamu

ra-Motoki-Zakharov 0911.2596]
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[See for other calculations of EE in lattice gauge
. theory: Velytsky 0801.4111, 0809.4502;
Buividovich-Polikarpov 0806.3376, 0811.3824]



AdS/MERA

(8-1) Basic Motivation

Relation between the metric and wavefunction

a CFT state © Information (~EE) = Minimal Areas <& metric

‘ \Ij> SA Area(yA) gyv

One candidate of such frameworks is so called the entanglement
renormalization (MERA) [vidal 05 (for a review see 0912.1651)] a$s
pointed out by [Swingle 09].



(8-2) Tensor Network (TN)

[See e.g. the review Cirac-Verstraete 09]
Recently, there have been remarkable progresses in numerical
algorithms for quantum lattice models, based on so called

tensor product states.

This leads to various nice variational ansatzs for the ground state
wave functions in various guantum many-body systems.

= An ansatz is good if it respects the quantum entanglement

of the true ground state.
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Ex. Matrix Product State (MPS) [DMRG: White 92,...,

Rommer-Ostlund 95,..]
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MPS and TTN are not so suitable near quantum critical points

(CFTs) because their entanglement entropies are too small:

S,<2logy (<<logL~S;™).

SA - |\Iint °|OgZ1
N.. = min[# Intersections of y,].

In general,




(8-3) AdS/CFT and (c)MERA

MERA (Multiscale Entanglement Renormalization Ansatz):
An efficient variational ansatz to find CFT ground states have been

developed recently. [Vidal 05 (for a review see 0912.1651)].

To respect its large entanglement in a CFT, we add (dis)entanglers.
Unitary transf.

between 2 spins
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Calculations of EE in 1+1 dim. MERA

S, o« Min[#Bonds] o log L
—> agrees with 2d CFTs.




A conjectued relation to AdS/CFT [Swingle 09]

Min[#Bonds] _
/ Min[Area]
1

/
uﬂ_—goo(zji I VA

Equivalent ?
Ade+2
-1 %1
2u 2 42 G2
Metric = ds* + c > (—dt® + dX*) = 4z dt2 + X :
E Z

—u

where z=c¢-e



Now, to make the connection to AdS/CFT clearer, we would like
to consider the MERA for quantum field theories.

Continuous MERA (cMERA)

[Haegeman-Osborne-Verschelde-Verstraete 11]

PW) =Peexp~if k@] [Q)

H/_/
True ground state IR state
(highly entangled) (no entanglement)

—> Real space renormalization flow : length scale ~¢-e™.

K(u) : disentangler, L: scale transformation

Conjecture

d+1 dim. cMERA = gravity on AdS,,, z=¢-e".







(8-4) Emergent Metric from cMERA [nozaki-Ryu-TT 12]

We focus on gravity duals of translational invariant static states,
which are not conformal in general.

We conjecture that the metric in the extra direction is given by
using the Bures metric (or Fisher information metric):

g,du’ =N -(1—‘<\P(u) |e™ | P (u +du)>m .

N = J‘dxd .IAe” dk? — The total volume of phase space
- 0 B at energy scale u.



Bures Metric

The Bures distance between two states is defined by

Dy, v,) =1-|(w, Il//z>\2-

More generally, for two mixed states p1 and p2,

D(p1, p,) =1—TF\/\E,02\/,071.

When the state depends on the parameters {&i},

the Bures metric (Fisher information metric) is defined as
D[y (&), w (& +d&)] = gydg'de?.

= Reparameterization invariant (in our case: coordinate u)
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The operation @ " removes the coarse-graining procedure

to extract the strength of unitary transformations (disentanglers ).

= Our metric = the density of disentanglers

= the metric guu in the gravity dual

/

Understandable from the HEE:
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(8-5) Emergent Metric in a (d+1) dim. Free Scalar Theory
Hamiltonian: H :% J' dk [z (k)72 (—K) + (k> + m?)@(k)p(—K)].

Ground state ‘\P> : ak\\P> =0.

Moreover, we introduce the 'IR state’ Q> which has no real

space entanglement.

a |Q) =0, a_ =M gp(x)+ ﬁﬂ(x),
e |9)=TT0), a; =M ¢(x)—ﬁ7z(x).

= S5,=0.



For a free scalar theory, the ground state corresponds to

K (U) = IE [[ake (ke /M yar, +(he))
where I'(x)is a cutoff function: I'(x) =6(1-|x|).
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For the excited states, ¥(S) becomes time-dependent.
One might be tempting to guess

Density of bonds
e2u

= .dx2 — g, dt?mp /0y, oc] y(u)| ?

2 2
dSGravity — guudu +

Indeed, the previous proposal for guu leadto (,, = Z(U)z.
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(i) Massless scalar (E=k)

Juu :%, Oy = 0., —> thepure AdS
(ii) Lifshitz scalar (E=k")
2
Juu = VT —> the Lifshitz geometry
(iii) Massive scalar
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(8-6) Excited states after quantum quenches

(Aca, +Bal)|¥) =0, (A" =1B [*=D).
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To realized these states, we need to extend the ansatz such that

K (U) = % [dkTke™ /M Ja(wya;a’, +9" Wa.a., )
= SU(1,1) Bogoliubov transf. Mk(u)

(A (u), B, (U)) = (., B) M, (u).



For a given UV state \‘P> or equally M, (0) ,
the intermediate state |'¥'(U)) or M, (u) is determined
up to an ambiguity.

This stems from the phase factor ambiguity of wave function:

(A +Bal)|¥)=0 = %Y. (Aa, +Ba)¥)=0.

Our conjecture: t e c\e®
the phase ambiguity g, (t) N /
< the choice of the time slice A
F(t,u) = const. > U
Uyy = 0 i =




Time dependent metric from the Quantum Quench

Light cone

looks like a propagation of
gravitational wave.

We can also (analytically) confirm the linear growth: SAcct.

This is consistent with the known CFT (2d) [Calabrese-Cardy 05]

and recent holographic results in 2 or higher dimensions
[Arrastia-Aparicio-Lopez 10, Albash-Johnson 10, Balasubramanian-

Bernamonti-de Boer-Copland-Craps- Keski-Vakkuri-Muller-Schafer-
Shigemori-Staessens 10, 11, Hartman-Maldacena 13, Liu-Suh 13]



(8-7) Towards Holographic Dual of Flat Space

If we consider the (almost) flat metric

ds® =e*du’ +e*dx* = g,, =e*,

the corresponding dispersion relation reads

ko, E
u) = :eu :>E :ek.
x(U) = 5 [ E, j k

k=Ae"

This leads to the highly non-local Hamiltonian:

H = j dx? g(x)e’ " #(x).

[cf. Li-TT 10]



