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Compressible quantum matter

e Consider an infinite, continuum,
translationally-invariant quantum system with a glob-
ally conserved U(1) charge Q (the “electron density” )
in spatial dimension d > 1.
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Compressible quantum matter

e Consider an infinite, continuum,
translationally-invariant quantum system with a glob-
ally conserved U(1) charge Q (the “electron density” )
in spatial dimension d > 1.

e Describe zero temperature phases where d(Q)/du #
0, where 1 (the “chemical potential”) which changes
the Hamiltonian, H, to H — nQ.
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Compressible quantum matter

e Consider an infinite, continuum,
translationally-invariant quantum system with a glob-
ally conserved U(1) charge Q (the “electron density” )
in spatial dimension d > 1.

e Describe zero temperature phases where d(Q)/du #
0, where 1 (the “chemical potential”) which changes
the Hamiltonian, H, to H — nQ.

e Compressible systems must be gapless.

e Conformal systems are compressible in d = 1, but
not for d > 1.
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Compressible quantum matter

One compressible state is the solid (or

“Wigner crystal” or “stripe”).
This state breaks translational symmetry.




Compressible quantum matter

Another familiar compressible state is
the superfluid.

This state breaks the global U(1)
symmetry associated with O

Condensate of
fermion pairs

Friday, August 9, 13



Compressible quantum matter

@ The only compressible phase of traditional
condensed matter physics which does not break the

translational or U(1) symmetries is the Landau Fermi
liquid
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Compressible quantum matter

@ The only compressible phase of traditional
condensed matter physics which does not break the

translational or U(1) symmetries is the Landau Fermi
liquid

@ The Fermi liquid state exhibits logarithmic violation
of the area law of entanglement entropy

@ Conjecture: All compressible quantum states which
do not break the U(l) symmetry exhibit logarithmic
violation of the area law of entanglement entropy

Friday, August 9, 13



Compressible quantum matter

A. Fermi liquids:graphene

B. Holography: Reissner - Nordstrom
solution

C. Non-Fermi liquids:
Bose metals and U(1) spin liquids

D. Holography: scaling arguments for
entropy and entanglement entropy
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Quantum phase transition in graphene tuned by
a chemical potential (gate voltage)

Dirac
semi-metal
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Quantum phase transition in graphene tuned by
a chemical potential (gate voltage)
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The Fermi liquid

L= (005 —u) s
2m

+ 4 Fermi terms

e Fermi wavevector obeys the Luttinger relation k% ~ Q, the
fermion density
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fermion density

e Sharp particle and hole of excitations near the Fermi surface
with energy w ~ |¢q|?, with dynamic exponent z = 1.
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The Fermi liquid

\&
L= gt (aT v u>f
2m

+ 4 Fermi terms

e Fermi wavevector obeys the Luttinger relation k% ~ Q, the
fermion density

e Sharp particle and hole of excitations near the Fermi surface
with energy w ~ |¢q|?, with dynamic exponent z = 1.

e The phase space density of fermions is effectively one-dimensional,
so the entropy density S ~ T'. It is useful to write thisis as .S ~
T(4=9)/2 with violation of hyperscaling exponent 6 = d — 1.
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Entanglement entropy of the Fermi liquid

B
A P
/
1

Logarithmic violation of “area law”: Sg = 1—2(k rP)In(kpP)

for a circular Fermi surface with Fermi momentum kg,
where P is the perimeter of region A with an arbitrary smooth shape.

D. Gioev and . Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle, Physical Review Letters 105,050502 (2010)
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Logarithmic violation of “area law”: Sg = 1—2(k rP)In(kpP)

B

for a circular Fermi surface with Fermi momentum kg,
where P is the perimeter of region A with an arbitrary smooth shape.
The prefactor 1/12 is universal: it is independent of the shape of the
entangling region, and of the strength of the interactions.

D. Gioev and . Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle, Physical Review Letters 105,050502 (2010)
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Entanglement entropy of the Fermi liquid
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Logarithmic violation of “area law”: Sg = 1—2(k rP)In(kpP)

B

for a circular Fermi surface with Fermi momentum kg,
where P is the perimeter of region A with an arbitrary smooth shape.
The prefactor 1/12 is universal: it is independent of the shape of the
entangling region, and of the strength of the interactions.

D. Gioev and . Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle, Physical Review Letters 105,050502 (2010)
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ﬂ &
Fermi
liquid

e k% ~ Q, the fermion density

e Sharp fermionic excitations
near Fermi surface with
w~ lqg|?, and z = 1.

e Entropy density S ~ T(4=0)/z
with violation of hyperscaling
exponent 6 = d — 1.

e Lintanglement entropy
Sg ~ k% 'Pln P.
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Transport in graphene at non-zero

From the Kubo formula

B ) i dk fes(k)) = fles (k)
o(w) =2 (evp) 7 Z;/ 4702 (e4(k) — e4(k))(e5(k) — e5 (k) + hw + in)

where £4(k) = shvup|k| and s, s’ = +1 for the valence and conduction bands.

T. Ando, Y. Zheng and H. Suzuura, J. Phys. Soc. Jpn. 71 (2002) pp. 1318-1324
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Transport in graphene at non-zero
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Notice delta function is present even at
I[' = 0 at non-zero density: this is a generic
consequence of the conservation of mo-
mentum in any clean interacting Fermi
liquid. Only “umklapp” scattering can
broaden this delta function.

Dynamical Conductivity (units of e2/x2h)
(6]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (units of eg/h)

T. Ando, Y. Zheng and H. Suzuura, J. Phys. Soc. Jpn. 71 (2002) pp. 1318-1324
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Transport in graphene at non-zero

Dynamical Conductivity (units of e2/x2h)
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A is inversely proportional to disorder.
In the clean limit A — oo, at T' =0
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Notice delta function is present even at
I[' = 0 at non-zero density: this is a generic
consequence of the conservation of mo-
mentum in any clean interacting Fermi
liquid. Only “umklapp” scattering can
broaden this delta function.

T. Ando, Y. Zheng and H. Suzuura, J. Phys. Soc. Jpn. 71 (2002) pp. 1318-1324
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Optical conductivity of graphene
Undoped graphene

0 1,000 2000 3000 4,000 5000 6000 7,000 8000
@ (cm~7)

Q Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim,
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).
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Compressible quantum matter

A. Fermi liquids:graphene

B. Holography: Reissner - Nordstrom
solution

C. Non-Fermi liquids:
Bose metals and U(1) spin liquids

D. Holography: scaling arguments for
entropy and entanglement entropy
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Begin with a CFT
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Holographic representation: AdS4

( A2+
dimensional
CFT
. atT=0

J
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Holographic representation: AdS4

( A2+
dimensional
CFT
. atT=0

J

[ dr? 02+ da? + i
) ey A dat A dy
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Apply a chemical potential

V'
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AdS4 theory of “nearly perfect fluids™

To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT'3s can be described by
Einstein-Maxwell gravity /electrodynamics on AdS4-Schwarzschild

1
492

Sew = [ d'ay/=g

F,F®|

This is to be solved subject to the constraint
A (r—0,z,y,t) = A, (z,y,1)

where A, is a source coupling to a conserved U(1) current J,
of the CFT3

S =S8crr +1 / dxdydtA,,J,
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AdS4 theory of “nearly perfect fluids™

To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT'3s can be described by
Einstein-Maxwell gravity /electrodynamics on AdS4-Schwarzschild

1

F,F®|
492

Sew = [ d'ay/=g

This is to be solved subject to the constraint
A (r—0,z,y,t) = A, (z,y,1)

where A, is a source coupling to a conserved U(1) current J,
of the CFT3

S =S8crr +1 / dxdydtA,,J,

At non-zero chemical potential we simply require A, = p.
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The Maxwell-Einstein theory of the applied
chemical potential yields a AdS4-Reissner-Nordtrom
black-brane

] 6 1 )
S = /d4x\/—g (R | ) 2FabFab

92

S.A. Hartnoll, P. K. Kovtun, M. Muller, and S. Sachdeyv, Physical Review B 76, 144502 (2007)
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The Maxwell-Einstein theory of the applied
chemical potential yields a AdS4-Reissner-Nordtrom
black-brane

2
ds* = <£> { L f(r)dt? + dz® + dyQ}

T
2 2 2 I
Withf(r)z(l—i) <1: }; | ZQ>aHdR—\/iug4,andAT—M(1—i




The Maxwell-Einstein theory of the applied
chemical potential yields a AdS4-Reissner-Nordtrom
black-brane

At T = 0, we obtain an extremal black-brane, with
a near-horizon (IR) metric of AdSy x R?

T. Faulkner, H. Liu,
J. McGreevy,

and D.Vegh,
arXiv:0907.2694

ds

72

6

, L7 (—dt2 + dr?

) + dx? + dy?
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Compute conductivity using response to a time-dependent
vector potential as a function of w/T and u/T

12

1.0/

0.8

Re[c] 0.6 — —
0.4+

0.2

0 5 10 15 20 25
w/T

00!

S.A. Hartnoll, arXiv:0903.3246
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Compute conductivity using response to a time-dependent
vector potential as a function of w/T and u/T

1.2
1.0 |
0.8 _
Re[0] 0.6 .
O(w
h (¢ + P) (@) _
0.4 where p is the number density, -
€ 1s the energy density,

0.2 and P is the pressure. .
0.0 | | L ' |
0 5 10 15 20 25

w/T

S.A. Hartnoll, P. K. Kovtun, M. Muller, and S. Sachdeyv, Physical Review B 76, 144502 (2007)
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Optical conductivity of graphene
Undoped graphene

0 1,000 2000 3000 4,000 5000 6000 7,000 8000
@ (cm~7)

Q Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim,
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).
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Features of AdS,; X R2

e Has non-zero entropy density at 1T' = 0, and “vol-
ume” law for entanglement entropy.

e Green’s function of a probe fermion (a mesino) can
have a Fermi surface, but self energies are momentum
independent, and the singular behavior is the same
on and off the Fermi surface

e Deficit of order ~ N? in the volume enclosed by the
mesino Fermi surfaces: presumably associated with

“hidden Fermi surfaces” of gauge-charged particles
(the quarks).

S.-S. Lee, Phys. Rev. D 79, 086006 (2009);
M. Cubrovic, J. Zaanen, and K. Schalm, Science 325,439 (2009);

T. Faulkner, H. Liu, . McGreevy, and D.Vegh, arXiv:0907.2694
S. Sachdey, Phys. Rev. Lett. 105, 151602 (2010).
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Compressible quantum matter

A. Fermi liquids:graphene

B. Holography: Reissner - Nordstrom
solution

C. Non-Fermi liquids:
Bose metals and U(1) spin liquids

D. Holography: scaling arguments for
entropy and entanglement entropy




Compressible quantum matter

A. Fermi liquids:graphene

B. Holography: Reissner - Nordstrom
solution

~N

' C. Non-Fermi liqguids:
Bose metals and U(1) spin iquads
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D. Holography: scaling arguments for
entropy and entanglement entropy




Bose-Hubbard model at integer filling

Superfluid
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Bose-Hubbard model at integer filling
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Bosons with correlated hopping
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Bosons with correlated hopping at half-filling

=—t) blbj+ = an — 1) 4w Y blbibb

(17) 1jkleE
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Bosons with correlated hopping at half-filling

=—t) blbj+ = Zm — 1) 4w Y blbibb

(w
O
O O
.
O o O
Superfluid
0

11kl E
X
°0 oo

Insulator with modulation
in boson bond-density

Jde g:U/t

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
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Bosons with correlated hopping at half-filling

=—t» blbj+ = an —1)+w »  blblbibe

(’LJ . ijkee
0o oo
o O 0 ©
| 03 oo
O o O o
_ Insulator with modulation
Superfluid in boson bond-density

‘Deconfined’ critical point: boson fractionalizes b ~ z1z9, and the
fractionalized bosons are coupled to an emergent U(1) gauge field

L =0, —iAu)a]? + (0 +iA,) 22| +5(|21]% +22]7) +ul|21]? 4 22]7)? — v]21]?| 227

O.I. Motrunich and A. Vishwanath, Phys. Rev. B 70, 075104 (2004).
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).
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Bosons with correlated hopping close to half-filling

H=—t) blbj+ = Zn i— 1) 4w Y blbibb

(17) 1jklE
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Bosons with correlated hopping close to half-filling

H=—t) blbj+ = Zn i— 1) 4w Y blbibb

(17) 1jklE

e NFL, the non-Fermi liquid Bose metal. The z1, 29
quanta fermionize into fi, fo, each of which forms
a Fermi surface. Both fermions are gauge-charged,
and so the Fermi surfaces are partially “hidden”.

Q=10b
Ar = (Q)

O. l. Motrunich and M. P A. Fisher, Phys. Rev. B 75,235116 (2007)
L. Huijse and S. Sachdev, Phys.Rev. D 84,026001 (201 1)
S. Sachdey, arXiv:1209.1637
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Non-Fermi liquid Bose Metal

For suitable interactions, we can have the boson, b, fractionalize into two fermions

f1,21
b— f1f2

This implies the effective theory for fi o is invariant under the U(1) gauge transfor-
mation

f1 = fre®@T) L fy s foemW®T)

Consequently, the effective theory of the Bose metal has an emergent gauge field
A,, and has the structure

(V —iA)?

2m

(V +iA)? B u) 5

2m

E:ff(@T_iAT_ _N>f1+f§(aT+ZAT_

The gauge-dependent f; 2 Green’s functions have Fermi surfaces obeying A; =
(Q). However, these Fermi surfaces are not directly observable because it is gauge-
dependent. Nevertheless, gauge-independent operators, such as b or b'b, will exhibit
Friedel oscillations associated with fermions scattering across these hidden Fermi
surfaces.
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ﬂ &
Fermi
liquid

e k% ~ Q, the fermion density

e Sharp fermionic excitations
near Fermi surface with
w~ lqg|?, and z = 1.

e Entropy density S ~ T(4=0)/z
with violation of hyperscaling
exponent 6 = d — 1.

e Lintanglement entropy
Sg ~ k% 'Pln P.
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FL ¢ NFL

Fermi Bose
liquid metal
e Hidden Fermi
o k% ~ O, the fermion density surface with k% ~ Q.

e Sharp fermionic excitations
near Fermi surface with
w~ lqg|?, and z = 1.

e Entropy density S ~ T(4=0)/z
with violation of hyperscaling
exponent 6 = d — 1.

e Lintanglement entropy
SE ~ k%_lplnp.
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FL ¢ NFL v

Fermi Bose
liquid metal
e Hidden Fermi
e k% ~ Q, the fermion density surface with k% ~ O.
e Sharp fermionic excitations e Difluse fermionic
near Fermi surface with excitations with z = 3/2
w~ lqg|?, and z = 1. to three loops.

e Entropy density S ~ T(4=0)/z
with violation of hyperscaling
exponent 6 = d — 1.

e Lintanglement entropy

d—1 P. A. Lee, Phys. Rev. Lett. 63, 680 (1989)
SE ~ kF PlnP. M. A. Metlitski and S. Sachdev,

Phys. Rev. B 82, 075127 (2010)
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Field theory of non-Fermi liquid

o A fluctuation at wavevector g couples most efficiently to fermions
near +kg.
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Field theory of non-Fermi liquid

—

f\y
o

o A fluctuation at wavevector g couples most efficiently to fermions
near +kg.

e Eixpand fermion kinetic energy at wavevectors about ::IZO. In
Landau gauge A = (a,0).
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Field theory of non-Fermi liquid
0- \
xfcf )
o
A

a] =
Wl (8, — 0, — 02) s + T (8, +i0, — 02) P
1
—a (Ylyy —ply ) - A

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)




Field theory of non-Fermi liquid

(0- — 10y — 02) by + 0L (0- + 10, — 0) 1

1 y
292 (6ya’)

—a(vlvy —vly )

One loop a self-energy with Ny fermion flavors:

d*k dQ 1

D(§w) = N

(7, w) f / 472 21 [—i(Q 4 w) + by + g + (ky + qy)2] [—1Q — ky + k2]
Nf \w! o
i |q,) Landau-damping
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We first explicitly evaluate 11(q, w,). We will only be interested in terms that are singu-
lar in ¢ and w,,, and will drop regular contributions from regions of high momentum and
frequency. In this case, it is permissible to reverse the conventional order of integrating over

frequency first in (17), and to first integrate over k,. It is a simple matter to perform the

integration over k, in using the method of residues to yield

II(q,w,) = L/ dd_ldk_yl / o el £ ) — sen(cn) =
2or ) GO 2 (4 ivpg, + ingd/2+ ind, - F,
[ ATk L
_ ]w ‘ d_yl — - (19)
2mup ) (2m) (Cwn + WpQs + iKq; /2 + iKqy - ky)
We now integrate along the component of k, parallel to the direction of ¢, to obtain
. 412k
2mopklqy| S (2m)4
’Wn‘ d—2

_ A 20
2mVEK|q,| 2

Note that in d = 2 the last non-universal factor is not present, and the result for II is
universal with A%~2 = 1. Note also that ¢ has dropped out of the result II: this will be

important in our subsequent treatment of quantum critical points.
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Field theory of non-Fermi liquid

1
29

2 (8ya)2

Electron self-energy at order 1/Ny:

S(k,Q) = _L/CFQ o !
’ Ny ) 472 2w qz ]
2

—i(w+ Q) + ke + qe + (ky + qy)?)

2 g 2 2/3
= —i\/ng (E) sgn(2)[Q]%/
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d%q de 1
ik, wy, :)\2/ / - Golk + q, €, + wy, 45
W) =2 ] Gyt | 2w v el | o
This can be evaluated by the same methods used for (18). Integrating over ¢, we find the

analog of (21)

Z%aq—wi?/ddwy/d%%ﬂ%+wd%!

vp ) 2m)H ) 2m gyl A+ len]
N / g, (\%’3 + 7\%])
=1 sgn(wy, ¢, | In . 46
TURY g ( ) (27_‘_)d_1‘ y‘ ’qy’3 ( )

Evaluation of the g, integral yields a result which agrees with (42) and (43) in d = 2, and
with the expected logarithmic corrections in d = 3. In the physically important case of
d = 2, the g, integral evaluates to

)2
Tupyl/3v/3

S(k,wn) = sgn(wn)|wa|*?, d=2, (47)

in agreement with (43).
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Field theory of non-Fermi liquid

L (8, —i0, — 02) by + 1 (0r + 0y — O2)
1
29

2 (6ya)2

Schematic form of a and fermion Green’s functions

1/N; 1
, Grlq,w) = .
17 w) Gz + q2 — isgn(w)|w|?/3 /Ny

In both cases q, ~ qz ~ w'/? with z = 3/2. Note that the

bare term ~ w in G> ' is irrelevant.
f

Strongly-coupled theory without quasiparticles.
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Field theory of non-Fermi liquid

(0- — 10y — 02) by + 0L (0- + 10, — 0) 1

1 y
292 (8ya’)

—a(vlvy —vly )

Simple scaling argument for z = 3/2.

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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Field theory of non-Fermi liquid

Simple scaling argument for z = 3/2.

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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Field theory of non-Fermi liquid

Simple scaling argument for z = 3/2.

1/2

Under the rescaling x — x/s, y — y/s /%, and 7 — 7/s%, we

find invariance provided

a — as
w N wS(ZZ—I—l)/ZL
g — 98(3—22)/4

So the action is invariant provided z = 3/2.

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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FL ¢ NFL v

Fermi Bose
liquid metal
e Hidden Fermi
e k% ~ Q, the fermion density surface with k% ~ O.
e Sharp fermionic excitations e Difluse fermionic
near Fermi surface with excitations with z = 3/2
w~ lqg|?, and z = 1. to three loops.

e Entropy density S ~ T(4=0)/z
with violation of hyperscaling
exponent 6 = d — 1.

e Lintanglement entropy

d—1 P. A. Lee, Phys. Rev. Lett. 63, 680 (1989)
SE ~ kF PlnP. M. A. Metlitski and S. Sachdev,

Phys. Rev. B 82, 075127 (2010)
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Entanglement entropy of the non-Fermi liquid

\

A P

/

Logarithmic violation of “area law”: Sg = Cg kpPIn(kpP)

B

for a circular Fermi surface with Fermi momentum kg,
where P is the perimeter of region A with an arbitrary smooth shape.
The prefactor Cg is expected to be universal but # 1/12:
independent of the shape of the entangling region, and dependent

only on IR features of the theory.

B. Swingle, Physical Review Letters 105,050502 (2010)
Y. Zhang, T. Grover, and A.Vishwanath, Physical Review Letters 107,067202 (2011)
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Compressible quantum matter

A. Fermi liquids:graphene

B. Holography: Reissner - Nordstrom
solution

C. Non-Fermi liquids:
Bose metals and U(1) spin liquids

D. Holography: scaling arguments for
entropy and entanglement entropy
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Consider the metric which transforms under rescaling as

T, — QX
t — (°t
ds — (%9(s.

This identifies z as the dynamic critical exponent (z = 1 for
“relativistic” quantum critical points).

6 is the violation of hyperscaling exponent.

L. Huijse, S. Sachdey, B. Swingle, Physical Review B 85,035121 (2012)
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Consider the metric which transforms under rescaling as

t — (°t
ds — (%9(s.

This identifies z as the dynamic critical exponent (z = 1 for
“relativistic” quantum critical points).

6 is the violation of hyperscaling exponent.
The most general choice of such a metric is

2
d82 _ 1 ( dt | TQQ/(dH)dT2+dSU?>

2 r2d(z—1)/(d—0)

We have used reparametrization invariance in r to choose so
that it scales as r — ((@=0)/dp.

L. Huijse, S. Sachdey, B. Swingle, Physical Review B 85,035121 (2012)
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At T > 0, there is a “black-brane” at r = ry,.

The Beckenstein-Hawking entropy of the black-brane is the
thermal entropy of the quantum system r = 0.

The entropy density, .S, is proportional to the

“area” of the horizon, and so S ~ r}:d
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At T > 0, there is a “black-brane” at r = ry,.

The Beckenstein-Hawking entropy of the black-brane is the
thermal entropy of the quantum system r = 0.

The entropy density, .S, is proportional to the

“area” of the horizon, and so S ~ r}:d

Under rescaling r — ¢(4=9)/4y and the
temperature T ~ t~ ! and so

(AN T(d—@)/z _ Tdeff/z

where 0 = d — d.g measures “dimension deficit” in
the phase space of low energy degrees of a freedom.
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dt?

1
2
ds _7“2( 2d(z—1)/(d—0) |

At T > 0, there is a horizon, and computation of its
Bekenstein-Hawking entropy shows

G~ T(d—@)/z.

So 6 is indeed the violation of hyperscaling exponent as
claimed. For a compressible quantum state we should
therefore choose 0 = d — 1.

No additional c]

noices will be made, and all subsequent re-

sults are consequences of the assumption of the existence
of a holographic dual.

L. Huijse, S. Sachdey, B. Swingle, Physical Review B 85,035121 (2012)
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Holography of a non-Fermi liquid

g2 _ L dt” C20/(d=6) 3,2 | 1,2
> T 2\ 2dG—1)/@—0) g i

The null energy condition (stability condition for gravity)

yields a new inequality

In d = 2, this implies z > 3/2. So the lower bound is
precisely the value obtained from the field theory.

N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012).
L. Huijse, S. Sachdey, B. Swingle, Physical Review B 85,035121 (2012)
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Holography of a non-Fermi liquid

2
d82 _ 1 ( dt | TQQ/(dQ)dT2+dﬂf?>

r2 r2d(z—1)/(d—6)

0=d—1

Application of the Ryu-Takayanagi minimal area formula to
a dual Einstein-Maxwell-dilaton theory yields

SENPIHP

with a co-efficient independent of the shape of the entangling
region. These properties are just as expected for a circular
Fermi surtace.

N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012).
L. Huijse, S. Sachdey, B. Swingle, Physical Review B 85,035121 (2012)
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> 3

rqg = W(r,z,;)

Surface area A
Ld

),flj‘j

N Za = w(z;)

Surface area X




Let us parameterize the extended surface by (see Fig. 1)
g = W(r, x;). (3.4)
Then we have to find the optimum function W (r, x;) subject to the constraint
W(0,xz;) = w(x;). (3.5)

Let us compute the area of the general holographic surface in (3.4). The induced metric

on this surface is

2| AW\ 2 OW OW oW oW
do? = — ~ .20/(d—0) s dr? + 9 drdr. S dr.dr.
T _(gor T\ ) ) T e as, T T\ T By A, )

(3.6)
The area element on the surface is determined by the square-root of the determinant of the

induced metric, which 1is

1/2

OWN\2  p=20/d=0) 7o\ 2
d—1 _ s
d x; |1+ (8@-) + 7 ( 5, ) (3.7)

dr
-d—0/(d—0)

dA = L g,

We now observe that for d — 6/(d — 0) > 1, which is equivalent to (1.8), the r integral
is divergent as r — 0: then the leading term to the integral over dA is an ultraviolet

contribution proportional to X (see Fig. 1) which yields the ‘area law’ of entanglement
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entropy. Thus we expect that the inequality (1.8) applies to holographic duals of all generic
local quantum field theories which do not have large accidental degeneracies in their low
energy spectrum. Also, as we noted earlier, relativistic conformal field theories have 6 = 0.

The remainder of this section limits consideration to the case 8 = d — 1 of interest in this
paper, where we have a logarithmic violation of the area law. Let us study the nature of the

r — 0 limit more carefully. Let us expand W in this limit as
W(r,z;) =w(z;) +r"o(x;))+... , r—0, (3.8)

where it remains to determine the exponent, n, of the leading correction, and o is an arbitrary
function of the d — 1 co-ordinates. Inserting this in (3.7) we have

_ ~41/2
d ow dw O 2(n—d)

dA =L ity 14 (=) v 2 L 252y (3.9)
(A @3:]- 8xj (9:1:]- Jo

The variational derivative of the integral of this expression with respect to o(x;) must

vanish. A non-trivial solution is only possible if the two leading terms in powers of r can

cancel against each other. So we must have n = 2(n — d) or

n = 2d. (3.10)

Friday, August 9, 13



So the r- and o-dependent terms inside the square-root in are indeed subdominant, and to

leading logarithmic accuracy we can write

2 2 Ld Tmaxd
Sp=" [dA=" gg/zz:/ il (3.11)

K2 K2 r

T'min

where
- 4 1/2

s— [ a1y |14 (2@ 2 3.12
J

The quantity > depends only on the entangling region on the boundary, and indeed it is just
its surface area. So we conclude that the log-divergent entanglement entropy is proportional
to the surface area of the entangling region, and is otherwise independent of its shape. This
is precisely the property of the entanglement entropy of a spherical Fermi surface [43, 58]:
our holographic analysis is for spatially isotropic systems, so a spherical Fermi surface is
expected. Also note from (3.2) that the prefactor of (3.11) is of order Q@1/4 and so the
complete Q-dependence of the entanglement entropy is that displayed in (1.7).
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Entanglement entropy of a non-Fermi liquid in holography

. )
/

0=d—1

Logarithmic violation of “area law”: Sg = Cg kpPIn(kpP)
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Entanglement entropy of a non-Fermi liquid in holography
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Holography of a non-Fermi liquid

Einstein-Maxwell-dilaton theory

T <

ectric flux

with Z(®) = Zpe®®, V(®) = —Vpye P?, as & — oo.

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).
S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).
N. Tizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].
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Holography of a non-Fermi liquid

Einstein-Maxwell-dilaton theory

T <

ectric flux

Leads to metric ds?* = L? (—f(r)dt2 + g(r)dr?

with f(r) ~ 777, g(r) ~r°, ®(r) ~ In(r) as r — oo.

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).
S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).
N. Tizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].
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Holography of a non-Fermi liquid

. r2d(z—1)/(d—0)

2
d82 _ 1 ( dt | TQH/(dH)dT2+d$?)

The r — oo metric has the above form with

§ — 4°
 a+(d-1)p
0 8(d(d— 6) +0)?
R T v

Note z > 1+ 6/d.

In the present theory, we have to choose a or  so
that 6 = d — 1.

Needed: a dynamical quantum analysis which auto-
matically selects this value of 6.
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Holography of a non-Fermi liquid

g2 _ L dt’ C20/(d=6) 3,2 | 1,2
> T 2\ 2dG—1)/@—0) g Li

Using the Einstein-Maxwell-dilaton theory we obtain a more
precise result for the entanglement entropy

SE _ CE Q(d—l)/dP ln(Q(d—l)/dP)

where the co-efficient Cg 1s independent of all UV details
(e.g. boundary conditions on the dilaton), but depends on z
and other IR characteristics. These properties are just as ex-
pected for a circular Fermi surface with a Fermi wavevector
obeying Q ~ k.

L. Huijse, S. Sachdey, B. Swingle, Physical Review B 85,035121 (2012)
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Holography of a non-Fermi liquid

Hidden

Fermi
surfaces
of “quarks” | T <

l

Er = (Q)

ectric flux

This is a ““bosonization’ of the hidden Fermi surface

Friday, August 9, 13



Conclusions
Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states
obtained for a class of holographic Einstein-Maxwell-dilaton
theories. These theories describe a non-Fermi liquid (NFL) state

of gauge theories at non-zero density.

Friday, August 9, 13



Conclusions
Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states
obtained for a class of holographic Einstein-Maxwell-dilaton
theories. These theories describe a non-Fermi liquid (NFL) state

of gauge theories at non-zero density.

After fixing # = d—1 to obtain thermal entropy density S ~ T1/#, we found

Friday, August 9, 13



Conclusions
Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states
obtained for a class of holographic Einstein-Maxwell-dilaton
theories. These theories describe a non-Fermi liquid (NFL) state

of gauge theories at non-zero density.

After fixing # = d—1 to obtain thermal entropy density S ~ T1/#, we found

e Log violation of the area law in entanglement entropy, Sg.

Friday, August 9, 13



Conclusions
Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states
obtained for a class of holographic Einstein-Maxwell-dilaton
theories. These theories describe a non-Fermi liquid (NFL) state

of gauge theories at non-zero density.

After fixing # = d—1 to obtain thermal entropy density S ~ T1/#, we found
e Log violation of the area law in entanglement entropy, Sg.

e Leading-log Sg independent of shape of entangling region.

Friday, August 9, 13



Conclusions
Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states
obtained for a class of holographic Einstein-Maxwell-dilaton
theories. These theories describe a non-Fermi liquid (NFL) state

of gauge theories at non-zero density.

After fixing # = d—1 to obtain thermal entropy density S ~ T1/#, we found
e Log violation of the area law in entanglement entropy, Sg.

e Leading-log Sg independent of shape of entangling region.

e The d = 2 bound 2z > 3/2, compared to z = 3/2 in three-loop field
theory.

Friday, August 9, 13



Conclusions
Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states
obtained for a class of holographic Einstein-Maxwell-dilaton
theories. These theories describe a non-Fermi liquid (NFL) state
of gauge theories at non-zero density.

After fixing # = d—1 to obtain thermal entropy density S ~ T1/#, we found
e Log violation of the area law in entanglement entropy, Sg.
e Leading-log Sg independent of shape of entangling region.

e The d = 2 bound 2z > 3/2, compared to z = 3/2 in three-loop field
theory.

e Lvidence for Luttinger theorem in prefactor of Sg.

Friday, August 9, 13



Conclusions
Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states
obtained for a class of holographic Einstein-Maxwell-dilaton
theories. These theories describe a non-Fermi liquid (NFL) state
of gauge theories at non-zero density.

After fixing # = d—1 to obtain thermal entropy density S ~ T1/#, we found
e Log violation of the area law in entanglement entropy, Sg.
e Leading-log Sg independent of shape of entangling region.

e The d = 2 bound 2z > 3/2, compared to z = 3/2 in three-loop field
theory.

e Lvidence for Luttinger theorem in prefactor of Sg.

e Monopole operators lead to crystalline state, and have the correct
features to yield Friedel oscillations of a Fermi surtace.
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Holographic theory of a compressible state

Add a fermonic field 1 to the bulk effective action, carrying the U(1) charge of the bulk
gauge field: consequently, this field corresponds to a boundary fermion which carries
charge O, but is neutral w.r.t to any gauge fields in the boundary theory. We refer to
such fermions as mesinos.

1 6 1 — M —
o 4 — e ab -
S = /d T\ —¢ [—2/{2 <R+ L2> v Fopo '’ + (T D + map))

For a finite density state, we impose the boundary condition A;(r — 0) = u. Procedure
to solve the bulk theory:
1. Assume some reasonable form for the electric potential A;(r) and the metric g,,, (7).
2. Solve Dirac equation for fermions in this background.
3. Occupy negative energy fermions states.

4. Compute the U(1) density and 7),, of the occupied states.

5. Use Poisson’s equation and Einstein’s equations to recompute A;(r) and the metric
9w (7).

6. Return to step 2.
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Holographic theory of a fractionalized-Fermi liquid (FL*)

idd Visible Fermi
FI cn surfaces
efrml of “mesinos”
surfaces
of “quarks” T <

l

IIIIIlllllllllllllllllllllln;IIIIIIII|||||.|

gr — Q — Qmesino

gr:Q

A state with partial fractionalization, and

partial electric flux exiting horizon
S. Sachdey, Physical Review Letters 105, 151602 (2010); S. Sachdey, Physical Review D 84, 066009 (201 1)

Friday, August 9, 13



Holographic theory of a fractionalized-Fermi liquid (FL*)

iad Visible Fermi
FI cn surfaces
efrml of “mesinos”™
surfaces
of “quarks” T <

IIIlllllllllllllllllllllllllln;IIIIIIIl|||||||.

gr — Q — Qmesino

gr — Q
The “mesinos” corresponds to the Fermi surfaces obtained in the early probe fermion com-

putation (S.-S. Lee, Phys. Rev. D 79, 086006 (2009); H. Liu, J. McGreevy, and D. Vegh,
arXiv:0903.2477; M. Cubrovié, J. Zaanen, and K. Schalm, Science 325, 439 (2009)).

These are spectators, and are expected to have well-defined quasiparticle excitations.
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Holographic theory of a Fermi liquid (FL)

Visible Fermi
surfaces
of “mesinos”

g'r:Q

e Confining geometry leads to a state which has all the properties
of a Landau Fermi liquid.

S. Sachdev, Physical Review D 84, 066009 (2011)
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Gauss Law in the bulk
& Luttinger theorem
on the boundary

S. Sachdev, Physical Review D 84, 066009 (2011)
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Compressible quantum matter
the holographic perspective

e Fermi liquid (FL): the entire charge Q is
contained in the bulk, and there is no electric
flux leaking to infinity.

e Bose metal (NFL): All the electric flux leaks
to infinity, and this is linked to hidden Fermi
surface of gauge-charged ‘quarks’.

e Fractionalized Fermi liquid (FL*): Part of
the electric flux leaks to infinity, and remain-
der is within visible Fermi surfaces in the

bulk.




Compressible quantum matter
the cond-mat perspective

e Fermi liquid (FL): the entire charge Q is
contained within visible Fermi surfaces

e Bose metal (NFL): the entire charge O is
contained within hidden Fermi surfaces of
cauge-charged fermions.

e Fractionalized Fermi liquid (FL*): the charge
O 1s divided between visible and hidden Fermi
surfaces.




Conformal field theories in

a periodic chemical potential
A. Lucas, P. Chesler, and S. Sachdev arXiv:1308.0329
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FIGURE 19: Illustration of the positions of the Dirac points with positive qp for V/k = 5.3. The dashed
line is the location of the electron and hole Fermi surfaces of Fig. 17. These are folded back into the first
Brillouin zone —k/2 < ¢, < k/2 and shown as the full lines. The Dirac points are the filled circles at the
positions in Eq. (69), and these appear precisely at the intersection points of the folded Fermi surfaces in
the first Brillouin zone.

IR behavior is described by a CFT whose “central charge”
changes in discrete steps as a function of V/k, every time
pairs of Dirac zero modes appear.
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FIGURE 19: Illustration of the positions of the Dirac points with positive qp for V/k = 5.3. The dashed
line is the location of the electron and hole Fermi surfaces of Fig. 17. These are folded back into the first
Brillouin zone —k/2 < ¢, < k/2 and shown as the full lines. The Dirac points are the filled circles at the
positions in Eq. (69), and these appear precisely at the intersection points of the folded Fermi surfaces in
the first Brillouin zone.

IR behavior is described by a CFT whose “central charge”
changes in discrete steps as a function of V/k, every time
pairs of Dirac zero modes appear.
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