
Quantum matter
and

gauge-gravity duality

HARVARD

2013 Arnold Sommerfeld School, 
Munich,  August 5-9, 2013

Subir Sachdev

Talk online at sachdev.physics.harvard.edu
Friday, August 9, 13



Gapped quantum matter    
          Z2 Spin liquids, quantum Hall states

Conformal quantum matter
        Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
         Strange metals, Bose metals

“Complex entangled” states of 
quantum matter, 

not adiabatically connected to independent particle states

Friday, August 9, 13



Gapped quantum matter    
          Z2 Spin liquids, quantum Hall states

Conformal quantum matter
        Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
         Strange metals, Bose metals

“Complex entangled” states of 
quantum matter, 

not adiabatically connected to independent particle states

Friday, August 9, 13



• Consider an infinite, continuum,
translationally-invariant quantum system with a glob-
ally conserved U(1) chargeQ (the “electron density”)
in spatial dimension d > 1.

• Describe zero temperature phases where dhQi/dµ 6=
0, where µ (the “chemical potential”) which changes
the Hamiltonian, H, to H � µQ.

• Compressible systems must be gapless.

• Conformal systems are compressible in d = 1, but
not for d > 1.
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One compressible state is the solid (or 
“Wigner crystal” or “stripe”). 

This state breaks translational symmetry.

Compressible quantum matter
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Another familiar compressible state is 
the superfluid. 

This state breaks the global U(1) 
symmetry associated with Q

Condensate of 
fermion pairs

Compressible quantum matter

Friday, August 9, 13



 The only compressible phase of traditional 
condensed matter physics which does not break the 
translational or U(1) symmetries is the Landau Fermi 
liquid 
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 The only compressible phase of traditional 
condensed matter physics which does not break the 
translational or U(1) symmetries is the Landau Fermi 
liquid 

 The Fermi liquid state exhibits logarithmic violation 
of the area law of entanglement entropy

 Conjecture: All compressible quantum states which 
do not break the U(1) symmetry exhibit logarithmic 
violation of the area law of entanglement entropy

Compressible quantum matter
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      Compressible quantum matter

 A. Fermi liquids:graphene

  B. Holography: Reissner - Nördstrom 
                                      solution

  C. Non-Fermi liquids: 
             Bose metals and U(1) spin liquids

  D. Holography: scaling arguments for 
              entropy and entanglement entropy
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 Quantum phase transition in graphene tuned by 
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• Fermi wavevector obeys the Luttinger relation kdF ⇠ Q, the

fermion density

• Sharp particle and hole of excitations near the Fermi surface

with energy ! ⇠ |q|z, with dynamic exponent z = 1.

• The phase space density of fermions is e↵ectively one-dimensional,

so the entropy density S ⇠ T . It is useful to write this is as S ⇠
T (d�✓)/z

, with violation of hyperscaling exponent ✓ = d� 1.

The Fermi liquid

L = f†
✓
@⌧ � r2

2m
� µ

◆
f

+ 4 Fermi terms
�� kF !
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Logarithmic violation of “area law”: SE =

1

12

(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor 1/12 is universal: it is independent of the shape of the

entangling region, and of the strength of the interactions.

B

A P

Entanglement entropy of the Fermi liquid

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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⇥| q
|�

�� kF !

FL 
Fermi 
liquid

• kdF ⇥ Q, the fermion density

• Sharp fermionic excitations

near Fermi surface with

⇥ ⇥ |q|z, and z = 1.

• Entropy density S ⇥ T (d��)/z

with violation of hyperscaling

exponent � = d� 1.

• Entanglement entropy

SE ⇥ kd�1
F P lnP .
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Transport in graphene at non-zero µ

T. Ando, Y. Zheng and H. Suzuura, J. Phys. Soc. Jpn. 71 (2002) pp. 1318-1324

From the Kubo formula

�(!) = 2 (evF )
2 ~
i

X

ss0

Z
d2k

4⇡2

f("s(k))� f("s0(k))

("s(k)� "s0(k))("s(k)� "s0(k) + ~! + i⌘)

where "s(k) = s~vF |k| and s, s0 = ±1 for the valence and conduction bands.

FIG. 7: Fermion loop contribution to the action of the order parameter �. The wavy line is �.

A. Hertz theory

As indicated in the introduction, Hertz’s strategy is to integrate out all the fermionic

excitations, and derive an e↵ective action for the Ising order parameter �.

The integration is easily performed using our Fermi liquid theory results in Section I.

The important term is the fermion loop contribution to the �

2 term in the e↵ective action,

and this is given by the Feynman diagram in Fig. 7. We can determine the structure of

fermion loop integral by taking the continuum limit of fermion theory in a Fermi surface

patch about ~k0 as in (7), and then adding up the contributions of all the patches. For a given

patch, the fermion loop contributes d2(k0)⇧(q,!), where ⇧ is the fermion polarizability in

(17). Using the result for ⇧ in (20), averaging over di↵erent patches on the Fermi surface,

and combining with the terms of the � action in (31), we obtain the Hertz action for the

order parameter at the Ising-nematic quantum critical point in d dimensions:

SH =

Z
d

d
k

(2⇡)d
T

X

!n

1

2


k

2 + �

|!n|
|k| + r

�
|�(k,!n)|2

+
u

24

Z
d

d
xd⌧�

4(x, ⌧). (33)

Compared to (31), the crucial new term is the one proportional to �, which represents the

non-local consequences of low energy particle-hole excitations near the Fermi surface; the

value of � is determined from an average of the coe�cient in (20) over the Fermi surface. In

a system with a spherical Fermi surface, the |k| in the denominator is simple
p
~

k

2, arising

from the average of (20) over di↵erent patches. However, without spherical symmetry, it

is a more complex function which depends upon the details of the Fermi surface structure.

Nevertheless, it retains the property of being an even function of k with scaling dimension

1, and that is all that we shall need below.

We are now ready to perform an RG analysis of SH . We begin with an analysis of the

15
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Transport in graphene at non-zero µ

T. Ando, Y. Zheng and H. Suzuura, J. Phys. Soc. Jpn. 71 (2002) pp. 1318-1324

A is inversely proportional to disorder.
In the clean limit A ! 1, at T = 0

Re[�(!)] =
e2

~


"F
~ �(!) +

1

4
✓(|!|� 2"F )

�

Notice delta function is present even at
T = 0 at non-zero density: this is a generic
consequence of the conservation of mo-
mentum in any clean interacting Fermi
liquid. Only “umklapp” scattering can
broaden this delta function.
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T. Ando, Y. Zheng and H. Suzuura, J. Phys. Soc. Jpn. 71 (2002) pp. 1318-1324

A is inversely proportional to disorder.
In the clean limit A ! 1, at T = 0

Re[�(!)] =
e2

~


"F
~ �(!) +

1

4
✓(|!|� 2"F )

�

Notice delta function is present even at
T = 0 at non-zero density: this is a generic
consequence of the conservation of mo-
mentum in any clean interacting Fermi
liquid. Only “umklapp” scattering can
broaden this delta function.

T = 0, µ > 0

No disorder
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Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, 
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).

Undoped graphene
Optical conductivity of graphene
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Begin with a CFT
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Holographic representation: AdS4

S =

Z
d

4
x

p
�g


1

22

✓
R+

6

L

2

◆�

A 2+1 
dimensional 

CFT
at T=0
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Holographic representation: AdS4

A 2+1 
dimensional 

CFT
at T=0

ds

2 =

✓
L

r

◆2 
dr

2

f(r)
� f(r)dt2 + dx

2 + dy

2

�

with f(r) = 1
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Apply a chemical potential
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This is to be solved subject to the constraint

Aµ(r ! 0, x, y, t) = Aµ(x, y, t)

where Aµ is a source coupling to a conserved U(1) current Jµ

of the CFT3

S = SCFT + i

Z
dxdydtAµJµ

At non-zero chemical potential we simply require A⌧ = µ.

AdS4 theory of “nearly perfect fluids”
To leading order in a gradient expansion, charge transport in

an infinite set of strongly-interacting CFT3s can be described by

Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

Z
d

4
x

p
�g


� 1

4g

2
4

FabF
ab

�
.
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+

++

+
+

+
Electric flux

hQi
6= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)

Er = hQi
Er = hQi

r

S =

Z
d

4
x

p
�g


1

22

✓
R+

6

L

2

◆
� 1

4g24
FabF

ab

�

Friday, August 9, 13



+

++

+
+

+
Electric flux

hQi
6= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

Er = hQi
Er = hQi

r

ds

2 =

✓
L

r

◆2 
dr

2

f(r)
� f(r)dt2 + dx

2 + dy

2

�

with f(r) =
⇣
1� r

R

⌘2
✓
1 +

2r

R

+
3r2

R

2

◆
and R =

p
6Lg4
µ

, and A⌧ = µ

⇣
1� r

R

⌘
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+

++

+
+

+
Electric flux

hQi
6= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

At T = 0, we obtain an extremal black-brane, with

a near-horizon (IR) metric of AdS2 ⇥R

2

ds

2
=

L

2

6

✓
�dt

2
+ dr

2

r

2

◆
+ dx

2
+ dy

2

r

T. Faulkner, H. Liu, 
J. McGreevy, 
and D. Vegh, 
arXiv:0907.2694
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S. A. Hartnoll, arXiv:0903.3246
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�(!) =
e2

~
⇡⇢2

("+ P )
�(!)

where ⇢ is the number density,
✏ is the energy density,
and P is the pressure.
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Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, 
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).

Undoped graphene
Optical conductivity of graphene
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Features of AdS2 X R2

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010).

S.-S. Lee, Phys. Rev. D 79, 086006 (2009);
M. Cubrovic, J. Zaanen, and K. Schalm, Science 325, 439 (2009);

• Has non-zero entropy density at T = 0, and “vol-
ume” law for entanglement entropy.

• Green’s function of a probe fermion (a mesino) can
have a Fermi surface, but self energies are momentum
independent, and the singular behavior is the same
on and o↵ the Fermi surface

• Deficit of order ⇠ N2 in the volume enclosed by the
mesino Fermi surfaces: presumably associated with
“hidden Fermi surfaces” of gauge-charged particles
(the quarks).
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T
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0
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TKT

H = �t
X

�ij⇥
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U

2

X

i

ni(ni � 1) ; ni ⌘ b†i bi

= U/t

Bose-Hubbard model at integer filling
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Quantum
critical

TKT

H = �t
X

�ij⇥

b†i bj +
U

2

X

i

ni(ni � 1) ; ni ⌘ b†i bi

= U/t

Bose-Hubbard model at integer filling

CFT3 of the XY model:

L = |@ |2 + s| |2 + u| |4
Friday, August 9, 13



Bosons with correlated hopping

H = �t
X

⇥ij⇤

b†i bj +
U

2

X

i
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X

ijk��⇤
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†
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Bosons with correlated hopping at half-filling

H = �t
X

⇥ij⇤

b†i bj +
U

2

X

i

ni(ni � 1) + w
X

ijk��⇤
b†i b

†
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Quantum
critical

TKT

Bosons with correlated hopping at half-filling

H = �t
X

⇥ij⇤

b†i bj +
U

2

X

i

ni(ni � 1) + w
X

ijk��⇤
b†i b

†
kbjb�

Insulator with modulation 
in boson bond-density

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

= U/t
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Quantum
critical

TKT

Bosons with correlated hopping at half-filling

H = �t
X

⇥ij⇤

b†i bj +
U

2

X

i

ni(ni � 1) + w
X

ijk��⇤
b†i b

†
kbjb�

Insulator with modulation 
in boson bond-density

O.I. Motrunich and A. Vishwanath, Phys. Rev. B 70, 075104 (2004).
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004).

= U/t
‘Deconfined’ critical point: boson fractionalizes b ⇠ z1z2, and the

fractionalized bosons are coupled to an emergent U(1) gauge field

L = |(@µ� iAµ)z1|2+ |(@µ+ iAµ)z2|2+s(|z1|2+ |z2|2)+u(|z1|2+ |z2|2)2�v|z1|2|z2|2
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Bosons with correlated hopping close to half-filling
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Bosons with correlated hopping close to half-filling

H = �t
X

⇥ij⇤

b†i bj +
U

2

X

i

ni(ni � 1) + w
X

ijk��⇤
b†i b

†
kbjb�

Af Af = hQi

O. I. Motrunich and M. P. A. Fisher,  Phys. Rev. B 75, 235116 (2007)
L. Huijse and S. Sachdev,   Phys. Rev. D 84, 026001 (2011)

S. Sachdev, arXiv:1209.1637

Q = b†b

• NFL, the non-Fermi liquid Bose metal. The z1, z2
quanta fermionize into f1, f2, each of which forms

a Fermi surface. Both fermions are gauge-charged,

and so the Fermi surfaces are partially “hidden”.
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15

For suitable interactions, we can have the boson, b, fractionalize into two fermions
f1,2 :

b ! f1f2

This implies the e↵ective theory for f1,2 is invariant under the U(1) gauge transfor-
mation

f1 ! f1e
i✓(x,⌧) , f2 ! f2e

�i✓(x,⌧)

Consequently, the e↵ective theory of the Bose metal has an emergent gauge field
A

µ

and has the structure

L = f†
1

✓
@
⌧

� iA
⌧

� (r� iA)2

2m
� µ

◆
f1 + f†

2

✓
@
⌧

+ iA
⌧

� (r+ iA)2

2m
� µ

◆
f2

The gauge-dependent f1,2 Green’s functions have Fermi surfaces obeying A
f

=
hQi. However, these Fermi surfaces are not directly observable because it is gauge-
dependent. Nevertheless, gauge-independent operators, such as b or b†b, will exhibit
Friedel oscillations associated with fermions scattering across these hidden Fermi
surfaces.

Non-Fermi liquid Bose Metal
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• ~A fluctuation at wavevector ~q couples most e�ciently to fermions

near ±~k0.

• Expand fermion kinetic energy at wavevectors about ±~k0. In
Landau gauge

~A = (a, 0).

Field theory of non-Fermi liquid
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One loop a self-energy with N
f

fermion flavors:

D(~q,!) = N
f

Z
d2k

4⇡2
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1

[�i(⌦+ !) + k
x

+ q
x

+ (k
y

+ q
y

)2]
⇥
�i⌦� k

x

+ k2
y

⇤

=
N

f

4⇡

|!|
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Field theory of non-Fermi liquid
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FIG. 4: Feynman diagram for the decay of quasiparticles at order u

2
0. The dashed line is the

interaction u0, and a, b are spin labels.

So let us move to second order in u0. First, we use an RG argument. We are interested

in the imaginary part of the self energy, and let us assume for now at small !

Im⌃(k = 0,!) ⇠ u

2
0!

p
. (15)

We determine p by scaling arguments. From (13) we know that dim[⌃] = z = 2, and so

conclude from matching dimensions in (15) that p = d. However, there is a subtlety here:

scaling arguments only yield the powerlaws of singular corrections, and do not say anything

about analytic backgrounds that may be allowed from the structure of the theory. Here, a

term with p = 2 is permitted because Im⌃ is an even function of !. So the proper conclusion

is

p = min(d, 2). (16)

The above scaling argument is fine as it stands, but cannot substitute for the insight

gained by an explicit computation. The Feynman diagram contributing to the quasiparticle

decay at order u2
0 is indicated in Fig. 4. We evaluate it in two stages. First we evaluate the

fermion loop of the fermions with spin label b; this gives us the fermion polarizability

⇧(q,!n) =

Z
d

d
k

(2⇡)d

Z
d✏n

2⇡
G0(k + q, ✏n + !n)G0(k, ✏n). (17)

This enters the self-energy by

⌃(k, ✏n) = u

2
0

Z
d

d
q

(2⇡)d

Z
d!n

2⇡
⇧(q,!n)G0(k + q, ✏n + !n). (18)

We first explicitly evaluate ⇧(q,!n). We will only be interested in terms that are singu-

lar in q and !n, and will drop regular contributions from regions of high momentum and

frequency. In this case, it is permissible to reverse the conventional order of integrating over

frequency first in (17), and to first integrate over kx. It is a simple matter to perform the

9
integration over kx in using the method of residues to yield

⇧(q,!n) =
1

2vF

Z
d

d�1
ky

(2⇡)d�1

Z
d✏n

2⇡

sgn(✏n + !n)� sgn(✏n)⇣
⇣!n + ivF qx + iq

2
y/2 + i~qy · ~ky

⌘

=
|!n|
2⇡vF

Z
d

d�1
ky

(2⇡)d�1

1⇣
⇣!n + ivF qx + iq

2
y/2 + i~qy · ~ky

⌘
. (19)

We now integrate along the component of ~ky parallel to the direction of ~qy to obtain

⇧(q,!n) =
|!n|

2⇡vF|qy|
Z

d

d�2
ky

(2⇡)d�2

=
|!n|

2⇡vF|qy|⇤
d�2 (20)

Note that in d = 2 the last non-universal factor is not present, and the result for ⇧ is

universal with ⇤d�2 = 1. Note also that ⇣ has dropped out of the result ⇧: this will be

important in our subsequent treatment of quantum critical points.

Now we insert (20) into (18). After evaluating the integral over qx we obtain

⌃(k,!n) = i

u

2
0

2⇡v2F

Z
d

d�1
qy

(2⇡)d�1

Z
d✏n

2⇡

sgn(✏n + !n)|✏n|
|qy|

= i sgn(!n)!
2
n

u

2
0

4⇡v2F

Z
d

d�1
qy

(2⇡)d�1

1

|qy|
= i sgn(!n)!

2
n

u

2
0

4⇡v2F
⇤d�2

, d > 2. (21)

Again, ⇣ has dropped out. This result is in perfect accord with the scaling arguments in

(15) and (16).

Let us consider the important case d = 2. There is an infrared divergence in the qy

integral in (21) at small qy. This is only cuto↵ after we include a self-consistent damping

of the quasiparticle propagators in the Feynman diagram of Fig. 4, rather than the bare

propagators we have used above. After including this damping, we expect that (15) will be

modified to

Im⌃(k,!) ⇠ u

2
0!

2 log

✓
⇤

u0|!|
◆

, d = 2; (22)

thus the scaling result is modified by a logarithm in d = 2.

With Im⌃ ⇠ u

2
0!

2 (up to logarithms) , we can now easily examine the fate of the quasipar-

ticles from (13). From (13), we see that the quasiparticle pole is always broadened: the width

of the quasiparticle peak is ⇠ u

2
0"

2
k for a quasiparticle with energy ! = "k. Thus the quasi-

particle width vanishes as the square of the distance from the Fermi surface. Asymptotically

10
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answer using scaling arguments; we expect

Im⌃ ⇠ �

2
!

p
. (42)

Matching scaling dimensions with dim[⌃] = 2 (because dim[kx] = dim[k2
y] = 2), dim[!] = 3

and (41), we obtain

p =
d

3
. (43)

In d = 3, the integer value of p suggests that there should be additional logarithms, and

we will indeed see this in an explicit computation below. Examination of the quasiparticle

spectral weight using (13), and as discussed below (22) shows that the quasiparticles are

only marginally well defined with a width of the same order as the quasiparticle energy upon

approaching the Fermi surface. Such states were named ‘marginal Fermi liquids’ [8], but the

present argument shows this terminology is a misnomer in the RG sense: the coupling � is

irrelevant and not marginal. The RG argument also has a bonus in implying that higher

orders in � will only produce higher powers of ! in the self-energy; perturbation theory

about the Gaussian fixed point directly yields the terms most important in the infrared

already at low order in the expansion.

The situation is very di↵erent in d = 2. In this case Im⌃ ⇠ !

2/3, and so it is now clear

from (22) that quasiparticle is no longer well defined, and we are dealing with a non-Fermi

liquid. Applying (23), we find that the momentum distribution function does not have a

step discontinuity on the Fermi surface; there is a weaker power-law singularity with

n(k) ⇠ sgn(�"k)|"k|1/3. (44)

Importantly, the scaling dimension of the boson-fermion coupling � is 0, and so it is not

clear whether perturbation theory in � is reliable. The implication is that the critical theory

should be formulated at a fixed �, and that the perturbative Hertz approach has broken

down. We will turn to a discussion of the needed critical field theory in Section IIC.

However, before we turn to that crucial question, we need to verify the scaling estimate

for the self energy in (42) by an explicit computation. The needed contribution to the self

energy at order �2 is given by the Feynman diagram in Fig. 8 which evaluates to

⌃(k,!n) = �

2

Z
d

d
q

(2⇡)d

Z
d✏n

2⇡

1

q

2
y + �|✏n|/|qy|G0(k + q, ✏n + !n) (45)

This can be evaluated by the same methods used for (18). Integrating over qx we find the

18

FIG. 8: Order �2 contribution to the fermion self energy.

analog of (21)

⌃(k,!n) = i

�

2

vF

Z
d

d�1
qy

(2⇡)d�1

Z
d✏n

2⇡

sgn(✏n + !n)|qy|
|qy|3 + �|✏n|

= i

�

2

⇡vF�
sgn(!n)

Z
d

d�1
qy

(2⇡)d�1
|qy| ln

✓ |qy|3 + �|!n|
|qy|3

◆
. (46)

Evaluation of the qy integral yields a result which agrees with (42) and (43) in d = 2, and

with the expected logarithmic corrections in d = 3. In the physically important case of

d = 2, the qy integral evaluates to

⌃(k,!n) =
�

2

⇡vF�
1/3

p
3
sgn(!n)|!n|2/3 , d = 2, (47)

in agreement with (43).

C. Non-Fermi liquid criticality in d = 2

Section II B established that a perturbative analysis in the fermion-boson coupling �, in

the spirit of the familiar “random-phase-approximation” (RPA) of many body physics, led

to a valid theory of the Ising-nematic quantum critical point in d = 3. However, the RPA-

like Hertz approach broke down in d = 2. Here we will provide a field-theoretic description

of the quantum criticality in d = 2, using the approach proposed in Ref. [7].

An important feature of the discussion in Section II B was that the low energy fermion

modes at the Fermi surface point ~k0 coupled most strongly to � fluctuations with momenta

parallel to the Fermi surface. This is clear from the ky dependence of SHG in (37). Physically,

this is because a fermion at ~k0 scattered by � by momentum k tangent to the Fermi surface

only changes its energy ⇠ k

2, while in all other directions its energy change ⇠ k. Consistent

with this, if we compute the induced four-point � vertex in the theory S0 + SHG + S �, we
find an enhancement dependent upon on the � momenta only if the momenta are parallel

or anti-parallel. This suggests that all couplings between � fluctuations with non-collinear

momenta, such as e. g. those induced by the u term in (33), are formally irrelevant, just as

19
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Schematic form of a and fermion Green’s functions

D(~q,!) =
1/N

f

q2
y

+

|!|
|q

y

|

, G
f

(~q,!) =
1

q
x

+ q2
y

� isgn(!)|!|2/3/N
f

In both cases q
x

⇠ q2
y

⇠ !1/z
, with z = 3/2. Note that the

bare term ⇠ ! in G�1
f

is irrelevant.

Strongly-coupled theory without quasiparticles.

Field theory of non-Fermi liquid
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Simple scaling argument for z = 3/2.
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Field theory of non-Fermi liquid

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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Field theory of non-Fermi liquid

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

X X

Under the rescaling x ! x/s, y ! y/s

1/2
, and ⌧ ! ⌧/s

z
, we

find invariance provided

a ! a s

 !  s

(2z+1)/4

g ! g s

(3�2z)/4

So the action is invariant provided z = 3/2.

Friday, August 9, 13



⇥| q
|�

�� kF ! �� kF !
⇥| q

|�

• kdF ⇥ Q, the fermion density

• Sharp fermionic excitations

near Fermi surface with

⇥ ⇥ |q|z, and z = 1.

• Entropy density S ⇥ T (d��)/z

with violation of hyperscaling

exponent � = d� 1.

• Entanglement entropy

SE ⇥ kd�1
F P lnP .

FL 
Fermi 
liquid

NFL
Bose
metal 

• Hidden Fermi
surface with kdF ⇠ Q.

• Di↵use fermionic
excitations with z = 3/2
to three loops.

• S ⇠ T (d�✓)/z

with ✓ = d� 1.

• SE ⇠ kd�1
F P lnP .

P. A. Lee, Phys. Rev. Lett. 63, 680 (1989)
M. A. Metlitski and S. Sachdev,
Phys. Rev. B 82, 075127 (2010)
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Logarithmic violation of “area law”: SE = CE kFP ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor CE is expected to be universal but 6= 1/12:
independent of the shape of the entangling region, and dependent

only on IR features of the theory.

B

A P

Entanglement entropy of the non-Fermi liquid

B. Swingle,  Physical Review Letters 105, 050502 (2010)
Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)
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Consider the metric which transforms under rescaling as

xi ! ⇣ xi

t ! ⇣

z
t

ds ! ⇣

✓/d
ds.

This identifies z as the dynamic critical exponent (z = 1 for

“relativistic” quantum critical points).

✓ is the violation of hyperscaling exponent.

The most general choice of such a metric is

ds

2
=

1

r

2

✓
� dt

2

r

2d(z�1)/(d�✓)
+ r

2✓/(d�✓)
dr

2
+ dx

2
i

◆

We have used reparametrization invariance in r to choose so

that it scales as r ! ⇣

(d�✓)/d
r.

ds

2 =
1

r

2

✓
� dt

2

r

2d(z�1)/(d�✓)
+ r

2✓/(d�✓)
dr

2 + dx

2
i

◆

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the
thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the
“area” of the horizon, and so S ⇠ r�d

h

r
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The Beckenstein-Hawking entropy of the black-brane is the
thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the
“area” of the horizon, and so S ⇠ r�d

h

Under rescaling r ! ⇣(d�✓)/dr, and the

temperature T ⇠ t�1
, and so

S ⇠ T (d�✓)/z
= T deff/z

where ✓ = d�de↵ measures “dimension deficit” in

the phase space of low energy degrees of a freedom.
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At T > 0, there is a horizon, and computation of its
Bekenstein-Hawking entropy shows

S ⇠ T (d�✓)/z.

So ✓ is indeed the violation of hyperscaling exponent as
claimed. For a compressible quantum state we should
therefore choose ✓ = d� 1.
No additional choices will be made, and all subsequent re-
sults are consequences of the assumption of the existence
of a holographic dual.

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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Holography of a non-Fermi liquid

The null energy condition (stability condition for gravity)

yields a new inequality

z � 1 +

✓

d

In d = 2, this implies z � 3/2. So the lower bound is

precisely the value obtained from the field theory.

N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012).
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Application of the Ryu-Takayanagi minimal area formula to

a dual Einstein-Maxwell-dilaton theory yields

SE ⇠ P lnP

with a co-e�cient independent of the shape of the entangling
region. These properties are just as expected for a circular

Fermi surface.

Holography of a non-Fermi liquid
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FIG. 1: Geometry of holographic entanglement. The d spatial co-ordinates are x

i

⌘ (x
j

, x

d

),
with j = 1, . . . , d � 1, and the emergent holographic direction is r. The entangling region of the
compressible quantum state is shown shaded; its boundary is the surface described in co-ordinate
patches by x

d

= w(x
j

), j = 1, . . . , d � 1, which has surface area ⌃. This boundary is extended
along the holographic direction into the surface written locally as x

d

= W (r, x
j

); the holographic
entanglement [55] is proportional to the surface area, A, of this extended boundary. The area A

has to be minimized while keeping the surface x

d

= w(x
j

) fixed.

entirely from scales where (1.1) applies. Here ⌘ is a dimensionless numerical constant which

depends upon the couplings of the holographic theory, but is independent of Q and of any

property of the entangling region. The only dependence on the entangling region is via ⌃,

which is its (d� 1)-dimensional surface area (in d = 2, ⌃ is the perimeter of the entangling

region—see Fig. 1). In general, gapless theories have an entanglement entropy which depends

upon the full geometry of the entangling region [55–57], and not just on the surface area

⌃. However, systems with gapless fermionic excitations on a (d � 1)-dimensional spherical

Fermi surface [43–45, 58–62] have an entanglement entropy which has precisely the form of

Eq. (1.7), depending only on ⌃ and no other characteristic of the smooth entangling region.

The specific Q-dependence of (1.7) arises from the Q-dependence of the numerical pref-

actors of (1.1). The latter dependence is quite complicated, and depends on details of the

ultraviolet (UV) physics. However, all of this UV dependence cancels out in the entangle-

ment entropy, and only the universal IR Q-dependence shown in (1.7) remains; this key

result is established in Section II. Upon using the Luttinger relation, Q ⇠ k

d

F

, between the

charge density and the Fermi wavevector k
F

, the k

F

dependence in (1.7) is also identical to

that found in the Fermi surface computations [43–45, 58–62]. Thus, remarkably, the Lut-

tinger relation of condensed matter physics is connected to some of the central principles of

the holographic theory: Gauss’s law [36], the area law for entanglement entropy [55], and

the universal Q dependence of the metric of the holographic space.
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Let us parameterize the extended surface by (see Fig. 1)

x

d

= W (r, x
j

). (3.4)

Then we have to find the optimum function W (r, x
j

) subject to the constraint

W (0, x
j

) = w(x
j

). (3.5)

Let us compute the area of the general holographic surface in (3.4). The induced metric

on this surface is

d�

2 =
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2
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(3.6)

The area element on the surface is determined by the square-root of the determinant of the

induced metric, which is

dA = L

d

ĝ

1/2

0

dr

r

d�✓/(d�✓)

d

d�1

x

j

"
1 +

✓
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@x

j

◆
2

+
r

�2✓/(d�✓)

ĝ

0

✓
@W

@r

◆
2

#
1/2

(3.7)

We now observe that for d � ✓/(d � ✓) � 1, which is equivalent to (1.8), the r integral

is divergent as r ! 0: then the leading term to the integral over dA is an ultraviolet

contribution proportional to ⌃ (see Fig. 1) which yields the ‘area law’ of entanglement

entropy. Thus we expect that the inequality (1.8) applies to holographic duals of all generic

local quantum field theories which do not have large accidental degeneracies in their low

energy spectrum. Also, as we noted earlier, relativistic conformal field theories have ✓ = 0.

The remainder of this section limits consideration to the case ✓ = d� 1 of interest in this

paper, where we have a logarithmic violation of the area law. Let us study the nature of the

r ! 0 limit more carefully. Let us expand W in this limit as

W (r, x
j

) = w(x
j

) + r

n

�(x
j

) + . . . , r ! 0, (3.8)

where it remains to determine the exponent, n, of the leading correction, and � is an arbitrary

function of the d� 1 co-ordinates. Inserting this in (3.7) we have

dA = L

d

ĝ

1/2

0

dr

r

d

d�1

x

j

"
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2
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j
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+
r

2(n�d)

ĝ

0

n

2

�

2 + . . .

#
1/2

(3.9)

The variational derivative of the integral of this expression with respect to �(x
j

) must

vanish. A non-trivial solution is only possible if the two leading terms in powers of r can

13
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The variational derivative of the integral of this expression with respect to �(x
j

) must

vanish. A non-trivial solution is only possible if the two leading terms in powers of r can

13

cancel against each other. So we must have n = 2(n� d) or

n = 2d. (3.10)

So the r- and �-dependent terms inside the square-root in are indeed subdominant, and to

leading logarithmic accuracy we can write

S

E

=
2⇡



2

Z
dA =

2⇡Ld
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where

⌃ =
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◆
2

#
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. (3.12)

The quantity ⌃ depends only on the entangling region on the boundary, and indeed it is just

its surface area. So we conclude that the log-divergent entanglement entropy is proportional

to the surface area of the entangling region, and is otherwise independent of its shape. This

is precisely the property of the entanglement entropy of a spherical Fermi surface [43, 58]:

our holographic analysis is for spatially isotropic systems, so a spherical Fermi surface is

expected. Also note from (3.2) that the prefactor of (3.11) is of order Q(d�1)/d, and so the

complete Q-dependence of the entanglement entropy is that displayed in (1.7).

Ogawa et al. [40] presented computations of the entanglement entropy in d = 2 for two

choices of the entangling region: a strip and a disk. Their result for the strip agrees with our

general result (3.11), and also with the exponent value in (3.10). They presented numerical

results for the disk, and the prefactor of their logarithm equals that predicted by (3.11).

We also wish to point out that this result may be interpreted as additional evidence

for the Ryu-Takayanagi formula. While their formula has been proven for spheres [67], it

remains unproven in general and is known to be modified in higher derivative gravity. In

general, we can only show that the Ryu-Takayanagi proposal has the right basic structure to

give an entanglement entropy. Our calculation here shows that the Ryu-Takayanagi formula

reproduces in detail a universal feature of the entanglement structure of compressible states

as expected from field theory for all region shapes.

Finally, let us discuss the limits on the r integration in (3.11). We expect the large r

limit to be set by the size of the entangling region, R. From (1.2) and (1.3), we see that for

✓ = d � 1, rd scales as x
j

⇠ R. So we can expect k
F

r

max

⇠ (k
F

R)1/d. We will discuss the

value of r
min

more carefully in Section IV, where we will argue that k
F

r

min

⇠ 1. Note that

r

max

� r

min

because k

F

R � 1. With these limits, and using Q ⇠ k

d

F

and ⌃ ⇠ R

d�1, we see

that (3.11) is of the form (1.7).
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Logarithmic violation of “area law”: SE = CE kFP ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor CE is expected to be universal but 6= 1/12:
independent of the shape of the entangling region, and dependent

only on IR features of the theory.

B

A P

Entanglement entropy of a non-Fermi liquid in holography

✓ = d� 1
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Einstein-Maxwell-dilaton theory

Electric flux

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).
S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).
N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].
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The r ! 1 metric has the above form with

✓ =

d2�

↵+ (d� 1)�

z = 1 +

✓

d
+

8(d(d� ✓) + ✓)2

d2(d� ✓)↵2
.

Note z � 1 + ✓/d.

In the present theory, we have to choose ↵ or � so

that ✓ = d� 1.

Needed: a dynamical quantum analysis which auto-

matically selects this value of ✓.

Holography of a non-Fermi liquid
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Holography of a non-Fermi liquid

Using the Einstein-Maxwell-dilaton theory we obtain a more

precise result for the entanglement entropy

SE = CE Q(d�1)/dP ln(Q(d�1)/dP )

where the co-e�cient CE is independent of all UV details

(e.g. boundary conditions on the dilaton), but depends on z
and other IR characteristics. These properties are just as ex-

pected for a circular Fermi surface with a Fermi wavevector

obeying Q ⇠ kdF .
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Hidden 
Fermi 

surfaces
of “quarks”

This is a “bosonization” of the hidden Fermi surface

Holography of a non-Fermi liquid
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Electric flux
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Conclusions
Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states 
obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.

After fixing ✓ = d�1 to obtain thermal entropy density S ⇠ T 1/z
, we found

• Log violation of the area law in entanglement entropy, SE .

• Leading-log SE independent of shape of entangling region.

• The d = 2 bound z � 3/2, compared to z = 3/2 in three-loop field

theory.

• Evidence for Luttinger theorem in prefactor of SE .

• Monopole operators lead to crystalline state, and have the correct

features to yield Friedel oscillations of a Fermi surface.
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obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.

After fixing ✓ = d�1 to obtain thermal entropy density S ⇠ T 1/z
, we found

• Log violation of the area law in entanglement entropy, SE .

• Leading-log SE independent of shape of entangling region.

• The d = 2 bound z � 3/2, compared to z = 3/2 in three-loop field

theory.

• Evidence for Luttinger theorem in prefactor of SE .

• Monopole operators lead to crystalline state, and have the correct

features to yield Friedel oscillations of a Fermi surface.
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Add a fermonic field  to the bulk e↵ective action, carrying the U(1) charge of the bulk
gauge field: consequently, this field corresponds to a boundary fermion which carries
charge Q, but is neutral w.r.t to any gauge fields in the boundary theory. We refer to
such fermions as mesinos.

S =

Z
d

4
x

p
�g


1

22

✓
R+

6

L

2

◆
� 1

4g2M
FabF

ab + i( �M
DM +m  )

�

For a finite density state, we impose the boundary condition At(r ! 0) = µ. Procedure
to solve the bulk theory:

1. Assume some reasonable form for the electric potential At(r) and the metric gµ⌫(r).

2. Solve Dirac equation for fermions in this background.

3. Occupy negative energy fermions states.

4. Compute the U(1) density and Tµ⌫ of the occupied states.

5. Use Poisson’s equation and Einstein’s equations to recompute At(r) and the metric
gµ⌫(r).

6. Return to step 2.

Holographic theory of a compressible state
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Holographic theory of a fractionalized-Fermi liquid (FL*)

S. Sachdev, Physical Review Letters 105, 151602 (2010); S. Sachdev, Physical Review D 84, 066009 (2011)

Hidden 
Fermi 

surfaces
of “quarks”

Visible Fermi 
surfaces

of “mesinos”

A state with partial fractionalization, and

partial electric flux exiting horizon
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The “mesinos” corresponds to the Fermi surfaces obtained in the early probe fermion com-
putation (S.-S. Lee, Phys. Rev. D 79, 086006 (2009); H. Liu, J. McGreevy, and D. Vegh,
arXiv:0903.2477; M. Čubrović, J. Zaanen, and K. Schalm, Science 325, 439 (2009)).

These are spectators, and are expected to have well-defined quasiparticle excitations.

Holographic theory of a fractionalized-Fermi liquid (FL*)

Hidden 
Fermi 

surfaces
of “quarks”

Visible Fermi 
surfaces

of “mesinos”
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• Confining geometry leads to a state which has all the properties

of a Landau Fermi liquid.

Holographic theory of a Fermi liquid (FL)

S. Sachdev, Physical Review D 84, 066009 (2011)

Visible Fermi 
surfaces

of “mesinos”
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Gauss Law in the bulk

, Luttinger theorem

on the boundary

S. Sachdev, Physical Review D 84, 066009 (2011)

NFL

FL*

FL
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Compressible quantum matter
the holographic perspective

• Fermi liquid (FL): the entire charge Q is

contained in the bulk, and there is no electric

flux leaking to infinity.

• Bose metal (NFL): All the electric flux leaks

to infinity, and this is linked to hidden Fermi

surface of gauge-charged ‘quarks’.

• Fractionalized Fermi liquid (FL⇤
): Part of

the electric flux leaks to infinity, and remain-

der is within visible Fermi surfaces in the

bulk.
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• Fermi liquid (FL): the entire charge Q is

contained within visible Fermi surfaces

• Bose metal (NFL): the entire charge Q is

contained within hidden Fermi surfaces of

gauge-charged fermions.

• Fractionalized Fermi liquid (FL⇤
): the charge

Q is divided between visible and hidden Fermi

surfaces.

Compressible quantum matter
the cond-mat perspective
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Conformal field theories in
a periodic chemical potential

A. Lucas, P. Chesler, and S. Sachdev arXiv:1308.0329

Conformal field theories in a periodic potential: results from holography and field theory 25
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Figure 16: Contour plot of the lowest positive energy eigenvalues ✏(q
x

, q
y

) for (A) V/k = 0.8, (B)
V/k = 2.0, and (C) V/k = 3.6. All three plots show Dirac nodes at (0, 0). However for larger V/k,
additional Dirac nodes appear at (B) (q

x

/k = 0, q
y

/k = ±1.38), and (C) (q
x

/k = 0, q
y

/k = ±1.75),
(q

x

/k = 0, q
y

/k = ±3.06)
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x

V (x)

2V

Figure 17: Dirac fermions in a periodic rectangular-wave chemical potential. The regions alternate
between local electron and hole Fermi surfaces.
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Thus, if the conductivity experiences new physics when ! ⇠ k, it would suggest that the approximation
of Eq. (60) has broken down, at all points x, at a small distance w ⇠ k/V from the horizon. Of course,
perturbation theory may still be quite good at describing the background geometry, but the first order
perturbation might lead to nonperturbative corrections to transport functions such as optical conductivity,
because turning on this perturbation couples A

x

to new graviton modes. Further analytic exploration of
transport in weakly inhomogeneous systems is worthwhile to resolve this issue.

3. Weakly-coupled CFTs

As discussed in Section 1, a convenient paradigm for a weakly-coupled CFT is a theory of N
f

Dirac
fermions  

↵

coupled to a SU(N
c

) gauge field a
µ

with Lagrangian as in Eq. (3). To this theory we apply
a periodic chemical potential which couples to the globally conserved U(1) charge

L
V

= �V cos(kx)i

N

fX

↵=1

 
↵

�0 
↵

. (67)

The essential structure of the influence of the periodic potential is clear from a careful examination
of the spectrum of the free fermion limit. By Bloch’s theorem, the fermion dispersion ! = ✏(q

x

, q
y

) is a
periodic function of q

x

with period k:

✏(q
x

+ k, q
y

) = ✏(q
x

). (68)

So we can limit consideration to the “first Brillouin zone” �k/2  q
x

 k/2. This spectrum has been
computed in a number of recent works in the context of applications to graphene [31, 32, 33, 34, 35, 36, 37,
38]. We show results of our numerical computations in Figs. 14, 15, and 16, obtained via diagonalization
of the Dirac Hamiltonian in momentum space (see Appendix B for details). The periodic potential couples
together momenta, (q

x

+ `k, q
y

) with di↵erent integers `, and we numerically diagonalized the resulting
matrix for each (q

x

, q
y

).

Figure 14: Plot of the lowest positive energy eigenvalues ✏(q
x

, q
y

) for V/k = 0.8. There is a single Dirac
node at (0, 0). The dispersion is periodic as a function of q

x

with period k, and a full single-period is
shown. There is no periodicity as a function of q

y

, and the energy increases as |q
y

| for large |q
y

|.
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Thus, if the conductivity experiences new physics when ! ⇠ k, it would suggest that the approximation
of Eq. (60) has broken down, at all points x, at a small distance w ⇠ k/V from the horizon. Of course,
perturbation theory may still be quite good at describing the background geometry, but the first order
perturbation might lead to nonperturbative corrections to transport functions such as optical conductivity,
because turning on this perturbation couples A
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to new graviton modes. Further analytic exploration of
transport in weakly inhomogeneous systems is worthwhile to resolve this issue.
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As discussed in Section 1, a convenient paradigm for a weakly-coupled CFT is a theory of N
f

Dirac
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↵
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) gauge field a
µ
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So we can limit consideration to the “first Brillouin zone” �k/2  q
x

 k/2. This spectrum has been
computed in a number of recent works in the context of applications to graphene [31, 32, 33, 34, 35, 36, 37,
38]. We show results of our numerical computations in Figs. 14, 15, and 16, obtained via diagonalization
of the Dirac Hamiltonian in momentum space (see Appendix B for details). The periodic potential couples
together momenta, (q

x

+ `k, q
y

) with di↵erent integers `, and we numerically diagonalized the resulting
matrix for each (q

x

, q
y

).

Figure 14: Plot of the lowest positive energy eigenvalues ✏(q
x

, q
y

) for V/k = 0.8. There is a single Dirac
node at (0, 0). The dispersion is periodic as a function of q

x

with period k, and a full single-period is
shown. There is no periodicity as a function of q

y

, and the energy increases as |q
y

| for large |q
y

|.
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Figure 15: As in Fig. 14, but for V/k = 2.0. Now there are 3 Dirac nodes: one at (0, 0), and a pair at
(0, ±1.38). One of the latter pair is more clearly visible in Fig. 16B.

For small V/k, the spectrum can be understood perturbatively. There is a Dirac cone centered at
~q = (0, 0) and this undergoes Bragg reflection across the Bragg planes at q

x

/k = ±1/2, resulting in band
gaps at the Brillouin zone boundary. See Figs. 14 and 16(A).

However, the evolution at larger V/k is interesting and non-trivial. The spectrum undergoes an infinite
set of quantum phase transitions at a discrete set of values of V/k, associated with the appearance of
additional Dirac nodes along the q

y

axis [31, 32, 33, 34, 35, 36, 37, 38]. The first of these occurs at phase
transitions occurs at V/k = 1.20241.. [35]; for V/k just above this critical value 2 additional Dirac nodes
develop along the q

y

axis, and move, in opposite directions, away from q
y

= 0 with increasing V/k. This
is illustrated by the fermion spectrum at V/k = 2.0 which is displayed in Figs. 15 and 16(B).

Additional phase transitions appear at larger V/k, each associated with an additional pair of Dirac
nodes emerging from q

y

= 0. The second transition is at V/k = 2.76004.. [35]. This is illustrated by the
fermion spectrum at V/k = 4.0 which is displayed in Fig. 16(C), which has 5 Dirac nodes. Subsequent
phase transitions appear at V/k = J

n

/2, where J
n

is the n’th zero of the Bessel function J0 [35].
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2
�k
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V

V

Figure 19: Illustration of the positions of the Dirac points with positive q
D

for V/k = 5.3. The dashed
line is the location of the electron and hole Fermi surfaces of Fig. 17. These are folded back into the first
Brillouin zone �k/2 < q

x

< k/2 and shown as the full lines. The Dirac points are the filled circles at the
positions in Eq. (69), and these appear precisely at the intersection points of the folded Fermi surfaces in
the first Brillouin zone.

N
D

� 1 is an integer. For the periodic rectangular-wave potential

N
D

= 2 bV/kc + 1. (71)

For the cosine potential, N
D

is a similar piecewise-constant function of V/k, determined by the zeros of
the Bessel function [35]. We can now add interactions to the low energy theory: by gauge-invariance, the
a

µ

gauge field will couple minimally to each of the N
D

N
f

Dirac fermions, and so the e↵ective theory will
have the same structure as the Lagrangian in Eq. (3). A crucial feature of this theory is that the number
of massless Dirac fermions is stable to all orders in perturbation theory, and so our picture of emergent
Dirac zeros continues to hold also for the interacting theory. This stability of the Dirac zeros can be
viewed as a remnant of the Luttinger theorem applied to the parent Fermi surfaces from which the Dirac
zeros descend (Fig. 19).

However, this low energy theory of N
D

N
f

Dirac fermions is not, strictly speaking, a CFT. This is
because the velocities in (70) are a function of n, and it not possible to set them all to unity by a common
rescaling transformation. However, once we include interactions between the Dirac fermions from the
SU(N

c

) gauge field in Eq. (3), there will be renormalizations to the velocities from quantum corrections.
As shown in Ref. [40], such renormalizations are expected to eventually scale all the velocities to a common
value (see Fig. 20).

IR behavior is described by a CFT whose “central charge” 
changes in discrete steps as a function of V/k, every time 

pairs of Dirac zero modes appear.
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RG induced by the a
µ

exchange, these velocities will flow to a common velocity [40], and the ultimate IR
theory will be a CFT described by Eq. (3) but now with N

D

N
f

Dirac fermions. So there are an infinite
set of possible IR CFTs, accessed with increasing V/k. The discrete transition points between these IR
CFTs are described by separate low energy critical theories which are not CFTs.

Incidentally, the UV to IR flow described above appears to badly violate ‘c-theorems’ because for
N

D

> 1 there are many more low energy degrees of freedom in the IR than the UV. However this is
permitted because our model breaks Lorentz invariance at intermediate scales [41].

Now let us consider the same physics for a strong-coupled CFT, as described by holography, as will
be discussed in Section 2. We use the simplest possible gravitational model of a CFT with a conserved
U(1) charge, the Einstein-Maxwell theory in 3+1 dimensions

L =
R � 2⇤

22
� 1

4e2
F

µ⌫

Fµ⌫ (4)

where ⇤ = �3/L2 with L with AdS4 radius of the UV theory, F = dA is the U(1) field strength, and
R is the Ricci scalar. Note that here A is the gauge field dual to the conserved boundary U(1) charge,
and is unrelated to a

µ

above. We will solve for the IR geometry of this theory in the presence of the
boundary chemical potential Eq. (1), by perturbative analytic methods for small V/k, and numerically
for large V/k. We find perturbatively that the IR geometry is a rescaled AdS4, with the rescaling factors
varying continuously as a function of V/k; the resulting IR theory is a CFT, but with relative changes in
the length scales associated to space and time.

We computed the frequency-dependent conductivity, �(!), for charge transport along the x direction,
in both approaches. We show the result at small V/k for free Dirac fermions in Fig. 1, and that from
holography in Fig. 2.
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Figure 1: Frequency-dependent conductivity at V/k = 0.5 for N
f

Dirac fermions in a periodic chemical
potential.

Conformal field theories in a periodic potential: results from holography and field theory 5We compare the first order perturbation to Re(�) between our numerics and the exact expression. For
quadratic extrapolation to T = 0 for ! < k, we used temperatures 4⇡T/3 = 0.4, 0.5, . . . , 0.8; for ! > k:
4⇡T/3 = 0.1, . . . , 0.5.
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Figure 2: A plot of the analytic solution from holography for Re(�) vs. ! in the perturbative regime
V ⌧ k, normalized to emphasize the strength of the perturbations.

Note the remarkable similarity in the basic features of the frequency dependence. The correspondence
for larger V/k is not as complete, but the two methods do share the common feature of having a peak in
�(!) at ! ⇠ k, followed by a dip until ! ⇠ V , as we will see in Sections 2 and 3. A ‘resonance’ at ! ⇠ k
also appeared in the µ0 6= 0 results of Ref. [12].

Another interesting comparison between the two theories is in the V/k dependence of the d.c. con-
ductivity, �(0). The result of the free Dirac fermion computation is shown in Fig. 3 (a similar plot has
appeared earlier in the graphene literature [35]), while the result of holography is in Fig. 4.
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Figure 3: D.C. conductivity for N
f

Dirac fermions in a periodic chemical potential as a function of V/k.
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Figure 21: Frequency-dependent conductivity at V/k = 2.0 for N
f

Dirac fermions in a periodic chemical
potential.

Continuing on to large V/k, we consider the situation when there are 3 Dirac nodes as in Fig. 16B
at V/k = 2.0 in Fig. 21. Now there is a sharp inter-band transition peak, and additional structure at
! ⇠ k; the situation bears similarity to the holographic result in Fig. 12, including the dip after the peak
at ! ⇠ k.
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Figure 22: Frequency-dependent conductivity at V/k = 6.0 for N
f

Dirac fermions in a periodic chemical
potential.

At larger V/k, the peak at ! = k becomes sharper, as shown in Fig. 22 at V/k = 6.0. The reader
will also notice a peak at ! = 0 in Fig. 22. This arises because V/k = 6.0 is close to the transition point

Large V/kLarge Nf

Holography
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Figure 12: A plot of Re(�) vs. ! for V/k = 4, taken at k/T = 8.

To understand the features of the conductivity from first principles, let us begin by assuming that the
Born-Oppenheimer approximation is valid at the scale we are studying. We then can approximate that
the conductivity is given by Eq. (17), which states that �(!) ⇠

R
dx�(!, x) where �(!, x) is the local

conductivity associated to the local RN “black hole” at spatial point x. This is a valid approximation
because the probe field dies o↵ very quickly long before the e↵ects of the background gauge field alter the
geometry significantly. Since the RN geometry has only a single energy scale µ, we conclude that

�(!, x) = �

✓
!

V | cos(kx)|

◆
, (59)

where � is a universal function whose analytic form is unknown (plots of this function can be found in
[42], e.g.). Combining Eqs. (17) and (59) we find

�(!) ⇡ 2

1Z

0

d⇣p
1 � ⇣2

�

✓
!

V ⇣

◆
. (60)

For ! ⇠ V , this formula suggests that the conductivity should roughly be RN conductivity, where a dip
begins to appear, an e↵ect which we see in Figure 12. Of course, �(x) ⇠ �(x) for small x, and so this
approximation must break down at some point.

We can use this argument to connect the scales at which new physics appears in the conductivity to the
scales at which spatial modulation a↵ects the geometry in an important way. Let us consider the equation
of motion for the gauge field A

x

more carefully. It is this equation whose boundary behavior determines
the universal function �. We’re going to compute the conductivity by considering the equation of motion
where we treat µ as a constant. Although obviously this approximation is not appropriate for “small”
frequencies, our goal is to determine how the geometry determines what we mean by the word “small”. If
the function A

x

is concentrated outside a regime where spatial modulation alters the Born-Oppenheimer
ansatz, then we expect RN conductivity to be a good approximation; otherwise, we conclude that the
striping has induced new behavior in the conductivity. The equation of motion neglecting the striping is

@
z

(f(z)@
z

A
x

) = � !2

f(z)
A

x

+ 4µ2

✓
z

z+

◆2

A
x

, (61)
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Figure 2: A plot of the analytic solution from holography for Re(�) vs. ! in the perturbative regime
V ⌧ k, normalized to emphasize the strength of the perturbations.

Note the remarkable similarity in the basic features of the frequency dependence. The correspondence
for larger V/k is not as complete, but the two methods do share the common feature of having a peak in
�(!) at ! ⇠ k, followed by a dip until ! ⇠ V , as we will see in Sections 2 and 3. A ‘resonance’ at ! ⇠ k
also appeared in the µ0 6= 0 results of Ref. [12].

Another interesting comparison between the two theories is in the V/k dependence of the d.c. con-
ductivity, �(0). The result of the free Dirac fermion computation is shown in Fig. 3 (a similar plot has
appeared earlier in the graphene literature [35]), while the result of holography is in Fig. 4.
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Figure 3: D.C. conductivity for N
f

Dirac fermions in a periodic chemical potential as a function of V/k.

Large Nf

Holography

Conformal field theories in a periodic potential: results from holography and field theory 6
Using � = 1 and k/T = 8. Other than the existence of the “strange” bumps in free fermion case, this

is morally the same picture.
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Figure 4: We show the holographic computation of �(0) (approximated by �(0.01), as our numerics
cannot compute the d.c. conductivity directly) as a function of V/k. This data was taken at k/T = 8.

There are sharp peaks in �(0) in the Dirac fermion computation are at precisely the points where
the universality class of the IR CFT changes i.e. at the values of V/k where N

D

jumps by 2. These
transition points are described by a non-relativistic theory, where the Dirac fermion dispersion has the
form in Eq. (72). It is evident that the holographic theory does not include the physics of the transition
points and the local Fermi surfaces of the Dirac theory, and its IR theory evolves smoothly as a function
of V/k. However, if we smooth out the peaks in the Dirac fermion computation, we see that their average
resembles the evolution in the holographic theory as a function of V/k.

2. Holography

We begin by describing the simplest possible holographic description of a theory with a conserved U(1)
charge placed in a periodic potential: classical Einstein-Maxwell theory with a U(1) gauge field. The
metric is subject to the boundary condition that it is asymptotically AdS4 in the UV:

ds2 = g0
µ⌫

dxµdx⌫ =
L2

z2

⇥
dz2 � dt2 + dx2 + dy2

⇤
, as z ! 0. (5)

For much of the discussion, we will choose to rescale to L = 1. The gauge field is subject to the UV
boundary condition

lim
z!0

A
µ

dxµ = V cos(kx)dt. (6)

It is clear that both V and k are the only dimensional quantities in the problem which are relevant, and
thus the dynamics of the theory can only depend on the ratio V/k.

The equations of motion of the Lagrangian in Eq. (4) are Einstein’s equation

Rµ⌫ � 1

2
Rgµ⌫ + ⇤gµ⌫ =

2

e2
T (EM)µ⌫ , (7)

where T (EM)
µ⌫

is the stress tensor of the U(1) field,

T (EM)
µ⌫

= F
µ

⇢F
⌫⇢

� 1

4
g
µ⌫

F ⇢�F
⇢�

, (8)

d.c. conductivity
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Figure 19: Illustration of the positions of the Dirac points with positive q
D

for V/k = 5.3. The dashed
line is the location of the electron and hole Fermi surfaces of Fig. 17. These are folded back into the first
Brillouin zone �k/2 < q

x

< k/2 and shown as the full lines. The Dirac points are the filled circles at the
positions in Eq. (69), and these appear precisely at the intersection points of the folded Fermi surfaces in
the first Brillouin zone.

N
D

� 1 is an integer. For the periodic rectangular-wave potential

N
D

= 2 bV/kc + 1. (71)

For the cosine potential, N
D

is a similar piecewise-constant function of V/k, determined by the zeros of
the Bessel function [35]. We can now add interactions to the low energy theory: by gauge-invariance, the
a

µ

gauge field will couple minimally to each of the N
D

N
f

Dirac fermions, and so the e↵ective theory will
have the same structure as the Lagrangian in Eq. (3). A crucial feature of this theory is that the number
of massless Dirac fermions is stable to all orders in perturbation theory, and so our picture of emergent
Dirac zeros continues to hold also for the interacting theory. This stability of the Dirac zeros can be
viewed as a remnant of the Luttinger theorem applied to the parent Fermi surfaces from which the Dirac
zeros descend (Fig. 19).

However, this low energy theory of N
D

N
f

Dirac fermions is not, strictly speaking, a CFT. This is
because the velocities in (70) are a function of n, and it not possible to set them all to unity by a common
rescaling transformation. However, once we include interactions between the Dirac fermions from the
SU(N

c

) gauge field in Eq. (3), there will be renormalizations to the velocities from quantum corrections.
As shown in Ref. [40], such renormalizations are expected to eventually scale all the velocities to a common
value (see Fig. 20).

IR behavior is described by a CFT whose “central charge” 
changes in discrete steps as a function of V/k, every time 

pairs of Dirac zero modes appear.
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