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Sommerfeld-Pauli-Bloch theory of 
metals, insulators, and superconductors:
many-electron quantum states are adiabatically 

connected to independent electron states

E

Metal
Metal

carrying
a current

Insulator
Superconductor

k

E

Metal
Metal

carrying
a current

Insulator
Superconductor

k

Metals

Thursday, August 8, 13



E

Metal
Metal

carrying
a current

Insulator
Superconductor

k

E

Metal
Metal

carrying
a current

Insulator
Superconductor

k

Boltzmann-Landau theory 
of dynamics of metals:

Long-lived quasiparticles (and quasiholes) have weak 
interactions which can be described by a Boltzmann equation
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Modern phases of quantum matter
Not adiabatically connected 

to independent electron states:

1. Many-particle quantum 
entanglement

2.  (a) Quasiparticles with quantum  
           numbers different from
           those of the electron
 
      (b) No quasiparticles
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Gapped quantum matter    
          Z2 Spin liquids, quantum Hall states

Conformal quantum matter
        Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
         Strange metals, Bose metals

“Complex entangled” states of 
quantum matter, 

not adiabatically connected to independent particle states

S. Sachdev, arXiv:1203.4565
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Gapped quantum matter    
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Bose-Einstein condensate of the superfluid
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.

LETTER RESEARCH

2 6 J U L Y 2 0 1 2 | V O L 4 8 7 | N A T U R E | 4 5 5

Macmillan Publishers Limited. All rights reserved©2012

system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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 Honeycomb lattice
(describes graphene after adding long-range Coulomb interactions)
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We define the Fourier transform of the fermions by

cA(k) =
⇤

r

cA(r)e
�ik·r (4)

and similarly for cB .
The hopping Hamiltonian is

H0 = �t
⇤

⇤ij⌅

�
c†Ai�cBj� + c†Bj�cAi�

⇥
(5)

where � is a spin index. If we introduce Pauli matrices ⇤ a in
sublattice space (a = x , y , z), this Hamiltonian can be written as

H0 =

⌅
d2k

4⇥2
c†(k)

⇧
�t

�
cos(k · e1) + cos(k · e2) + cos(k · e3)

⇥
⇤ x

+ t
�
sin(k · e1) + sin(k · e2) + sin(k · e3)

⇥
⇤ y

⌃
c(k) (6)

The low energy excitations of this Hamiltonian are near k ⌅ ±Q1.

A and B are sublattice indices.
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In terms of the fields near Q1 and �Q1, we define

�A1�(k) = cA�(Q1 + k)

�A2�(k) = cA�(�Q1 + k)

�B1�(k) = cB�(Q1 + k)

�B2�(k) = cB�(�Q1 + k) (7)

We consider � to be a 8 component vector, and introduce Pauli
matrices ⇤a which act in the 1, 2 valley space. Then the
Hamiltonian is

H0 =

⇤
d2k

4⇥2
�†(k)

�
v⌅ ykx + v⌅ x⇤zky

⇥
�(k), (8)

where v = 3t/2; below we set v = 1. Now define � = �†⇤z⌅ z .
Then we can write the imaginary time Lagrangian as

L0 = �i� (⇧�0 + kx�1 + ky�2)� (9)

where
�0 = �⇤z⌅ z �1 = ⇤z⌅ x �2 = �⌅ y (10)
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Exercise: Observe that L0 is invariant under the scaling
transformation x ⌅ = xe�� and � ⌅ = �e��. Write the Hubbard
interaction U in terms of the Dirac fermions, and show that it has
the tree-level scaling transformation U ⌅ = Ue��. So argue that all
short-range interactions are irrelevant in the Dirac semi-metal
phase.

Antiferromagnetism

We use the operator equation (valid on each site i):

U

�
n⇥ �

1

2

⇥�
n⇤ �

1

2

⇥
= �2U

3
Sa2 +

U

4
(11)

Then we decouple the interaction via

exp

⇧
2U

3

⌥

i

�
d�Sa2

i

⌃
=

�
DJai (�) exp

⇧
�
⌥

i

�
d�

⇤
3

8U
Ja2i � Jai S

a
i

⌅⌃

(12)
We now integrate out the fermions, and look for the saddle point
of the resulting e�ective action for Jai . At the saddle-point we find

Thursday, August 8, 13



Brillouin zone

Q1

�Q1

Thursday, August 8, 13



The theory of free Dirac 
fermions is invariant under 

conformal transformations of 
spacetime. This is a realization of 
a simple conformal field theory in 

2+1 dimensions: a CFT3
Brillouin zone

Q1

�Q1
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The Hubbard Model at large U

H = �
X

i,j

tijc
†
i↵cj↵ + U

X

i
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ni" �

1

2

◆✓
ni# �

1

2

◆
� µ

X

i

c†i↵ci↵

In the limit of large U , and at a density of one particle per site,
this maps onto the Heisenberg antiferromagnet

HAF =
X

i<j

JijS
a
i S

a
j

where a = x, y, z,

Sa
i =

1

2
ca†i↵�

a
↵�ci� ,

with �a the Pauli matrices and

Jij =
4t2ij
U
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Exercise: Observe that L0 is invariant under the scaling
transformation x ⌅ = xe�� and � ⌅ = �e��. Write the Hubbard
interaction U in terms of the Dirac fermions, and show that it has
the tree-level scaling transformation U ⌅ = Ue��. So argue that all
short-range interactions are irrelevant in the Dirac semi-metal
phase.

Antiferromagnetism

We use the operator equation (valid on each site i):

U

�
n⇥ �

1

2

⇥�
n⇤ �

1

2

⇥
= �2U

3
Sa2 +

U

4
(11)

Then we decouple the interaction via

exp

⇧
2U

3

⌥

i

�
d�Sa2

i

⌃
=

�
DJai (�) exp

⇧
�
⌥

i

�
d�

⇤
3

8U
Ja2i � Jai S

a
i

⌅⌃

(12)
We now integrate out the fermions, and look for the saddle point
of the resulting e�ective action for Jai . At the saddle-point we find

that the lowest energy is achieved when the vector has opposite
orientations on the A and B sublattices. Anticipating this, we look
for a continuum limit in terms of a field ⌃a where

JaA = ⌃a , JaB = �⌃a (13)

The coupling between the field ⌃a and the � fermions is given by

⇧

i

Jai c
†
i�⌅

a
�⇥ci⇥ = ⌃a

⇤
c†A�⌅

a
�⇥cA⇥ � c†B�⌅

a
�⇥cB⇥

⌅

= ⌃a�†⇧ z⌅a� = �⌃a�⇤z⌅a� (14)

From this we motivate the low energy theory

L = ��µ�µ�+
1

2

⌃
(�µ⌃

a)2 + s⌃a2
⌥
+

u

24

�
⌃a2

⇥2 � ⇥⌃a�⇤z⌅a�

(15)
Note that the matrix ⇤z⌅a commutes with all the �µ; hence ⇤z⌅a

is a matrix in “flavor” space. This is the Gross-Neveu model, and
it describes the quantum phase transition from the Dirac
semi-metal to an insulating Néel state In mean-field theory, the

Long wavelength fluctuations about this saddle point are described by a

field theory of the Néel order parameter, 'a
, coupled to the Dirac fermions

in the Gross-Neveu model.

I.F. Herbut, V. Juricic, and B. Roy, Phys. Rev. B 79, 085116 (2009).
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that the lowest energy is achieved when the vector has opposite
orientations on the A and B sublattices. Anticipating this, we look
for a continuum limit in terms of a field ⌃a where

JaA = ⌃a , JaB = �⌃a (13)

The coupling between the field ⌃a and the � fermions is given by

⇧

i

Jai c
†
i�⌅

a
�⇥ci⇥ = ⌃a

⇤
c†A�⌅

a
�⇥cA⇥ � c†B�⌅

a
�⇥cB⇥

⌅

= ⌃a�†⇧ z⌅a� = �⌃a�⇤z⌅a� (14)

From this we motivate the low energy theory

L = ��µ�µ�+
1

2

⌃
(�µ⌃

a)2 + s⌃a2
⌥
+

u

24

�
⌃a2

⇥2 � ⇥⌃a�⇤z⌅a�

(15)
Note that the matrix ⇤z⌅a commutes with all the �µ; hence ⇤z⌅a

is a matrix in “flavor” space. This is the Gross-Neveu model, and
it describes the quantum phase transition from the Dirac
semi-metal to an insulating Néel state In mean-field theory, the

Thursday, August 8, 13



 Dirac
semi-metal

Insulating 
antiferromagnet
with Neel order

k

"k

k

"k

s

h'ai = 0 h'ai 6= 0

At the quantum critical point, the non-linear couplings � and u in the Gross-

Neveu model reach non-zero fixed-point values under the renormalization

group flow. The critical theory is an interacting CFT3
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Numerical studies of the S=1/2 antiferromagnet 
on the honeycomb lattice with second-neighbor exchange 
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Deconfined criticality in the frustrated Heisenberg honeycomb antiferromagnet

R. Ganesh,1 Jeroen van den Brink,1, 2 and Satoshi Nishimoto1

1Institute for Theoretical Solid Sate Physics, IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
2Department of Physics, Technical University Dresden, D-1062 Dresden, Germany

(Dated: January 8, 2013)

Using the density-matrix renormalization group, we determine the phase diagram of the spin 1/2
Heisenberg antiferromagnet on a honeycomb lattice with a nearest neighbor interaction J1 and a
frustrating, next-neighbor exchange J2. As frustration increases, the ground state exhibits Néel,
plaquette and dimer orders, with critical points at J2/J1 = 0.22 and 0.35. We observe that both
the spin gap and the corresponding order parameters vanish continuously at both the critical points,
indicating the presence of deconfined quantum criticality.

Introduction Models of frustrated magnetism on the
honeycomb lattice have lately received tremendous inter-
est. This interest stems from sign-problem-free Quantum
Monte Carlo (QMC) studies which have established the
presence of a spin liquid phase in the honeycomb Hub-
bard model [1]. Approaching from the strong coupling
side, the physics at intermediate values of the Hubbard
interaction U , for which the novel spin liquid phase has
been found, can be described by the spin 1/2 Heisenberg
model characterized by an antiferromagnetic interaction
J1 between neighboring spins and a frustrating, next-
nearest neighbor exchange J2. When the frustration is
small and J2 weak, the well-known Néel ordered state is
stable, but at a critical value of α = J2/J1 it gives way
to another, possibly liquid, phase. While all studies so
far agree upon the presence of a phase transition, the
nature of this intermediate phase that is reached by the
transition out of the Néel state is heavily debated. The
intermediate phase has been identified as a Z2 spin liq-
uid by some [2–4] and as a plaquette-Resonating Valence
Bond (pRVB) state, breaking translational symmetry, by
others [5–7]. A recent variational calculation argues in-
stead that the intermediate state does not have plaquette
order [8]. Upon further increasing the frustration param-
eter α, a second transition takes place into a ground state
that breaks lattice rotational symmetry but may or may
not have magnetic order.

We analyze this complex situation by formulating and
answering four succinct fundamental questions on the
J1−J2 honeycomb Heisenberg model: (i) As to the Néel
state: do quantum fluctuations tend to stabilize or de-
stroy it? In other words, does Néel order vanish above
or below the classical threshold of α = 1/6? (ii) What
is the nature of the intermediate state? Is it a liquid
state or does it have plaquette order? (iii) What is the
ground state for large α? Does it have magnetic order?
(iv) What is the nature of the two phase transitions? Do
the order parameters develop discontinuously or contin-
uously across the quantum critical points?

We use nominally-exact two-dimensional density-
matrix renormalization group (DMRG) calculations to
settle these issues and establish that: (i) Néel order is

Néel pRVB Dimer

~ -

0.22

J /�J2 1

0.35

FIG. 1. Phase diagram of the spin 1/2 Heisenberg antifer-
romagnet on a honeycomb lattice with a nearest neighbor
interaction J1 and a frustrating, next-neighbor exchange J2

as obtained from DMRG.

stabilized beyond the classical limit, up to αc1 = 0.22
(ii) the intermediate state has weak plaquette order with
f -wave symmetry, and (iii) for αc2 > 0.35, the ground
state has dimer order and breaks lattice rotational sym-
metry. These results are summarized in the phase di-
agram shown in Fig. 1. Moreover, we find that within
numerical precision, (iv) both the spin gap and the rele-
vant order parameters vanish continuously, at both crit-
ical points αc1 and αc2. This implies that even if two
different symmetries are broken on either side of αc, the
transition is not first-order, as one would expect from
a Ginzburg-Landau-type theory. Having two second-
order transitions between the Néel, plaquette and dimer
phases, implies that the critical theory for these tran-
sitions is unusual and is not described in terms of the
order parameter fields of either phase. It indicates in-
stead the presence of two deconfined quantum critical
points [9, 10].
Frustrated honeycomb Heisenberg model The Hamil-

tonian corresponding to the J1−J2 Heisenberg model on
a honeycomb lattice is

H = J1
∑

〈ij〉

Si · Sj + J2
∑

〈〈ij〉〉

Si · Sj , (1)

where 〈ij〉 and 〈〈ij〉〉 denote nearest neighbor and next-
neighbor sites i and j, respectively, and α = J2/J1 pa-
rameterizes the strength of the frustration. We consider
antiferromagnetic coupling: J1, J2 and α are all positive.

Z. Zhu, D. A. Huse, and S. R. White, 
arXiv:1212.6322

R. Ganesh, J. van den Brink, S. Nishimoto, 
arXiv:1301.0853
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Using the density-matrix renormalization group, we determine the phase diagram of the spin 1/2
Heisenberg antiferromagnet on a honeycomb lattice with a nearest neighbor interaction J1 and a
frustrating, next-neighbor exchange J2. As frustration increases, the ground state exhibits Néel,
plaquette and dimer orders, with critical points at J2/J1 = 0.22 and 0.35. We observe that both
the spin gap and the corresponding order parameters vanish continuously at both the critical points,
indicating the presence of deconfined quantum criticality.

Introduction Models of frustrated magnetism on the
honeycomb lattice have lately received tremendous inter-
est. This interest stems from sign-problem-free Quantum
Monte Carlo (QMC) studies which have established the
presence of a spin liquid phase in the honeycomb Hub-
bard model [1]. Approaching from the strong coupling
side, the physics at intermediate values of the Hubbard
interaction U , for which the novel spin liquid phase has
been found, can be described by the spin 1/2 Heisenberg
model characterized by an antiferromagnetic interaction
J1 between neighboring spins and a frustrating, next-
nearest neighbor exchange J2. When the frustration is
small and J2 weak, the well-known Néel ordered state is
stable, but at a critical value of α = J2/J1 it gives way
to another, possibly liquid, phase. While all studies so
far agree upon the presence of a phase transition, the
nature of this intermediate phase that is reached by the
transition out of the Néel state is heavily debated. The
intermediate phase has been identified as a Z2 spin liq-
uid by some [2–4] and as a plaquette-Resonating Valence
Bond (pRVB) state, breaking translational symmetry, by
others [5–7]. A recent variational calculation argues in-
stead that the intermediate state does not have plaquette
order [8]. Upon further increasing the frustration param-
eter α, a second transition takes place into a ground state
that breaks lattice rotational symmetry but may or may
not have magnetic order.

We analyze this complex situation by formulating and
answering four succinct fundamental questions on the
J1−J2 honeycomb Heisenberg model: (i) As to the Néel
state: do quantum fluctuations tend to stabilize or de-
stroy it? In other words, does Néel order vanish above
or below the classical threshold of α = 1/6? (ii) What
is the nature of the intermediate state? Is it a liquid
state or does it have plaquette order? (iii) What is the
ground state for large α? Does it have magnetic order?
(iv) What is the nature of the two phase transitions? Do
the order parameters develop discontinuously or contin-
uously across the quantum critical points?

We use nominally-exact two-dimensional density-
matrix renormalization group (DMRG) calculations to
settle these issues and establish that: (i) Néel order is
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FIG. 1. Phase diagram of the spin 1/2 Heisenberg antifer-
romagnet on a honeycomb lattice with a nearest neighbor
interaction J1 and a frustrating, next-neighbor exchange J2

as obtained from DMRG.

stabilized beyond the classical limit, up to αc1 = 0.22
(ii) the intermediate state has weak plaquette order with
f -wave symmetry, and (iii) for αc2 > 0.35, the ground
state has dimer order and breaks lattice rotational sym-
metry. These results are summarized in the phase di-
agram shown in Fig. 1. Moreover, we find that within
numerical precision, (iv) both the spin gap and the rele-
vant order parameters vanish continuously, at both crit-
ical points αc1 and αc2. This implies that even if two
different symmetries are broken on either side of αc, the
transition is not first-order, as one would expect from
a Ginzburg-Landau-type theory. Having two second-
order transitions between the Néel, plaquette and dimer
phases, implies that the critical theory for these tran-
sitions is unusual and is not described in terms of the
order parameter fields of either phase. It indicates in-
stead the presence of two deconfined quantum critical
points [9, 10].
Frustrated honeycomb Heisenberg model The Hamil-

tonian corresponding to the J1−J2 Heisenberg model on
a honeycomb lattice is

H = J1
∑

〈ij〉

Si · Sj + J2
∑

〈〈ij〉〉

Si · Sj , (1)

where 〈ij〉 and 〈〈ij〉〉 denote nearest neighbor and next-
neighbor sites i and j, respectively, and α = J2/J1 pa-
rameterizes the strength of the frustration. We consider
antiferromagnetic coupling: J1, J2 and α are all positive.
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CFT3 with fractionalization and emergent gauge fields:

Write Néel order 'a
= z⇤↵�

a
↵�z� , and CFT3 is

L = |(@µ � iaµ)z↵|2 + s|z↵|2 + u
�
|z↵|2

�2
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Electrical transport

The conserved electrical current is

Jµ = �i��µ�. (1)

Let us compute its two-point correlator, Kµ⌅(k) at a spacetime
momentum kµ at T = 0. At leading order, this is given by a one
fermion loop diagram which evaluates to

Kµ⌅(k) =

⇤
d3p

8⌅3

Tr [�µ(i�⇥p⇥ +m⇧z⌃z)�⌅(i��(k� + p�) +m⇧z⌃z)]

(p2 +m2)((p + k)2 +m2)

= � 2

⌅

�
⇥µ⌅ �

kµk⌅
k2

⇥⇤ 1

0
dx

k2x(1� x)⌅
m2 + k2x(1� x)

, (2)

where the mass m = 0 in the semi-metal and at the quantum
critical point, while m = |⇤N0| in the insulator. Note that the
current correlation is purely transverse, and this follows from the
requirement of current conservation

kµKµ⌅ = 0. (3)
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Of particular interest to us is the K00 component, after analytic
continuation to Minkowski space where the spacetime momentum
kµ is replaced by (⇥, k). The conductivity is obtained from this
correlator via the Kubo formula

�(⇥) = lim
k!0

�i⇥

k2
K00(⇥, k). (4)

In the insulator, where m > 0, analysis of the integrand in Eq. (2)
shows that that the spectral weight of the density correlator has a
gap of 2m at k = 0, and the conductivity in Eq. (4) vanishes.
These properties are as expected in any insulator.
In the metal, and at the critical point, where m = 0, the fermionic
spectrum is gapless, and so is that of the charge correlator. The
density correlator in Eq. (2) and the conductivity in Eq. (4)
evaluate to the simple universal results

K00(⇥, k) =
1

4

k2⇥
k2 � ⇥2

�(⇥) = 1/4. (5)

Going beyond one-loop, we find no change in these results in the
Thursday, August 8, 13



semi-metal to all orders in perturbation theory. At the quantum
critical point, there are no anomalous dimensions for the conserved
current, but the amplitude does change yielding

K00(⇥, k) = K k2⇤
k2 � ⇥2

�(⇥) = K, (6)

where K is a universal number dependent only upon the
universality class of the quantum critical point. The value of the K
for the Gross-Neveu model is not known exactly, but can be
estimated by computations in the (3� d) or 1/N expansions.

Also note Kµ⌫ = K|k|
⇣
�µ⌫ � kµk⌫

k2

⌘
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Optical conductivity of graphene
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