
Stringing together 
the 

quantum phases of matter

HARVARD

Lorentz Lectures, Leiden   
May 7, 14, 21,  June 4, 2012

Subir Sachdev

Talk online at sachdev.physics.harvard.edu

See also lecture at the 2011 Solvay conference,
Theory of the Quantum World, chair D.J. Gross.

100th anniversary of the first Solvay conference, 
Radiation and the Quanta, chair H. A. Lorentz.

arXiv:1203.4565

Monday, May 14, 2012



Sommerfeld-Bloch theory of 
metals, insulators, and superconductors:
many-electron quantum states are adiabatically 

connected to independent electron states
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Modern phases of quantum matter
Not adiabatically connected 

to independent electron states:
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Modern phases of quantum matter
Not adiabatically connected 

to independent electron states:
many-particle, long-range 
quantum entanglement
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States of quantum matter with long-range 
entanglement in d spatial dimensions

Useful classification is provided by 
nature of excitations with vanishing energy:

1. Gapped systems without zero energy excitations

2. “Relativistic” systems with zero energy excitations at 
isolated points in momentum space

3. “Compressible” systems with zero energy excitations on d-1 
dimensional surfaces in momentum space.
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Gapped quantum matter    
          Spin liquids, quantum Hall states

Conformal quantum matter
        Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
         Graphene, strange metals in high 
                 temperature superconductors, spin liquids

States of quantum matter with long-range 
entanglement in d spatial dimensions
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Gapped quantum matter
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Band insulators

E

Metal
Metal

carrying
a current

Insulator
Superconductor

k

An even number of electrons per unit cell
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Mott insulator

An odd number of electrons per unit cell
but electrons are localized by Coulomb repulsion;

state has long-range entanglement

Emergent excitations
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Mott insulator: Triangular lattice antiferromagnet

H = J

�

�ij�

�Si · �Sj

Nearest-neighbor model has non-collinear Neel order 
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Mott insulator: Triangular lattice antiferromagnet

H = J

�

�ij�

�Si · �Sj

Imagine quantum fluctuations are so strong that the Neel
order does not have long-range correlations.

Naive “classical” picture: we obtain a quantum disordered 
state in which all spin-spin correlations decay 

exponentially over a short length scale.

Modern “quantum” understanding:  the discrete quantum 
degrees of freedom require a state with 

long-range entanglement.

Monday, May 14, 2012



Mott insulator: Triangular lattice antiferromagnet

H = J

�

�ij�

�Si · �Sj

Imagine quantum fluctuations are so strong that the Neel
order does not have long-range correlations.

Naive “classical” picture: we obtain a quantum disordered 
state in which all spin-spin correlations decay 

exponentially over a short length scale.

Modern “quantum” understanding:  the discrete quantum 
degrees of freedom require a state with 

long-range entanglement.

Monday, May 14, 2012



ssc

non-collinear Néel state

Mott insulator: Triangular lattice antiferromagnet

Z2 spin liquid
with neutral S = 1/2 spinons
and vison excitations

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
X.-G. Wen, Phys. Rev. B  44, 2664 (1991)
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Spin liquid obtained in a generalized 
spin model with S=1/2 per unit cell 

=

P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).

Mott insulator: Triangular lattice antiferromagnet
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Excitations of the Z2 Spin liquid

=Spinon: S=1/2, charge 0 
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Excitations of the Z2 Spin liquid

A vison 
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Excitations of the Z2 Spin liquid

A vison 
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• Visons are are the dark matter of spin liq-
uids: they likely carry most of the energy,
but are very hard to detect because they do
not carry charge or spin.

Excitations of the Z2 Spin liquid

A vison 

N. Read and B. Chakraborty, Phys. Rev. B  40, 7133 (1989)
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
T. Senthil and M.P.A. Fisher, Phys. Rev. B 63, 134521 (2001)
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4-fold degeneracy on the torus

Topological order in the Z2 spin liquid ground state
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4-fold degeneracy on the torus

vison

Topological order in the Z2 spin liquid ground state
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4-fold degeneracy on the torus

Topological order in the Z2 spin liquid ground state
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ρA = TrBρ = density matrix of region A

Entanglement entropy SEE = −Tr (ρA ln ρA)

B

A

Topological order in the Z2 spin liquid ground state
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Entanglement entropy of a band insulator:

SEE = aL− exp(−bL)

where L is the perimeter of the boundary between A and B.
The ln(2) is a universal characteristic of the Z2 spin liquid,

and implies long-range quantum entanglement.

A

B

Topological order in the Z2 spin liquid ground state
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Entanglement entropy of a Z2 spin liquid:

SEE = aL− ln(2)

where L is the perimeter of the boundary between A and B.
The ln(2) is a universal characteristic of the Z2 spin liquid,

and implies long-range quantum entanglement.

A

B

M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006); A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006);
Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B  84, 075128 (2011).

Topological order in the Z2 spin liquid ground state
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Topological order in the Z2 spin liquid ground state

These properties of the ground state can be
described by effective theories:

 deconfined phase of a Z2 gauge theory

 topological doubled Chern-Simons gauge theory
J. Maldacena, G. Moore, and N. Seiberg,  JHEP 0110:005 (2001).

M. Freedman, C. Nayak, K. Shtengel, K. Walker, and 
Z. Wang, Annals of Physics 310, 428 (2004).

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
F.  A. Bais, P. van Driel, and M. de Wild Propitius, `Phys. Lett. B 280, 63 (1992).
T. Senthil and M.P.A. Fisher, Phys. Rev. B 63, 134521 (2001)
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Topological order in the Z2 spin liquid ground state

These properties of the ground state can be
described by effective theories:

 deconfined phase of a Z2 gauge theory

 topological doubled Chern-Simons gauge theory
J. Maldacena, G. Moore, and N. Seiberg,  JHEP 0110:005 (2001).

M. Freedman, C. Nayak, K. Shtengel, K. Walker, and 
Z. Wang, Annals of Physics 310, 428 (2004).

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
F.  A. Bais, P. van Driel, and M. de Wild Propitius, `Phys. Lett. B 280, 63 (1992).
T. Senthil and M.P.A. Fisher, Phys. Rev. B 63, 134521 (2001)

 Good recent numerical evidence of Z2 spin liquid 
         on kagome and square lattices

Simeng Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
J.  Hong-Chen Jiang, Hong Yao, and L. Balents, arXiv:1112.2241.

Ling Wang, Zheng-Cheng Gu, Xiao-Gang Wen, and F. Verstraete, arXiv:1112.3331
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Young Lee, APS meeting, March 2012

 Promising experimental candidate: the kagome
           antiferromagnet
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Quantum Hall states

Similar topological properties, 
but no time-reversal symmetry:

 ground state degeneracy on a torus

 universal entanglement entropy

 gapless edge states on spaces with boundaries 
(can also happen for some spin liquids)

 topological Chern-Simons gauge theories
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Gapped quantum matter    
          Spin liquids, quantum Hall states

Conformal quantum matter
        Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
         Graphene, strange metals in high 
                 temperature superconductors, spin liquids

States of quantum matter with long-range 
entanglement in d spatial dimensions
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     Conformal quantum matter

A. Field theory:graphene

B. Field theory: superfluid-
                    insulator transition

               C. Field theory: antiferromagnets

               D. Gauge-gravity duality

Monday, May 14, 2012



     Conformal quantum matter

A. Field theory:graphene

B. Field theory: superfluid-
                    insulator transition

               C. Field theory: antiferromagnets

               D. Gauge-gravity duality

Monday, May 14, 2012



 Honeycomb lattice
(describes graphene after adding long-range Coulomb interactions)

H = −t

�

�ij�

c
†
iαcjα + U

�

i

�
ni↑ −

1

2

��
ni↓ −

1

2

�
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Semi-metal with
massless Dirac fermions

at small U/t
Brillouin zone

Q1

−Q1
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We define the Fourier transform of the fermions by

cA(k) =
�

r

cA(r)e
−ik·r

(4)

and similarly for cB .

The hopping Hamiltonian is

H0 = −t

�

�ij�

�
c
†
AiαcBjα + c

†
BjαcAiα

�
(5)

where α is a spin index. If we introduce Pauli matrices τ a in

sublattice space (a = x , y , z), this Hamiltonian can be written as

H0 =

�
d
2
k

4π2
c
†
(k)

�
−t

�
cos(k · e1) + cos(k · e2) + cos(k · e3)

�
τ x

+ t

�
sin(k · e1) + sin(k · e2) + sin(k · e3)

�
τ y

�
c(k) (6)

The low energy excitations of this Hamiltonian are near k ≈ ±Q1.

A and B are sublattice indices.
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In terms of the fields near Q1 and −Q1, we define

ΨA1α(k) = cAα(Q1 + k)

ΨA2α(k) = cAα(−Q1 + k)

ΨB1α(k) = cBα(Q1 + k)

ΨB2α(k) = cBα(−Q1 + k) (7)

We consider Ψ to be a 8 component vector, and introduce Pauli

matrices ρa which act in the 1, 2 valley space. Then the

Hamiltonian is

H0 =

�
d
2
k

4π2
Ψ

†
(k)

�
vτ ykx + vτ xρzky

�
Ψ(k), (8)

where v = 3t/2; below we set v = 1. Now define Ψ = Ψ
†ρzτ z .

Then we can write the imaginary time Lagrangian as

L0 = −iΨ (ωγ0 + kxγ1 + kyγ2)Ψ (9)

where

γ0 = −ρzτ z γ1 = ρzτ x γ2 = −τ y (10)
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Exercise: Observe that L0 is invariant under the scaling
transformation x � = xe−� and τ � = τe−�. Write the Hubbard
interaction U in terms of the Dirac fermions, and show that it has
the tree-level scaling transformation U � = Ue−�. So argue that all
short-range interactions are irrelevant in the Dirac semi-metal
phase.

Antiferromagnetism

We use the operator equation (valid on each site i):

U

�
n↑ −

1

2

��
n↓ −

1

2

�
= −2U

3
Sa2 +

U

4
(11)

Then we decouple the interaction via

exp

�
2U

3

�

i

�
dτSa2

i

�
=

�
DJai (τ) exp

�
−
�

i

�
dτ

�
3

8U
Ja2i − Jai S

a
i

��

(12)
We now integrate out the fermions, and look for the saddle point
of the resulting effective action for Jai . At the saddle-point we find
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Brillouin zone

Q1

−Q1
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The theory of free Dirac 
fermions is invariant under 

conformal transformations of 
spacetime. This is a realization of 
a simple conformal field theory in 

2+1 dimensions: a CFT3
Brillouin zone

Q1

−Q1
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The Hubbard Model at large U

H = −
�

i,j

tijc
†
iαcjα + U

�

i

�
ni↑ −

1

2

��
ni↓ −

1

2

�
− µ

�

i

c
†
iαciα

In the limit of large U , and at a density of one particle per site,

this maps onto the Heisenberg antiferromagnet

HAF =

�

i<j

JijS
a
i S

a
j

where a = x, y, z,

S
a
i =

1

2
c
a†
iασ

a
αβciβ ,

with σ
a
the Pauli matrices and

Jij =
4t

2
ij

U
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U/t

 Dirac
semi-metal

Insulating 
antiferromagnet
with Neel order
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We use the operator equation (valid on each site i):

U

�
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1

2

��
n↓ −

1

2

�
= −2U

3
Sa2 +

U

4
(11)

Then we decouple the interaction via

exp

�
2U

3

�

i

�
dτSa2

i

�
=

�
DJai (τ) exp

�
−
�

i

�
dτ

�
3

8U
Ja2i − Jai S

a
i

��

(12)
We now integrate out the fermions, and look for the saddle point
of the resulting effective action for Jai . At the saddle-point we find

that the lowest energy is achieved when the vector has opposite
orientations on the A and B sublattices. Anticipating this, we look
for a continuum limit in terms of a field ϕa where

JaA = ϕa , JaB = −ϕa (13)

The coupling between the field ϕa and the Ψ fermions is given by

�

i

Jai c
†
iασ

a
αβciβ = ϕa

�
c†Aασ

a
αβcAβ − c†Bασ

a
αβcBβ

�

= ϕaΨ†τ zσaΨ = −ϕaΨρzσaΨ (14)

From this we motivate the low energy theory

L = Ψγµ∂µΨ+
1

2

�
(∂µϕ

a)2 + sϕa2
�
+

u

24

�
ϕa2

�2 − λϕaΨρzσaΨ

(15)
Note that the matrix ρzσa commutes with all the γµ; hence ρzσa

is a matrix in “flavor” space. This is the Gross-Neveu model, and
it describes the quantum phase transition from the Dirac
semi-metal to an insulating Néel state In mean-field theory, the

Long wavelength fluctuations about this saddle point are described by a
field theory of the Néel order parameter, ϕa, coupled to the Dirac fermions
in the Gross-Neveu model.

I.F. Herbut, V. Juricic, and B. Roy, Phys. Rev. B 79, 085116 (2009).
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 Dirac
semi-metal

Insulating 
antiferromagnet
with Neel order

k

εk

k

εk

s

�ϕa� = 0 �ϕa� �= 0
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 Dirac
semi-metal

Insulating 
antiferromagnet
with Neel order

k

εk

k

εk

s

�ϕa� = 0 �ϕa� �= 0

At the quantum critical point, the non-linear couplings λ and u in the Gross-
Neveu model reach non-zero fixed-point values under the renormalization
group flow. The critical theory is an interacting CFT3
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 Dirac
semi-metal

Insulating 
antiferromagnet
with Neel order

k

εk

k

εk

s

�ϕa� = 0 �ϕa� �= 0

Free CFT3
Interacting CFT3

with long-range entanglement
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• Long-range entanglement: entanglement entropy obeys
SEE = aL − γ, where γ is a universal number asso-
ciated with the CFT3.

Long-range entanglement in a CFT3

B

A

M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Physical Review B 80, 115122 (2009).
H. Casini, M. Huerta, and R. Myers, JHEP 1105:036, (2011)

I. Klebanov, S. Pufu, and B. Safdi, arXiv:1105.4598

Monday, May 14, 2012



An analysis of this quantum critical point requires a RG analysis
which goes beyond tree-level. Such an analysis can be controlled in
an expansion in 1/N (where N is the number of fermion flavors) or
(3− d) (where d is the spatial dimensionality. Such analyses show
that the couplings u and λ reach a RG fixed point which describes
a conformal field theory (CFT).
An important result of such an analysis is the following structure in
the electron Green’s function:

G (k ,ω) =
�
Ψ(k ,ω);Ψ†(k ,ω)

�
∼ iω + vkxτ y + vkyτ xρz

(ω2 + v2k2x + v2k2y )
1−η/2

(17)

where η > 0 is the anomalous dimension of the fermion. Note that
this leads to a fermion spectral density which has no quasiparticle
pole: thus the quantum critical point has no well-defined
quasiparticle excitations.

Electron Green’s function for the interacting CFT3
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ImG(k,ω)

v k
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 Dirac
semi-metal

Insulating 
antiferromagnet
with Neel order

k

εk

k

εk

�ϕa� = 0 �ϕa� �= 0

Quantum phase transition described by a strongly-coupled 
conformal field theory without well-defined quasiparticles

s
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Electrical transport

The conserved electrical current is

Jµ = −iΨγµΨ. (1)

Let us compute its two-point correlator, Kµν(k) at a spacetime
momentum kµ at T = 0. At leading order, this is given by a one
fermion loop diagram which evaluates to

Kµν(k) =

�
d3p

8π3

Tr [γµ(iγλpλ +mρzσz)γν(iγδ(kδ + pδ) +mρzσz)]

(p2 +m2)((p + k)2 +m2)

= − 2

π

�
δµν −

kµkν
k2

�� 1

0
dx

k2x(1− x)�
m2 + k2x(1− x)

, (2)

where the mass m = 0 in the semi-metal and at the quantum
critical point, while m = |λN0| in the insulator. Note that the
current correlation is purely transverse, and this follows from the
requirement of current conservation

kµKµν = 0. (3)
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Of particular interest to us is the K00 component, after analytic

continuation to Minkowski space where the spacetime momentum

kµ is replaced by (ω, k). The conductivity is obtained from this

correlator via the Kubo formula

σ(ω) = lim
k→0

−iω

k2
K00(ω, k). (4)

In the insulator, where m > 0, analysis of the integrand in Eq. (2)

shows that that the spectral weight of the density correlator has a

gap of 2m at k = 0, and the conductivity in Eq. (4) vanishes.

These properties are as expected in any insulator.

In the metal, and at the critical point, where m = 0, the fermionic

spectrum is gapless, and so is that of the charge correlator. The

density correlator in Eq. (2) and the conductivity in Eq. (4)

evaluate to the simple universal results

K00(ω, k) =
1

4

k2√
k2 − ω2

σ(ω) = 1/4. (5)

Going beyond one-loop, we find no change in these results in the
Monday, May 14, 2012



semi-metal to all orders in perturbation theory. At the quantum
critical point, there are no anomalous dimensions for the conserved
current, but the amplitude does change yielding

K00(ω, k) = K k2√
k2 − ω2

σ(ω) = K, (6)

where K is a universal number dependent only upon the
universality class of the quantum critical point. The value of the K
for the Gross-Neveu model is not known exactly, but can be
estimated by computations in the (3− d) or 1/N expansions.
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 Dirac
semi-metal

Insulating 
antiferromagnet
with Neel order

k

εk

k

εk
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Free CFT3
Interacting CFT3

with long-range entanglement
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 Dirac
semi-metal

Insulating 
antiferromagnet
with Neel order

k

εk

k

εk

s

�ϕa� = 0 �ϕa� �= 0

σ(ω) =
πe2

2h
σ(ω) =

Ke2

�
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Insulator
with thermally 

excited 
spin waves

Semi-metal

Quantum
critical

Phase diagram at non-zero temperatures
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Insulator
with thermally 

excited 
spin waves

Semi-metal

Quantum
critical

Phase diagram at non-zero temperatures

σ(ω � T ) =
πe2

2h
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Quantum
critical

Phase diagram at non-zero temperatures
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πe2
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Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, 
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).

Optical conductivity of graphene
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Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, 
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).

Undoped graphene
Optical conductivity of graphene
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Non-zero temperatures

At the quantum-critical point at one-loop order, we can set m = 0,

and then repeat the computation in Eq. (2) at T > 0. This only

requires replacing the integral over the loop frequency by a

summation over the Matsubara frequencies, which are quantized

by odd multiples of πT . Such a computation, via Eq. (4) leads to

the conductivity

Re[σ(ω)] = (2T ln 2) δ(ω) +
1

4
tanh

�
|ω|
4T

�
; (7)

the imaginary part of σ(ω) is the Hilbert transform of

Re[σ(ω)]− 1/4. Note that this reduces to Eq. (5) in the limit

ω � T . However, the most important new feature of Eq. (7)

arises for ω � T , where we find a delta function at zero frequency

in the real part. Thus the d.c. conductivity is infinite at this order,

arising from the collisionless transport of thermally excited carriers.
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Electrical transport in a free CFT3 for T > 0

∼ Tδ(ω)
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Particles Holes

Momentum

Current

Momentum

Current

k

εk

k

εk

Particle hole symmetry: current carrying state has zero 
momentum, and collisions can relax current to zero
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Electrical transport for a (weakly) interacting CFT3

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

�ω
kBT

1

; Σ → a universal function

Re[σ(ω)]

σ(ω, T ) =
e2

h
Σ

�
�ω
kBT

�

Monday, May 14, 2012



K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

�ω
kBT

1

Re[σ(ω)]

O((u∗)2),
where u∗ is the
fixed point
interaction

Electrical transport for a (weakly) interacting CFT3

; Σ → a universal functionσ(ω, T ) =
e2

h
Σ

�
�ω
kBT

�

Monday, May 14, 2012



K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

�ω
kBT

1

Re[σ(ω)]
O(1/(u∗)2)

Electrical transport for a (weakly) interacting CFT3

; Σ → a universal functionσ(ω, T ) =
e2

h
Σ

�
�ω
kBT

�

O((u∗)2),
where u∗ is the
fixed point
interaction

Monday, May 14, 2012



K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

�ω
kBT

1

Re[σ(ω)]
O(1/(u∗)2)

Electrical transport for a (weakly) interacting CFT3

; Σ → a universal functionσ(ω, T ) =
e2

h
Σ

�
�ω
kBT

�

O((u∗)2),
where u∗ is the
fixed point
interaction

Monday, May 14, 2012



K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

�ω
kBT

1

Re[σ(ω)]
O(1/(u∗)2)

Electrical transport for a (weakly) interacting CFT3

; Σ → a universal functionσ(ω, T ) =
e2

h
Σ

�
�ω
kBT

�

O((u∗)2),
where u∗ is the
fixed point
interaction

Needed: 
a method for computing

 the d.c. conductivity  
of interacting CFT3s

 (including that of pure graphene!)
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition
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[bj , b
†
k] = δjk

The Superfluid-Insulator transition

Boson Hubbard model

M.P. A. Fisher,  P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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Excitations of the insulator:

S =
�

d2rdτ
�
|∂τψ|2 + v2|�∇ψ|2 + (g − gc)|ψ|2 +

u

2
|ψ|4

�

M.P. A. Fisher,  P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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InsulatorSuperfluid

Quantum
critical

TKT

CFT3 at T>0
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Quantum critical transport 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “nearly perfect fluid”
with shortest possible
equilibration time, τeq

τeq = C �
kBT

where C is a universal constant
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Quantum critical transport 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “nearly perfect fluid”
with shortest possible
equilibration time, τeq

τeq = C �
kBT

where C is a universal constant

Zaanen: Planckian dissipation
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Quantum critical transport 

M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)                                                             
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

σ =
Q2

h
× [Universal constant O(1) ]

(Q is the “charge” of one boson)

Transport co-oefficients not determined
by collision rate, but by

universal constants of nature

Conductivity
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Quantum critical transport 
Transport co-oefficients not determined

by collision rate, but by
universal constants of nature

Momentum transport
η

s
≡

viscosity
entropy density

=
�

kB
× [Universal constant O(1) ]
P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett.  94, 11601 (2005)
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Describe charge transport using Boltzmann theory of in-
teracting bosons:

dv

dt
+

v

τc
= F.

This gives a frequency (ω) dependent conductivity

σ(ω) =
σ0

1− iω τc

where τc ∼ �/(kBT ) is the time between boson collisions.

Also, we have σ(ω → ∞) = σ∞, associated with the den-
sity of states for particle-hole creation (the “optical con-
ductivity”) in the CFT3.

Quantum critical transport 
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ω/T

σ

Electrical transport in a free-field theory for T > 0

∼ Tδ(ω)
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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0

InsulatorSuperfluid

Quantum
critical

TKT
�ψ� �= 0 �ψ� = 0

So far, we have described the quantum critical point using
the boson particle and hole excitations of the insulator.
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However, we could equally well describe the conductivity

using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which

described by a (mirror/e.m.) “dual” CFT3 with an emer-

gent U(1) gauge field. Their T > 0 dynamics can also be

described by a Boltzmann equation:

Conductivity = Resistivity of vortices

g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT
�ψ� �= 0 �ψ� = 0
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However, we could equally well describe the conductivity

using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which

described by a (mirror/e.m.) “dual” CFT3 with an emer-

gent U(1) gauge field. Their T > 0 dynamics can also be

described by a Boltzmann equation:

Conductivity = Resistivity of vortices
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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Boltzmann theory of vortices

σ∞1/τcv

1/σ0v

Re[σ(ω)]

ω

Monday, May 14, 2012



Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]

Monday, May 14, 2012



Boltzmann theory of bosons
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]

Needed: 
a method for computing

 the d.c. conductivity  
of interacting CFT3s

 (including that of the boson 
Hubbard model !)
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ssc

Néel state

(a)

(b)

(a)

(b)or

Quantum critical point in a frustrated square lattice antiferromagnet

O.I. Motrunich and A. Vishwanath, Phys. Rev. B 70, 075104 (2004).
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004).

Valence bond solid (VBS) state
with a nearly gapless, emergent “photon”

Long-range entanglement described by a CFT3 
with an emergent U(1) “photon”
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ssc

Néel state

(a)

(b)

(a)

(b)or

Quantum critical point in a frustrated square lattice antiferromagnet

O.I. Motrunich and A. Vishwanath, Phys. Rev. B 70, 075104 (2004).
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004).

Valence bond solid (VBS) state
with a nearly gapless, emergent “photon”

Critical theory for photons and deconfined spinons:

Sz =
�

d2rdτ

�
|(∂µ−iAµ)zα|2+s|zα|2+u(|zα|2)2+

1
2e2

0

(�µνλ∂νAλ)2
�
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Distribution of VBS 
order Ψvbs at large Q

Circular symmetry is 
evidence for 

emergent U(1) 
photon

A.W. Sandvik, Phys. Rev. Lett. 98, 2272020 (2007).

Re[Ψvbs]

Im[Ψvbs]
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Field theories in d + 1 spacetime dimensions are

characterized by couplings g which obey the renor-

malization group equation

u
dg

du
= β(g)

where u is the energy scale. The RG equation is

local in energy scale, i.e. the RHS does not depend

upon u.
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J. McGreevy, arXiv0909.0518
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Key idea: ⇒ Implement r as an extra dimen-
sion, and map to a local theory in d + 2 spacetime
dimensions.

r
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For a relativistic CFT in d spatial dimensions, the
metric in the holographic space is uniquely fixed
by demanding the following scale transformaion
(i = 1 . . . d)

xi → ζxi , t → ζt , ds → ds

This gives the unique metric

ds2 =
1

r2
�
−dt2 + dr2 + dx2

i

�

Reparametrization invariance in r has been used
to the prefactor of dx2

i equal to 1/r2. This fixes
r → ζr under the scale transformation. This is
the metric of the space AdSd+2.
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AdS/CFT correspondence
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Minkowski
CFTd+1
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AdS4 R2,1

Minkowski
CFT3

AdS/CFT correspondence
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zr

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

��

This emergent spacetime is a solution of Einstein gravity 
with a negative cosmological constant

AdS4 R2,1

Minkowski
CFT3

AdS/CFT correspondence
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AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

There is a family of 
solutions of Einstein 

gravity which 
describe non-zero 

temperatures

r

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

��
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AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

There is a family of 
solutions of Einstein 

gravity which 
describe non-zero 

temperatures

ds2 =

�
L

r

�2 � dr2

f(r)
− f(r)dt2 + dx2 + dy2

�

with f(r) = 1− (r/R)3

r
A 2+1

dimensional
system at its
quantum

critical point:

kBT =
3�
4πR

.
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AdS4-Schwarzschild black-brane

ds2 =

�
L

r

�2 � dr2

f(r)
− f(r)dt2 + dx2 + dy2

�

with f(r) = 1− (r/R)3

r
A 2+1

dimensional
system at its
quantum

critical point:

kBT =
3�
4πR

.

Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system
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Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system

Beckenstein-Hawking 
entropy of black brane 

= entropy of CFT3

AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures

r
A 2+1

dimensional
system at its
quantum

critical point:

kBT =
3�
4πR

.

Monday, May 14, 2012



Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system

Friction of quantum 
criticality = waves 

falling into black brane 

AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures

A 2+1
dimensional
system at its
quantum

critical point:

kBT =
3�
4πR

.
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AdS4 theory of “nearly perfect fluids”

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,

Phys. Rev. D 75, 085020 (2007).

To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4g24
FabF

ab

�
.
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AdS4 theory of “nearly perfect fluids”

This is to be solved subject to the constraint

Aµ(r → ∞, x, y, t) = Aµ(x, y, t)

where Aµ is a source coupling to a conserved U(1) current Jµ of the CFT3

S = SCFT + i

�
dxdydtAµJµ

To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4g24
FabF

ab

�
.

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,

Phys. Rev. D 75, 085020 (2007).
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ω/T

σ

AdS4 theory of electrical transport in a strongly 
interacting CFT3 for T > 0

Conductivity is
independent of ω/T .

1

g24
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ω/T

σ

AdS4 theory of electrical transport in a strongly 
interacting CFT3 for T > 0

Conductivity is
independent of ω/T .

1

g24

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,

Phys. Rev. D 75, 085020 (2007).

Consequence of self-duality of Maxwell theory in 3+1 dimensions
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ω/T

σ

Electrical transport in a free CFT3 for T > 0

Complementary ω-dependent
conductivity in the free theory

∼ Tδ(ω)
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To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.

Improving the AdS4 theory of “nearly perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.

Improving the AdS4 theory of “nearly perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

We include all possible 4-derivative terms: after suitable field
redefinitions, the required theory has only one dimensionless
constant γ (L is the radius of AdS4):

SEM =

�
d4x

√
−g

�
− 1

4g24
FabF

ab +
γL2

g24
CabcdF

abF cd

�
,

where Cabcd is the Weyl curvature tensor.
Stability and causality constraints restrict |γ| < 1/12.

Monday, May 14, 2012



R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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Improving the AdS4 theory of “nearly perfect fluids”

σ(ω)

σ(∞)
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σ
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1.0

1.5

ω

4πT

γ = 0

γ =
1

12

γ = − 1

12 • The γ > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

Improving the AdS4 theory of “nearly perfect fluids”

σ(ω)

σ(∞)
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0.5

1.0

1.5

ω

4πT

γ = 0

γ =
1

12

γ = − 1

12
• The γ < 0 result can be interpreted

as the transport of vortex-like
excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

Improving the AdS4 theory of “nearly perfect fluids”

σ(ω)

σ(∞)
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1.0

1.5

ω

4πT

γ = 0

γ =
1

12

γ = − 1

12

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• The γ = 0 case is the exact result for the large N limit
of SU(N) gauge theory with N = 8 supersymmetry (the
ABJM model). The ω-independence is a consequence of
self-duality under particle-vortex duality (S-duality).

Improving the AdS4 theory of “nearly perfect fluids”

σ(ω)

σ(∞)
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γ =
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γ = − 1
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R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• Stability constraints on the effective
theory (|γ| < 1/12) allow only a lim-
ited ω-dependence in the conductivity

Improving the AdS4 theory of “nearly perfect fluids”

σ(ω)

σ(∞)
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Theory for transport of conserved quantities in CFT3s:

SEM =

�
d4x

√
−g

�
− 1

4g24
FabF

ab +
γL2

g24
CabcdF

abF cd

�
,

where Cabcd is the Weyl curvature tensor.

General approach:

• Theory has 2 free dimensionless parameters: g24 and γ. We match
these to correlators of the CFT3 of interest at ω � T : g24 is determines
the current correlator �JµJν�, while γ determines the 3-point function
�TµνJρJσ�, where Tµν is the stress-energy tensor.

• We determine these ω � T correlators of the CFT3 by other methods
(e.g. vector large N expansion), and so obtain values of g24 and γ.

• We use SEM to extrapolate to transport properties for ω � T . This
step is traditionally carried out by descendants of the Boltzmann
equation.

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

Improving the AdS4 theory of “nearly perfect fluids”
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Transport in graphene at non-zero µ

T. Ando, Y. Zheng and H. Suzuura, J. Phys. Soc. Jpn. 71 (2002) pp. 1318-1324

From the Kubo formula

σ(ω) = 2 (evF )
2 �
i

�

ss�

�
d2k

4π2

f(εs(k))− f(εs�(k))

(εs(k)− εs�(k))(εs(k)− εs�(k) + �ω + iη)

where εs(k) = s�vF |k| and s, s� = ±1 for the valence and conduction bands.
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Transport in graphene at non-zero µ

T. Ando, Y. Zheng and H. Suzuura, J. Phys. Soc. Jpn. 71 (2002) pp. 1318-1324

A is inversely proportional to disorder.

In the clean limit A → ∞, at T = 0

Re[σ(ω)] =
e2

�

�
εF
� δ(ω) +

1

4
θ(|ω| − 2εF )

�

Notice delta function is present even at

T = 0 at non-zero density: this is a generic

consequence of the conservation of mo-

mentum in any clean interacting Fermi

liquid. Only “umklapp” scattering can

broaden this delta function.
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Particles Holes

Momentum

Current

k

εk

k

εk

Current carrying state has non-zero momentum, and collisions 
cannot relax current to zero

Momentum

Current
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Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, 
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).

Undoped graphene
Optical conductivity of graphene
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Holographic representation: AdS4

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

��

A 2+1 
dimensional 

CFT
at T=0
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Holographic representation: AdS4

A 2+1 
dimensional 

CFT
at T=0

ds2 =

�
L

r

�2 � dr2

f(r)
− f(r)dt2 + dx2 + dy2

�

with f(r) = 1
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AdS4 theory of “nearly perfect fluids”
To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4g24
FabF

ab

�
.

This is to be solved subject to the constraint

Aµ(r → ∞, x, y, t) = Aµ(x, y, t)

where Aµ is a source coupling to a conserved U(1) current Jµ
of the CFT3

S = SCFT + i

�
dxdydtAµJµ

At non-zero chemical potential we simply require Aτ = µ.
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+

++

+
+

+
Electric flux

�Q�
�= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)

Er = �Q�
Er = �Q�

r

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

�
− 1

4g24
FabF

ab

�
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+
+

+
Electric flux

�Q�
�= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

Er = �Q�
Er = �Q�

r

ds2 =

�
L

r

�2 � dr2

f(r)
− f(r)dt2 + dx2 + dy2

�

with f(r) =
�
1− r

R

�2
�
1 +

2r

R
+

3r2

R2

�
and R =

√
6Lg4
κµ

, and Aτ = µ
�
1− r

R

�
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+

++

+
+

+
Electric flux

�Q�
�= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

At T = 0, we obtain an extremal black-brane, with
a near-horizon (IR) metric of AdS2 ×R2

ds2 =
L2

6

�
−dt2 + dr2

r2

�
+ dx2 + dy2

r

T. Faulkner, H. Liu, 
J. McGreevy, 
and D. Vegh, 
arXiv:0907.2694
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Compute conductivity using response to a time-dependent
vector potential as a function of ω/T and µ/T

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)

σ(ω) =
e2

�
πρ2

(ε+ P )
δ(ω)

where ρ is the number density,
� is the energy density,
and P is the pressure.
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Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, 
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).

Undoped graphene
Optical conductivity of graphene
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Features of AdS2 X R2

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010).

S.-S. Lee, Phys. Rev. D 79, 086006 (2009);
M. Cubrovic, J. Zaanen, and K. Schalm, Science 325, 439 (2009);

• Has non-zero entropy density at T = 0, and “vol-

ume” law for entanglement entropy.

• Green’s function of a probe fermion (a mesino) can

have a Fermi surface, but self energies are momentum

independent, and the singular behavior is the same

on and off the Fermi surface

• Deficit of order ∼ N2
in the volume enclosed by the

mesino Fermi surfaces: presumably associated with

“hidden Fermi surfaces” of gauge-charged particles

(the quarks).
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Broken rotational symmetry 
in the pseudogap phase of a 
high-Tc superconductor
R. Daou, J. Chang, David LeBoeuf, Olivier Cyr-
Choiniere, Francis Laliberte, Nicolas Doiron-
Leyraud, B. J. Ramshaw, Ruixing Liang, 
D. A. Bonn, W. N. Hardy,  and Louis Taillefer
Nature, 463, 519 (2010).
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Strong anisotropy of 
electronic states between 

x and y directions:
Electronic 

“Ising-nematic” order

STM measurements of Z(r), the energy asymmetry

in density of states in Bi2Sr2CaCu2O8+δ.

M. J. Lawler, K. Fujita,

Jhinhwan Lee,

A. R. Schmidt,

Y. Kohsaka, Chung Koo

Kim, H. Eisaki,

S. Uchida, J. C. Davis,

J. P. Sethna, and

Eun-Ah Kim, Nature

466, 347 (2010)
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Fermi surface with full square lattice symmetry

Quantum criticality of Ising-nematic ordering

x

y
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Spontaneous elongation along x direction:
Ising order parameter φ > 0.

x

y
Quantum criticality of Ising-nematic ordering
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Spontaneous elongation along y direction:
Ising order parameter φ < 0.

Quantum criticality of Ising-nematic ordering
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Ising-nematic order parameter

φ ∼
�

d2k (cos kx − cos ky) c†kσckσ

Measures spontaneous breaking of square lattice

point-group symmetry of underlying Hamiltonian
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Spontaneous elongation along y direction:
Ising order parameter φ < 0.

Quantum criticality of Ising-nematic ordering
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rrc

Pomeranchuk instability as a function of coupling r
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Effective action for Ising order parameter

Sφ =
�

d2rdτ
�
(∂τφ)2 + c2(∇φ)2 + (λ− λc)φ2 + uφ4

�

Quantum criticality of Ising-nematic ordering
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Effective action for Ising order parameter

Sφ =
�

d2rdτ
�
(∂τφ)2 + c2(∇φ)2 + (λ− λc)φ2 + uφ4

�

Effective action for electrons:

Sc =
�

dτ

Nf�

α=1




�

i

c†iα∂τ ciα −
�

i<j

tijc
†
iαciα





≡
Nf�

α=1

�

k

�
dτc†kα (∂τ + εk) ckα

Quantum criticality of Ising-nematic ordering
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�φ� > 0 �φ� < 0

Coupling between Ising order and electrons

Sφc = − γ

�
dτ

Nf�

α=1

�

k,q

φq (cos kx− cos ky)c†k+q/2,αck−q/2,α

for spatially dependent φ

Quantum criticality of Ising-nematic ordering
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• φ fluctuation at wavevector �q couples most efficiently to fermions
near ±�k0.

• Expand fermion kinetic energy at wavevectors about ±�k0 and
boson (φ) kinetic energy about �q = 0.

Quantum criticality of Ising-nematic ordering
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L[ψ±, φ] =

ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

−φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

Quantum criticality of Ising-nematic ordering
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=

• Model of a spin liquid (“Bose metal”): couple fermions to a
dynamical gauge field Aµ.

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ

Monday, May 14, 2012



L[ψ±, φ] =

ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
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�
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M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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Field theory of U(1) spin liquid

L[ψ±, a] =

ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

−a
�
ψ†
+ψ+ − ψ†

−ψ−

�
+

1

2g2
(∂ya)

2

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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L[ψ±, φ] =

ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

−φ
�
ψ†
+ψ+ + ψ†
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�
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M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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(a)

(b)
Landau-damping

L = ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

− φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2

Quantum criticality of Ising-nematic ordering

One loop φ self-energy with Nf fermion flavors:

D(�q, ω) = Nf

�
d2k

4π2

dΩ

2π

1

[−i(Ω + ω) + kx + qx + (ky + qy)2]
�
−iΩ− kx + k2y

�

=
Nf

4π

|ω|
|qy|
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(a)

(b)
Electron self-energy at order 1/Nf :

Σ(�k,Ω) = − 1

Nf

�
d2q

4π2

dω

2π

1

[−i(ω +Ω) + kx + qx + (ky + qy)2]

�
q2y
g2

+
|ω|
|qy|

�

= −i
2√
3Nf

�
g2

4π

�2/3

sgn(Ω)|Ω|2/3

Quantum criticality of Ising-nematic ordering
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In both cases qx ∼ q2y ∼ ω1/z, with z = 3/2. Note that the

bare term ∼ ω in G−1
f is irrelevant.

Strongly-coupled theory without quasiparticles.
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Under the rescaling x → x/s, y → y/s1/2, and τ → τ/sz, we
find invariance provided

a → a s(2z+1)/4

ψ → ψ s(2z+1)/4

g → g s(3−2z)/4

So the action is invariant provided z = 3/2.
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The 1/Nf expansion is not determined
by counting fermion loops, because of in-
frared singularities created by the Fermi
surface. The |ω|2/3/Nf fermion self-energy
leads to additional powers of Nf , and a
breakdown in the loop expansion.
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Computations in the 1/N expansion

Sung-Sik Lee, Physical Review B 80, 165102 (2009)

All planar graphs of ψ+ alone
are as important as the leading

term

ψ+ ψ−

Graph mixing ψ+ and ψ−
isO

�
N3/2

�
(instead ofO (N)),

violating genus expansion

M. A. Metlitski and S. Sachdev,
Phys. Rev. B 82, 075127 (2010)
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S.-S. Lee, Phys. Rev. B 80, 165102 (2009)

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B 82, 045121 (2010)

• There is a sharp Fermi surface defined by the fermion Green’s
function: G−1

f (|k| = kF , ω = 0) = 0.

• Area enclosed by the Fermi surface A = Q, the fermion density

• Critical continuum of excitations near the Fermi surface with
energy ω ∼ |q|z, where q = |k| − kF is the distance from the
Fermi surface and z is the dynamic critical exponent.

Properties of the strange 
metal at the Ising-nematic 

critical point
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Properties of the strange 
metal at the Ising-nematic 

critical point
→| q |←

• Fermion Green’s functionG−1
f = q1−ηF (ω/qz). Three-

loop computation shows η �= 0 and z = 3/2.

• The phase space density of fermions is effectively one-
dimensional, so the entropy density S ∼ T deff/z with
deff = 1.
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B

A

Entanglement entropy

Measure strength of quantum
entanglement of region A with region B.

ρA = TrBρ = density matrix of region A
Entanglement entropy SEE = −Tr (ρA ln ρA)
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Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)

Entanglement entropy of Fermi surfaces
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        Conformal quantum matter

 A. Fermi liquids:graphene

  B. Holography: Reissner - Nördstrom 
                                      solution

  C. Non-Fermi liquids: 
    nematic critical point (and U(1) spin liquids)

  D. Holography: scaling arguments for 
              entropy and entanglement entropy
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L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Consider the metric which transforms under rescaling as

xi → ζ xi

t → ζz t

ds → ζθ/d ds.

This identifies z as the dynamic critical exponent (z = 1 for
“relativistic” quantum critical points).

θ is the violation of hyperscaling exponent.
The most general choice of such a metric is

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

We have used reparametrization invariance in r to choose so
that it scales as r → ζ(d−θ)/dr.
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

r
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r

At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

Under rescaling r → ζ(d−θ)/dr, and the
temperature T ∼ t−1, and so

S ∼ T (d−θ)/z = T deff/z

where θ = d−deff measures “dimension deficit” in
the phase space of low energy degrees of a freedom.
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• The thermal entropy density scales as

S ∼ T (d−θ)/z.

The third law of thermodynamics requires θ < d.

• The entanglement entropy, SE , of an entangling region with
boundary surface ‘area’ Σ scales as

SE ∼






Σ , for θ < d− 1
Σ lnΣ , for θ = d− 1

Σθ/(d−1) , for θ > d− 1

All local quantum field theories obey the “area law” (upto log
violations) and so θ ≤ d− 1.

• The null energy condition implies z ≥ 1 +
θ

d
.

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�
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r
Emergent holographic direction

A

Holographic entanglement entropy

Monday, May 14, 2012



r
Emergent holographic direction

A
Area of 
minimal 

surface equals 
entanglement

entropy

Holographic entanglement entropy

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
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ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

• The thermal entropy density scales as

S ∼ T (d−θ)/z.

The third law of thermodynamics requires θ < d.

• The entanglement entropy, SE , of an entangling region with
boundary surface ‘area’ Σ scales as

SE ∼






Σ , for θ < d− 1
Σ lnΣ , for θ = d− 1

Σθ/(d−1) , for θ > d− 1

All local quantum field theories obey the “area law” (upto log
violations) and so θ ≤ d− 1.

• The null energy condition implies z ≥ 1 +
θ

d
.

AdS2×Rd corresponds to θ = d(1− 1/z) and z → ∞.
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• The value of θ is fixed by requiring that the thermal
entropy density S ∼ T 1/z for general d.
Conjecture: this metric then describes a compressible
state with a hidden Fermi surface of quarks coupled to
gauge fields

• The null energy condition yields the inequality z ≥
1 + θ/d. For d = 2 and θ = 1 this yields z ≥ 3/2. The
field theory analysis gave z = 3/2 to three loops !

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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• The entanglement entropy exhibits logarithmic viola-
tion of the area law only for this value of θ !!

• The logarithmic violation is of the form P lnP , where
P is the perimeter of the entangling region. This form
is independent of the shape of the entangling region,
just as is expected for a (hidden) Fermi surface !!!

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023 

Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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Holographic theory of a non-Fermi liquid (NFL)

Add a relevant “dilaton” field

Electric flux

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).

S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).

N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].

Er = �Q�

Er = �Q�

r

S =

�
dd+2x

√
−g

�
1

2κ2

�
R− 2(∇Φ)2 − V (Φ)

L2

�
− Z(Φ)

4e2
FabF

ab

�

with Z(Φ) = Z0eαΦ, V (Φ) = −V0e−βΦ, as Φ → ∞.
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Electric flux

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).

S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).

N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].
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r

S =
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dd+2x

√
−g

�
1

2κ2

�
R− 2(∇Φ)2 − V (Φ)

L2

�
− Z(Φ)

4e2
FabF

ab

�

with Z(Φ) = Z0eαΦ, V (Φ) = −V0e−βΦ, as Φ → ∞.

This is a “bosonization” of the Fermi surface
Monday, May 14, 2012



Holographic theory of a non-Fermi liquid (NFL)

r

Add a relevant “dilaton” field

Electric flux

Er = �Q�

Er = �Q�

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).

S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).

N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].

Leads to metric ds2 = L2

�
−f(r)dt2 + g(r)dr2 +

dx2 + dy2

r2

�

with f(r) ∼ r−γ , g(r) ∼ rδ, Φ(r) ∼ ln(r) as r → ∞.
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Holographic theory of a non-Fermi liquid (NFL)

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The r → ∞ metric has the above form with

θ =
d2β

α+ (d− 1)β

z = 1 +
θ

d
+

8(d(d− θ) + θ)2

d2(d− θ)α2
.

Note z ≥ 1 + θ/d.
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Holographic theory of a non-Fermi liquid (NFL)

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The solution also specifies the missing numerical prefactors in

the metric. In general, these depend upon the details on the

UV boundary condition as r → 0. However, the coefficient of

dx2
i /r

2
turns out to be independent of the UV boundary condi-

tions, and proportional to Q2θ/(d(d−θ))
.

The square-root of this coefficient is the prefactor of the log

divergence in the entanglement entropy for θ = d− 1.
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ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

• The entanglement entropy has log-violation of the area
law

SE = ΞQ(d−1)/dΣ ln

�
Q(d−1)/dΣ

�
.

where Σ is surface area of the entangling region, and Ξ is
a dimensionless constant which is independent of all UV
details, of Q, and of any property of the entangling region.
Note Q(d−1)/d ∼ kd−1

F via the Luttinger relation, and then
SE is just as expected for a Fermi surface !!!!
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Holographic theory of a non-Fermi liquid (NFL)

Gauss Law and the “attractor” mechanism
⇔ Luttinger theorem on the boundary

Hidden 
Fermi 

surfaces
of “quarks”
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Holographic theory of a fractionalized-Fermi liquid (FL*)

S. Sachdev, Physical Review Letters 105, 151602 (2010)
S. Sachdev, Physical Review D 84, 066009 (2011)

Hidden 
Fermi 

surfaces
of “quarks”

Visible Fermi 
surfaces

of “mesinos”

A state with partial confinement
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• Now the entanglement entropy implies that the Fermi momentum
of the hidden Fermi surface is given by kdF ∼ Q − Qmesino, just as
expected by the extended Luttinger relation. Also the probe fermion
quasiparticles are sharp for θ = d− 1, as expected for a FL* state.

Holographic theory of a fractionalized-Fermi liquid (FL*)

L. Huijse, S. Sachdev, 
B. Swingle, 

Physical Review B 
85, 035121 (2012)

Hidden 
Fermi 

surfaces
of “quarks”

Visible Fermi 
surfaces

of “mesinos”
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• Confining geometry leads to a state which has all the properties
of a Landau Fermi liquid.

Holographic theory of a Fermi liquid (FL)

S. Sachdev, Physical Review D 84, 066009 (2011)

Visible Fermi 
surfaces

of “mesinos”
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Conclusions

Compressible quantum matter

 Evidence for hidden Fermi surfaces in compressible states 
obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.

Monday, May 14, 2012



Conclusions

Compressible quantum matter

 Evidence for hidden Fermi surfaces in compressible states 
obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.

After fixing θ = d−1 to obtain thermal entropy density S ∼ T 1/z, we found

• Log violation of the area law in entanglement entropy, SE .

• Leading-log SE independent of shape of entangling region.

• The d = 2 bound z ≥ 3/2, compared to z = 3/2 in three-loop field
theory.

• Evidence for Luttinger theorem in prefactor of SE .
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Compressible quantum matter

 Evidence for hidden Fermi surfaces in compressible states 
obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.

 Fermi liquid (FL) state described by a confining holographic 
geometry

 Hidden Fermi surfaces can co-exist with Fermi surfaces of 
mesinos, leading to a state with partial confinement: the 
fractionalized Fermi liquid (FL*)
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