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Outline

1. Green’s functions of scalar operators in CFT from AdS

2. Thermodynamics of neutral holographic plasma from
AdS-Schwarzchild black hole

3. Shear viscosity of neutral holographic plasma

4. Fermion response function in AdS Reissner-Nördstrom



Sample calculation 1:

Green’s functions of scalar operators
in CFT from AdS
(in Euclidean spacetime)



Correlation functions of scalar operators from AdS
The solution with fk(z = ε) = 1 (‘the regulated bulk-to-boundary

propagator’), is

f k(z) =
zd/2Kν(kz)

εd/2Kν(kε)
(

∫
dk e ikx fk(ε) = δd(x))

The general position space solution can be obtained by Fourier decomposition:

φ[φ0](x) =

∫
ddke ikx f k(z)φ0(k, ε) .

‘on-shell action’ (i.e. the action evaluated on the saddle-point solution):

S [φ] = −K

2

∫
ddx
√
γφn · ∂φ

= −KLd−1

2

∫
ddkφ0(k, ε)Fε(k)φ0(−k, ε)

Fε(k) = z−d f −k(z)z∂z f k(z)|z=ε + (k ↔ −k)

〈O(k1)O(k2)〉εc = − δ

δφ0(k1)

δ

δφ0(k2)
S = (2π)dδd(k1 + k2)Fε(k1) .



Kν(u) =u−ν(a0 + a1u
2 + a2u

4 + · · · ) (leading term)

+uν ln u(b0 + b1u
2 + b2u

4 + · · · ) (subleading term)

( red logs are only present for ν ∈ ZZ)

Fε(k) = 2ε−d+1∂z

(
(kz)−ν+d/2(a0 + · · · ) + (kz)ν+d/2ln kz(b0 + · · · )
(kε)−ν+d/2(a0 + · · · ) + (kε)ν+d/2ln kε(b0 + · · · )

)
|z=ε

= 2ε−d
[{

d

2
− ν(1 + c2(ε2k2) + c4(ε4k4) + · · · )

}
+

{
ν

2b0

a0
(εk)2ν ln(εk)(1 + d2(εk)2 + · · · )

}]
≡ (I) + (II)

(I): Laurent series in ε with coefficients keven integer

(i.e. analytic in k at k = 0). ≡ contact terms ≡ short distance goo:∫
ddke−ikx(εk)2mε−d = ε2m−d�m

x δ
d(x) (m ∈ ZZ+)

The ε2m−d agrees w/ ε is a UV cutoff for the QFT.



Checking that 〈O(x)O(0)〉 ∼ 1
|x |2∆

The interesting bit of F(k), which gives the x1 6= x2 behavior of the correlator,

is non-analytic in k:

(II) = −2ν · b0

a0
k2ν ln(kε) · ε2ν−d(1 +O(ε2)),

input of Bessel: b0
a0

= (−1)ν−1

22ννΓ(ν)2 for ν ∈ Z

FT of leading term:

∫
ddke−ikx(II) =

2νΓ(∆+)

πd/2Γ(∆+ − d/2)

1

x2∆+
ε2ν−d .

• AdS radius appears only in overall normalization, in the combination KLd−1.

• Multiplicative renormalization removes the ε2ν−d .

• Holographic Renormalization: add to Sbulk the local, intrinsic boundary term

∆S = Sc.t. =
K

2

∫
bdy

ddx
(
−∆−L

d−1ε2∆−−d (φRen
0 (x))2

)
= −∆−

K

2L

∫
∂AdS ,z=ε

√
γ φ2(z , x)

Affect neither bulk EOM nor G2(x1 6= x2), cancels divergences.



Sample calculation 2:

Thermodynamics of neutral
holographic plasma from
AdS-Schwarzchild black hole



Thermodynamics from gravity: boundary terms

ZCFT ≡ e−βF = e−Sbulk[g ]

g is the euclidean saddle-point metric(s).

Sbulk = SEH + SGH + Sct .

SEH = − 1

16πGN

∫
dd+1x

√
g

(
R +

d(d − 1)

L2

)
Two kinds of boundary terms:

def of γ: ds2 z→0
≈ L2 dz

2

z2
+ γµνdx

µdxν .

Sct =

∫
∂M

ddx
√
γ

2(d − 1)

L
+ . . .

local, intrinsic boundary counter-term (no normal derivatives).
just like for scalar correlators. · · · ∝ intrinsic curvature of bdry metric.



Gibbons-Hawking term

SGH : ‘Gibbons-Hawking’ term is an extrinsic boundary term
like

∫
∂AdS

φn · ∂φ for scalar.

IBP in the Einstein-Hilbert term to get the EOM :

δSEH = EOM +

∫
∂AdS

γµνn · ∂δγµν ,

but we want a Dirichlet condition on the metric: δγµν = 0
δSGH cancels the ∂δγµν bits.

SGH = −2

∫
∂M

ddx
√
γΘ

Θ: extrinsic curvature of the boundary

Θ ≡ γµν∇µnν =
nz

2
γµν∂zγµν .

nA is an outward-pointing unit normal to the boundary z = ε.



Stress tensor expectation value

GKPW : 〈Tµν〉 =
2
√
γ

δ

δγµν
Sbulk[g ].

CFT: Tµ
µ = 0 modulo scale anomaly

In thermal eqbm: T t
t = −E , T x

x = P E = d P



Sample calculation 3:

η/s from holography



Example: η/s
Shear viscosity is a transport coefficient like conductivity.
source: T x

y response: T x
y .

η = lim
ω→0

1

iω
GR
T x
y T

x
y

(k = 0, ω)

〈T x
y 〉 = iωηγxy → must study fluctuations of metric

[compute following Iqbal-Liu 08] Assume a bulk metric of the form

ds2 = gtt(z)dt2 + gzz(z)dz2 + gij(z)dx idx j

such that

1. gAB depend only on z

2. asymptotically AdS near z → 0

3. Rindler horizon at z = zH

gtt
z→zH→ −2κ(zH − z) gzz

z→zH→ 1

2κ(zH − z)
.



Shear fluctuations of the metric

Consider S = Sgravity −
1

2

∫
dd+1x

√
g

1

q(z)
gAB∂Aφ∂Bφ

Claim: fluctuations of φ ≡ hxy in Einstein gravity are governed by

this action with 1
q(z) = 1

16πGN
. [lots of work by Son, Starinets, Policastro, Kovtun, Buchel,

J. Liu...]

Recall: 〈O(xµ)〉QFT = lim
z→0

Πφ(z , xµ) (m=0)

=⇒ η = lim
ω→0

lim
z→0

lim
k→0

(
Π(z , kµ)

iωφ(z , kµ)

)
Π ≡ ∂L

∂ (∂zφ)
=

√
g

q(z)
g zz∂zφ.

Compute this in two steps:
I Find behavior near horizon.
I Use wave equation to evolve to boundary.

0 =
δSφ

δφ(kµ, z)
∝ [g ijkikj + g ttω2 − 1

√
g
∂z (g zz√g∂z)]φ(kµ, z)

We can safely set ~k = 0.



Near horizon

Assumption (3) =⇒ z = zH is a regular singular point of the
wave equation.
Try φ(k , z) = (z − zH)α.

φ(k, z) ' (z − zH)±
iω

4πT in/out.

=⇒ At horizon: Π(zH , k) =

[
1

q(z)

√
|g |

gzz |gtt |
iωφ(z , k)

]
z=zH

.



Propagate to boundary

EOM: ∂zΠ ∝ kµkνg
µνφ

ω→0,~k→0→ 0.

def of Π: ∂z(φω) =
q

√
gg zz

ωΠ
ω→0,ωφ fixed→ 0.

=⇒ Π

ωφ
|z=0 =

Π

ωφ
|z=zH ‘membrane paradigm’

=⇒ η =
1

q(zH)

√
|g |

gzz |gtt |
.

Entropy density: s =
a

4GN
=

1

4GN

√
|g |

gzz |gtt |

=⇒ η

s
=

1

4π
.



Sample Calculation 4:

Fermion response function in AdS
Reissner-Nördstrom



Computing GR

Translation invariance in ~x , t =⇒ ODE in r .
Rotation invariance: ki = δ1

i k
Near the boundary, solutions behave as (Γr = −σ3 ⊗ 1)

ψ
r→∞
≈ aαr

m

(
0
1

)
+ bαr

−m
(

1
0

)
Matrix of Green’s functions, has two independent eigenvalues:

Gα(ω,~k) =
bα
aα
, α = 1, 2

To compute GR : solve Dirac equation in BH geometry,
impose infalling boundary conditions at horizon [Son-Starinets, Iqbal-Liu].
Like retarded response, falling into the BH is something that happens.



Dirac equation

Γaea
M

(
∂M +

1

4
ωabMΓab − iqAM

)
ψ −mψ = 0

Φα ≡ (−gg rr )−1/4Πk̂
αψ, ψ = e−iωt+ikix

i
ψω,k ,(

∂r + Mσ3
)

Φα =
(
(−1)αKσ1 + Wiσ2

)
Φα, α = 1, 2

with

M ≡ m
√
grr =

m

r
√
f
, K ≡ k

√
grr
gii

=
k

r2
√
f
, W ≡ u

√
grr
gii

=
u

r2
√
f
.

u ≡

√
−g tt

g ii

(
ω + µq

(
1−

( r0
r

)d−2
))

Eqn depends on q and µ only through µq ≡ µq
→ ω is measured from the effective chemical potential, µq.


