Holography with and without gravity SAMPLE CALCULATIONS

John McGreevy, UCSD

August 2013

Outline

1. Green's functions of scalar operators in CFT from AdS
2. Thermodynamics of neutral holographic plasma from AdS-Schwarzchild black hole
3. Shear viscosity of neutral holographic plasma
4. Fermion response function in AdS Reissner-Nördstrom

Sample calculation 1:
Green's functions of scalar operators in CFT from AdS
(in Euclidean spacetime)

Correlation functions of scalar operators from $A d S$

The solution with $f_{k}(z=\epsilon)=1$ ('the regulated bulk-to-boundary propagator'), is

$$
\underline{f}_{k}(z)=\frac{z^{d / 2} K_{\nu}(k z)}{\epsilon^{d / 2} K_{\nu}(k \epsilon)} \quad\left(\int d k e^{i k x} f_{k}(\epsilon)=\delta^{d}(x)\right)
$$

The general position space solution can be obtained by Fourier decomposition:

$$
\underline{\phi}^{\left[\phi_{0}\right]}(x)=\int d^{d} k e^{i k x} \underline{f}_{k}(z) \phi_{0}(k, \epsilon) .
$$

'on-shell action' (i.e. the action evaluated on the saddle-point solution):

$$
\begin{aligned}
S[\underline{\phi}] & =-\frac{\mathfrak{K}}{2} \int d^{d} x \sqrt{\gamma} \underline{\phi} n \cdot \partial \underline{\phi} \\
& =-\frac{\mathfrak{K} L^{d-1}}{2} \int d^{d} k \phi_{0}(k, \epsilon) \mathcal{F}_{\epsilon}(k) \phi_{0}(-k, \epsilon) \\
\mathcal{F}_{\epsilon}(k) & =\left.z^{-d} \underline{f}_{-k}(z) z \partial_{z} \underline{f}_{k}(z)\right|_{z=\epsilon}+(k \leftrightarrow-k) \\
\left\langle\mathcal{O}\left(k_{1}\right) \mathcal{O}\left(k_{2}\right)\right\rangle_{c}^{\epsilon} & =-\frac{\delta}{\delta \phi_{0}\left(k_{1}\right)} \frac{\delta}{\delta \phi_{0}\left(k_{2}\right)} S=(2 \pi)^{d} \delta^{d}\left(k_{1}+k_{2}\right) \mathcal{F}_{\epsilon}\left(k_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
K_{\nu}(u) & =u^{-\nu}\left(a_{0}+a_{1} u^{2}+a_{2} u^{4}+\cdots\right) & & \text { (leading term) } \\
& +u^{\nu} \ln u\left(b_{0}+b_{1} u^{2}+b_{2} u^{4}+\cdots\right) & & \text { (subleading term) }
\end{aligned}
$$

(red logs are only present for $\nu \in \mathbb{Z}$)

$$
\begin{aligned}
\mathcal{F}_{\epsilon}(k)= & 2 \epsilon^{-d+1} \partial_{z}\left(\frac{(k z)^{-\nu+d / 2}\left(a_{0}+\cdots\right)+(k z)^{\nu+d / 2} \ln k z\left(b_{0}+\cdots\right)}{(k \epsilon)^{-\nu+d / 2}\left(a_{0}+\cdots\right)+(k \epsilon)^{\nu+d / 2} \ln k \epsilon\left(b_{0}+\cdots\right)}\right. \\
= & 2 \epsilon^{-d}\left[\left\{\frac{d}{2}-\nu\left(1+c_{2}\left(\epsilon^{2} k^{2}\right)+c_{4}\left(\epsilon^{4} k^{4}\right)+\cdots\right)\right\}\right. \\
& \left.\quad+\left\{\nu \frac{2 b_{0}}{a_{0}}(\epsilon k)^{2 \nu} \ln (\epsilon k)\left(1+d_{2}(\epsilon k)^{2}+\cdots\right)\right\}\right] \\
\equiv & (\mathrm{I})+(\mathrm{II})
\end{aligned}
$$

(I): Laurent series in ϵ with coefficients $k^{\text {even integer }}$
(i.e. analytic in k at $k=0$). \equiv contact terms \equiv short distance goo:

$$
\int d^{d} k e^{-i k x}(\epsilon k)^{2 m} \epsilon^{-d}=\epsilon^{2 m-d} \square_{x}^{m} \delta^{d}(x) \quad\left(m \in \mathbb{Z}_{+}\right)
$$

The $\epsilon^{2 m-d}$ agrees w / ϵ is a UV cutoff for the QFT.

Checking that $\langle\mathcal{O}(x) \mathcal{O}(0)\rangle \sim \frac{1}{|x|^{2 \Delta}}$

The interesting bit of $\mathcal{F}(k)$, which gives the $x_{1} \neq x_{2}$ behavior of the correlator, is non-analytic in k :

$$
(\mathrm{II})=-2 \nu \cdot \frac{b_{0}}{a_{0}} k^{2 \nu} \ln (k \epsilon) \cdot \epsilon^{2 \nu-d}\left(1+\mathcal{O}\left(\epsilon^{2}\right)\right)
$$

input of Bessel: $\quad \frac{b_{0}}{a_{0}}=\frac{(-1)^{\nu-1}}{2^{2 \nu} \nu \Gamma(\nu)^{2}}$ for $\nu \in \mathbb{Z}$
FT of leading term: $\int d^{d} k e^{-i k x}(\mathrm{II})=\frac{2 \nu \Gamma\left(\Delta_{+}\right)}{\pi^{d / 2} \Gamma\left(\Delta_{+}-d / 2\right)} \frac{1}{x^{2 \Delta_{+}}} \epsilon^{2 \nu-d}$.

- AdS radius appears only in overall normalization, in the combination $\mathfrak{K} L^{d-1}$.
- Multiplicative renormalization removes the $\epsilon^{2 \nu-d}$.
- Holographic Renormalization: add to $S_{\text {bulk }}$ the local, intrinsic boundary term

$$
\begin{aligned}
\Delta S=S_{\text {c.t. }} & =\frac{\mathfrak{K}}{2} \int_{\text {bdy }} d^{d} x\left(-\Delta_{-} L^{d-1} \epsilon^{2 \Delta_{-}-d}\left(\phi_{0}^{\mathrm{Ren}}(x)\right)^{2}\right) \\
& =-\Delta_{-} \frac{\mathfrak{K}}{2 L} \int_{\partial A d S, z=\epsilon} \sqrt{\gamma} \phi^{2}(z, x)
\end{aligned}
$$

Affect neither bulk EOM nor $G_{2}\left(x_{1} \neq x_{2}\right)$, cancels divergences.

Sample calculation 2:
Thermodynamics of neutral holographic plasma from AdS-Schwarzchild black hole

Thermodynamics from gravity: boundary terms

$$
Z_{C F T} \equiv e^{-\beta F}=e^{-S_{\text {bulk }}[g]}
$$

\underline{g} is the euclidean saddle-point metric(s).

$$
\begin{gathered}
S_{\text {bulk }}=S_{E H}+S_{G H}+S_{c t} \\
S_{E H}=-\frac{1}{16 \pi G_{N}} \int d^{d+1} x \sqrt{g}\left(R+\frac{d(d-1)}{L^{2}}\right)
\end{gathered}
$$

Two kinds of boundary terms:

$$
\begin{gathered}
\text { def of } \gamma: \quad d s^{2} \stackrel{z \rightarrow 0}{\approx} L^{2} \frac{d z^{2}}{z^{2}}+\gamma_{\mu \nu} d x^{\mu} d x^{\nu} \\
S_{c t}=\int_{\partial M} d^{d} x \sqrt{\gamma} \frac{2(d-1)}{L}+\ldots
\end{gathered}
$$

local, intrinsic boundary counter-term (no normal derivatives). just like for scalar correlators. $\cdots \propto$ intrinsic curvature of bdry metric.

Gibbons-Hawking term

$S_{G H}$: 'Gibbons-Hawking' term is an extrinsic boundary term like $\int_{\partial A d S} \phi n \cdot \partial \phi$ for scalar.
IBP in the Einstein-Hilbert term to get the EOM :

$$
\delta S_{E H}=E O M+\int_{\partial A d S} \gamma^{\mu \nu} n \cdot \partial \delta \gamma_{\mu \nu}
$$

but we want a Dirichlet condition on the metric: $\delta \gamma_{\mu \nu}=0$ $\delta S_{G H}$ cancels the $\partial \delta \gamma_{\mu \nu}$ bits.

$$
S_{G H}=-2 \int_{\partial M} d^{d} x \sqrt{\gamma} \Theta
$$

Θ : extrinsic curvature of the boundary

$$
\Theta \equiv \gamma^{\mu \nu} \nabla_{\mu} n_{\nu}=\frac{n^{z}}{2} \gamma^{\mu \nu} \partial_{z} \gamma_{\mu \nu}
$$

n^{A} is an outward-pointing unit normal to the boundary $z=\epsilon$.

Stress tensor expectation value

$$
\text { GKPW : } \quad\left\langle T^{\mu \nu}\right\rangle=\frac{2}{\sqrt{\gamma}} \frac{\delta}{\delta \gamma_{\mu \nu}} S_{\text {bulk }}[\underline{g}] .
$$

CFT: $T_{\mu}^{\mu}=0$ modulo scale anomaly
In thermal eqbm: $T_{t}^{t}=-\mathcal{E}, \quad T_{x}^{x}=P \quad \mathcal{E}=d P$

Sample calculation 3: η / s from holography

Example: η / s

Shear viscosity is a transport coefficient like conductivity.
source: T_{y}^{x} response: T_{y}^{x}.

$$
\eta=\lim _{\omega \rightarrow 0} \frac{1}{i \omega} G_{T_{y}^{x} T_{y}^{x}}^{R}(k=0, \omega)
$$

$\left\langle T_{y}^{x}\right\rangle=i \omega \eta \gamma_{y}^{x} \quad \rightarrow \quad$ must study fluctuations of metric
[compute following lqbal-Liu 08] Assume a bulk metric of the form

$$
d s^{2}=g_{t t}(z) d t^{2}+g_{z z}(z) d z^{2}+g_{i j}(z) d x^{i} d x^{j}
$$

such that

1. $g_{A B}$ depend only on z
2. asymptotically $A d S$ near $z \rightarrow 0$
3. Rindler horizon at $z=z_{H}$

$$
g_{t t} \xrightarrow{z \rightarrow z_{H}}-2 \kappa\left(z_{H}-z\right) \quad g_{z z} \xrightarrow{z \rightarrow z_{H}} \frac{1}{2 \kappa\left(z_{H}-z\right)} .
$$

Shear fluctuations of the metric

Consider $\quad S=S_{\text {gravity }}-\frac{1}{2} \int d^{d+1} \times \sqrt{g} \frac{1}{q(z)} g^{A B} \partial_{A} \phi \partial_{B} \phi$
Claim: fluctuations of $\phi \equiv h_{y}^{x}$ in Einstein gravity are governed by this action with $\frac{1}{q(z)}=\frac{1}{16 \pi G_{N}}$. [lots of work by Son, Starinets, Policastro, Kovtun, Buchel,
J. Liu..]

$$
\begin{aligned}
\text { Recall: } & \left\langle\mathcal{O}\left(x^{\mu}\right)\right\rangle_{Q F T}=\lim _{z \rightarrow 0} \Pi_{\phi}\left(z, x^{\mu}\right) \quad(\mathrm{m}=0) \\
\Longrightarrow \quad & \eta=\lim _{\omega \rightarrow 0} \lim _{z \rightarrow 0} \lim _{k \rightarrow 0}\left(\frac{\Pi\left(z, k_{\mu}\right)}{i \omega \phi\left(z, k_{\mu}\right)}\right) \\
& \Pi \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{z} \phi\right)}=\frac{\sqrt{g}}{q(z)} g^{z z} \partial_{z} \phi
\end{aligned}
$$

Compute this in two steps:

- Find behavior near horizon.
- Use wave equation to evolve to boundary.

$$
0=\frac{\delta S_{\phi}}{\delta \phi\left(k^{\mu}, z\right)} \propto\left[g^{i j} k_{i} k_{j}+g^{t t} \omega^{2}-\frac{1}{\sqrt{g}} \partial_{z}\left(g^{z z} \sqrt{g} \partial_{z}\right)\right] \phi\left(k^{\mu}, z\right)
$$

We can safely set $\vec{k}=0$.

Near horizon

Assumption (3) $\Longrightarrow z=z_{H}$ is a regular singular point of the wave equation.
Try $\phi(k, z)=\left(z-z_{H}\right)^{\alpha}$.

$$
\phi(k, z) \simeq\left(z-z_{H}\right)^{ \pm \frac{i \omega}{4 \pi T}} \quad \text { in/out. }
$$

\Longrightarrow At horizon: $\quad \Pi\left(z_{H}, k\right)=\left[\frac{1}{q(z)} \sqrt{\frac{|g|}{g_{z z}\left|g_{t t}\right|}} i \omega \phi(z, k)\right]_{z=z_{H}}$.

Propagate to boundary

EOM: $\quad \partial_{z} \Pi \propto k_{\mu} k_{\nu} g^{\mu \nu} \phi \xrightarrow{\omega \rightarrow 0, \vec{k} \rightarrow 0} 0$.
def of $\Pi: \quad \partial_{z}(\phi \omega)=\frac{q}{\sqrt{g} g^{z z}} \omega \Pi^{\omega \rightarrow 0, \omega \phi \text { fixed }} 0$.

$$
\left.\Longrightarrow \quad \frac{\Pi}{\omega \phi}\right|_{z=0}=\left.\frac{\Pi}{\omega \phi}\right|_{z=z_{H}} \quad \text { 'membrane paradigm' }
$$

$$
\Longrightarrow \quad \eta=\frac{1}{q\left(z_{H}\right)} \sqrt{\frac{|g|}{g_{z z}\left|g_{t t}\right|}}
$$

Entropy density: $\quad s=\frac{a}{4 G_{N}}=\frac{1}{4 G_{N}} \sqrt{\frac{|g|}{g_{z z}\left|g_{t t}\right|}}$

$$
\Longrightarrow \quad \frac{\eta}{s}=\frac{1}{4 \pi} \text {. }
$$

Sample Calculation 4: Fermion response function in AdS Reissner-Nördstrom

Computing G_{R}

Translation invariance in $\vec{x}, t \Longrightarrow$ ODE in r.
Rotation invariance: $k_{i}=\delta_{i}^{1} k$
Near the boundary, solutions behave as $\quad\left(\Gamma^{r}=-\sigma^{3} \otimes 1\right)$

$$
\psi^{r \rightarrow \infty}{ }_{\sim}^{\approx} a_{\alpha} r^{m}\binom{0}{1}+b_{\alpha} r^{-m}\binom{1}{0}
$$

Matrix of Green's functions, has two independent eigenvalues:

$$
G_{\alpha}(\omega, \vec{k})=\frac{b_{\alpha}}{a_{\alpha}}, \quad \alpha=1,2
$$

To compute G_{R} : solve Dirac equation in BH geometry, impose infalling boundary conditions at horizon [Son-Starinets, Iqbal-Liu]. Like retarded response, falling into the BH is something that happens.

Dirac equation

$$
\begin{gathered}
\Gamma^{a} e_{a}^{M}\left(\partial_{M}+\frac{1}{4} \omega_{a b M} \Gamma^{a b}-i q A_{M}\right) \psi-m \psi=0 \\
\Phi_{\alpha} \equiv\left(-g g^{r r}\right)^{-1 / 4} \Pi_{\alpha}^{\hat{k}} \psi, \quad \psi=e^{-i \omega t+i k_{i} x^{i}} \psi_{\omega, k} \\
\left(\partial_{r}+M \sigma^{3}\right) \Phi_{\alpha}=\left((-1)^{\alpha} K \sigma^{1}+W i \sigma^{2}\right) \Phi_{\alpha}, \quad \alpha=1,2
\end{gathered}
$$

with

$$
\begin{aligned}
& M \equiv m \sqrt{g_{r r}}=\frac{m}{r \sqrt{f}}, \quad K \equiv k \sqrt{\frac{g_{r r}}{g_{i i}}}=\frac{k}{r^{2} \sqrt{f}}, \quad W \equiv u \sqrt{\frac{g_{r r}}{g_{i i}}}=\frac{u}{r^{2} \sqrt{f}} . \\
& u \equiv \sqrt{\frac{-g^{t t}}{g^{g i}}}\left(\omega+\mu_{q}\left(1-\left(\frac{r_{0}}{r}\right)^{d-2}\right)\right)
\end{aligned}
$$

Eqn depends on q and μ only through $\mu_{q} \equiv \mu q$
$\rightarrow \omega$ is measured from the effective chemical potential, μ_{q}.

