Holography with and without gravity SAMPLE CALCULATIONS

John McGreevy, UCSD

August 2013

Outline

- 1. Green's functions of scalar operators in CFT from AdS
- 2. Thermodynamics of neutral holographic plasma from AdS-Schwarzchild black hole
- 3. Shear viscosity of neutral holographic plasma
- 4. Fermion response function in AdS Reissner-Nördstrom

Sample calculation 1: Green's functions of scalar operators in CFT from AdS

(in Euclidean spacetime)

Correlation functions of scalar operators from AdS

The solution with $f_k(z=\epsilon)=1$ ('the regulated bulk-to-boundary propagator'), is

$$\underline{f}_{k}(z) = \frac{z^{d/2} \mathcal{K}_{\nu}(kz)}{\epsilon^{d/2} \mathcal{K}_{\nu}(k\epsilon)} \qquad (\int dk \ e^{ikx} f_{k}(\epsilon) = \delta^{d}(x))$$

The general position space solution can be obtained by Fourier decomposition:

$$\underline{\phi}^{[\phi_0]}(x) = \int d^d k e^{ikx} \underline{f}_k(z) \phi_0(k,\epsilon) \; .$$

'on-shell action' (i.e. the action evaluated on the saddle-point solution):

$$S[\underline{\phi}] = -\frac{\Re}{2} \int d^d x \sqrt{\gamma} \underline{\phi} \mathbf{n} \cdot \partial \underline{\phi}$$
$$= -\frac{\Re L^{d-1}}{2} \int d^d k \phi_0(k, \epsilon) \mathcal{F}_{\epsilon}(k) \phi_0(-k, \epsilon)$$
$$\mathcal{F}_{\epsilon}(k) = z^{-d} \underline{f}_{-k}(z) z \partial_z \underline{f}_k(z)|_{z=\epsilon} + (k \leftrightarrow -k)$$

$$\langle \mathcal{O}(k_1)\mathcal{O}(k_2)
angle_c^\epsilon = -rac{\delta}{\delta\phi_0(k_1)}rac{\delta}{\delta\phi_0(k_2)}S = (2\pi)^d\delta^d(k_1+k_2)\mathcal{F}_\epsilon(k_1)\;.$$

$$\begin{split} \mathcal{K}_{\nu}(u) = & u^{-\nu} (a_0 + a_1 u^2 + a_2 u^4 + \cdots) & \text{(leading term)} \\ & + u^{\nu} \ln u (b_0 + b_1 u^2 + b_2 u^4 + \cdots) & \text{(subleading term)} \end{split}$$

(red logs are only present for $u \in {
m Z}$)

$$\begin{aligned} \mathcal{F}_{\epsilon}(k) &= 2\epsilon^{-d+1}\partial_{z} \left(\frac{(kz)^{-\nu+d/2}(a_{0}+\cdots)+(kz)^{\nu+d/2}\ln kz(b_{0}+\cdots)}{(k\epsilon)^{-\nu+d/2}(a_{0}+\cdots)+(k\epsilon)^{\nu+d/2}\ln k\epsilon(b_{0}+\cdots)} \right. \\ &= 2\epsilon^{-d} \left[\left\{ \frac{d}{2} - \nu(1+c_{2}(\epsilon^{2}k^{2})+c_{4}(\epsilon^{4}k^{4})+\cdots) \right\} \right. \\ &+ \left\{ \nu \frac{2b_{0}}{a_{0}}(\epsilon k)^{2\nu}\ln(\epsilon k)(1+d_{2}(\epsilon k)^{2}+\cdots) \right\} \right] \\ &\equiv (\mathrm{I}) + (\mathrm{II}) \end{aligned}$$

(I): Laurent series in ϵ with coefficients $k^{\text{even integer}}$ (*i.e.* analytic in k at k = 0). \equiv contact terms \equiv short distance goo: $\int d^d k e^{-ikx} (\epsilon k)^{2m} \epsilon^{-d} = \epsilon^{2m-d} \Box_x^m \delta^d(x) \qquad (m \in \mathbb{Z}_+)$ The ϵ^{2m-d} agrees w/ ϵ is a UV cutoff for the QFT. Checking that $\langle \mathcal{O}(x)\mathcal{O}(0)\rangle \sim \frac{1}{|x|^{2\Delta}}$

The interesting bit of $\mathcal{F}(k)$, which gives the $x_1 \neq x_2$ behavior of the correlator, is non-analytic in k:

(II) =
$$-2\nu \cdot \frac{b_0}{a_0} k^{2\nu} \ln(k\epsilon) \cdot \epsilon^{2\nu-d} (1 + \mathcal{O}(\epsilon^2)),$$

input of Bessel: $\frac{b_0}{a_0} = \frac{(-1)^{\nu-1}}{2^{2\nu}\nu\Gamma(\nu)^2}$ for $\nu \in \mathbb{Z}$

FT of leading term:
$$\int d^d k e^{-ikx} (\mathrm{II}) = \frac{2\nu\Gamma(\Delta_+)}{\pi^{d/2}\Gamma(\Delta_+ - d/2)} \frac{1}{x^{2\Delta_+}} \epsilon^{2\nu-d}$$

- AdS radius appears only in overall normalization, in the combination $\Re L^{d-1}$.
- Multiplicative renormalization removes the $e^{2\nu-d}$.
- Holographic Renormalization: add to S_{bulk} the local, intrinsic boundary term

$$\begin{split} \Delta S &= S_{\text{c.t.}} &= \frac{\Re}{2} \int_{\text{bdy}} d^d x \left(-\Delta_- L^{d-1} \epsilon^{2\Delta_- - d} \left(\phi_0^{\text{Ren}}(x) \right)^2 \right) \\ &= -\Delta_- \frac{\Re}{2L} \int_{\partial AdS, z=\epsilon} \sqrt{\gamma} \, \phi^2(z, x) \end{split}$$

Affect neither bulk EOM nor $G_2(x_1 \neq x_2)$, cancels divergences.

Sample calculation 2: Thermodynamics of neutral holographic plasma from AdS-Schwarzchild black hole Thermodynamics from gravity: boundary terms

$$Z_{CFT} \equiv e^{-\beta F} = e^{-S_{\text{bulk}}[\underline{g}]}$$

 \underline{g} is the euclidean saddle-point metric(s).

$$S_{
m bulk} = S_{EH} + S_{GH} + S_{ct}$$
 . $S_{EH} = -rac{1}{16\pi G_N} \int d^{d+1}x \sqrt{g} \left(R + rac{d(d-1)}{L^2}
ight)$

Two kinds of boundary terms:

def of
$$\gamma$$
: $ds^2 \stackrel{z \to 0}{\approx} L^2 \frac{dz^2}{z^2} + \gamma_{\mu\nu} dx^{\mu} dx^{\nu}$
 $S_{ct} = \int_{\partial M} d^d x \sqrt{\gamma} \frac{2(d-1)}{L} + \dots$

local, *intrinsic* boundary counter-term (no normal derivatives). just like for scalar correlators. $\cdots \propto$ intrinsic curvature of bdry metric.

Gibbons-Hawking term

 S_{GH} : 'Gibbons-Hawking' term is an *extrinsic* boundary term like $\int_{\partial AdS} \phi n \cdot \partial \phi$ for scalar.

IBP in the Einstein-Hilbert term to get the EOM :

$$\delta S_{EH} = EOM + \int_{\partial AdS} \gamma^{\mu\nu} \mathbf{n} \cdot \partial \delta \gamma_{\mu\nu},$$

but we want a Dirichlet condition on the metric: $\delta \gamma_{\mu\nu} = 0$ δS_{GH} cancels the $\partial \delta \gamma_{\mu\nu}$ bits.

$$S_{GH}=-2\int_{\partial M}d^dx\sqrt{\gamma}\Theta$$

 Θ : extrinsic curvature of the boundary

$$\Theta \equiv \gamma^{\mu\nu} \nabla_{\mu} n_{\nu} = \frac{n^{z}}{2} \gamma^{\mu\nu} \partial_{z} \gamma_{\mu\nu}.$$

 n^A is an outward-pointing unit normal to the boundary $z = \epsilon$.

Stress tensor expectation value

GKPW :
$$\langle T^{\mu\nu} \rangle = \frac{2}{\sqrt{\gamma}} \frac{\delta}{\delta \gamma_{\mu\nu}} S_{\text{bulk}}[\underline{g}].$$

CFT: $T^{\mu}_{\mu} = 0$ modulo scale anomaly

In thermal eqbm: $T_t^t = -\mathcal{E}, \quad T_x^x = P \qquad \qquad \mathcal{E} = d P$

Sample calculation 3: η/s from holography

Example: η/s

Shear viscosity is a transport coefficient like conductivity. source: T_y^x response: T_y^x .

$$\eta = \lim_{\omega \to 0} \frac{1}{i\omega} G^R_{T_y^{\times} T_y^{\times}}(k = 0, \omega)$$

 $\langle T_y^{\mathsf{x}} \rangle = i \omega \eta \gamma_y^{\mathsf{x}} \longrightarrow \text{must study fluctuations of metric}$ [compute following lgbal-Liu 08] Assume a bulk metric of the form

$$ds^2 = g_{tt}(z)dt^2 + g_{zz}(z)dz^2 + g_{ij}(z)dx^i dx^j$$

such that

- 1. g_{AB} depend only on z
- 2. asymptotically AdS near $z \rightarrow 0$
- 3. Rindler horizon at $z = z_H$

$$g_{tt} \stackrel{z \to z_H}{\to} -2\kappa(z_H - z) \qquad g_{zz} \stackrel{z \to z_H}{\to} \frac{1}{2\kappa(z_H - z)}$$

Shear fluctuations of the metric

Consider
$$S = S_{\text{gravity}} - \frac{1}{2} \int d^{d+1}x \sqrt{g} \frac{1}{q(z)} g^{AB} \partial_A \phi \partial_B \phi$$

Claim: fluctuations of $\phi \equiv h_y^{\times}$ in Einstein gravity are governed by this action with $\frac{1}{q(z)} = \frac{1}{16\pi G_N}$. [lots of work by Son, Starinets, Policastro, Kovtun, Buchel, J. Liu...]

Recall:
$$\langle \mathcal{O}(x^{\mu}) \rangle_{QFT} = \lim_{z \to 0} \Pi_{\phi}(z, x^{\mu}) \quad (m=0)$$

 $\implies \eta = \lim_{\omega \to 0} \lim_{z \to 0} \lim_{k \to 0} \left(\frac{\Pi(z, k_{\mu})}{i\omega\phi(z, k_{\mu})} \right)$
 $\Pi \equiv \frac{\partial \mathcal{L}}{\partial(\partial_{z}\phi)} = \frac{\sqrt{g}}{q(z)} g^{zz} \partial_{z} \phi.$

Compute this in two steps:

- Find behavior near horizon.
- Use wave equation to evolve to boundary.

$$0 = \frac{\delta S_{\phi}}{\delta \phi(k^{\mu}, z)} \propto [g^{ij}k_ik_j + g^{tt}\omega^2 - \frac{1}{\sqrt{g}}\partial_z (g^{zz}\sqrt{g}\partial_z)]\phi(k^{\mu}, z)$$

We can safely set $\vec{k} = 0$.

Near horizon

Assumption (3) $\implies z = z_H$ is a regular singular point of the wave equation. True $f(H, z) = (z - z_H) \alpha$

Try $\phi(k,z) = (z - z_H)^{\alpha}$.

$$\phi(k,z) \simeq (z-z_H)^{\pm \frac{i\omega}{4\pi T}} \qquad \text{in/out.}$$

$$\implies \text{At horizon:} \quad \Pi(z_H, k) = \left[\frac{1}{q(z)}\sqrt{\frac{|g|}{g_{zz}|g_{tt}|}}i\omega\phi(z, k)\right]_{z=z_H}$$

٠

Propagate to boundary

EOM:
$$\partial_z \Pi \propto k_\mu k_\nu g^{\mu\nu} \phi \xrightarrow{\omega \to 0, \vec{k} \to 0} 0.$$

def of Π : $\partial_z (\phi \omega) = \frac{q}{\sqrt{g} g^{zz}} \omega \Pi \xrightarrow{\omega \to 0, \omega \phi \text{ fixed }} 0.$
 $\implies \quad \frac{\Pi}{\omega \phi}|_{z=0} = \frac{\Pi}{\omega \phi}|_{z=z_H} \quad \text{`membrane paradigm'}$
 $\implies \quad \eta = \frac{1}{q(z_H)} \sqrt{\frac{|g|}{g_{zz}|g_{tt}|}} .$
Entropy density: $s = \frac{a}{4G_N} = \frac{1}{4G_N} \sqrt{\frac{|g|}{g_{zz}|g_{tt}|}}$
 $\implies \qquad \left[\frac{\eta}{s} = \frac{1}{4\pi}\right].$

Sample Calculation 4: Fermion response function in AdS Reissner-Nördstrom

Computing G_R

Translation invariance in $\vec{x}, t \implies \text{ODE}$ in r. Rotation invariance: $k_i = \delta_i^1 k$ Near the boundary, solutions behave as $(\Gamma^r = -\sigma^3 \otimes 1)$

$$\psi^{r \to \infty} a_{\alpha} r^{m} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + b_{\alpha} r^{-m} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Matrix of Green's functions, has two independent eigenvalues:

$$G_{lpha}(\omega,ec{k})=rac{b_{lpha}}{a_{lpha}}, \ \ lpha=1,2$$

To compute G_R : solve Dirac equation in BH geometry, impose infalling boundary conditions at horizon [Son-Starinets, Iqbal-Liu]. Like retarded response, falling into the BH is something that *happens*.

Dirac equation

$$\begin{split} & \Gamma^{a} e_{a}^{M} \left(\partial_{M} + \frac{1}{4} \omega_{abM} \Gamma^{ab} - iqA_{M} \right) \psi - m\psi = 0 \\ & \Phi_{\alpha} \equiv (-gg^{rr})^{-1/4} \Pi_{\alpha}^{\hat{k}} \psi, \quad \psi = e^{-i\omega t + ik_{i}x^{i}} \psi_{\omega,k}, \\ & \boxed{\left(\partial_{r} + M\sigma^{3} \right) \Phi_{\alpha} = \left((-1)^{\alpha} K\sigma^{1} + Wi\sigma^{2} \right) \Phi_{\alpha}, \quad \alpha = 1, 2} \end{split}$$

with

$$M \equiv m\sqrt{g_{rr}} = \frac{m}{r\sqrt{f}}, \quad K \equiv k\sqrt{\frac{g_{rr}}{g_{ii}}} = \frac{k}{r^2\sqrt{f}}, \quad W \equiv u\sqrt{\frac{g_{rr}}{g_{ii}}} = \frac{u}{r^2\sqrt{f}}.$$
$$u \equiv \sqrt{\frac{-g^{tt}}{g^{ii}}} \left(\omega + \mu_q \left(1 - \left(\frac{r_0}{r}\right)^{d-2}\right)\right)$$

Eqn depends on q and μ only through $\mu_q \equiv \mu q$ $\rightarrow \omega$ is measured from the effective chemical potential, μ_q .