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Hierarchy of understoodness

systems with a
gap (insulators)

EFT is a
topological field

theory
(tomorrow’s lecture)

systems at critical
points or topological

insulators with

gapless boundary dofs

or

EFT is a CFT

systems with a
Fermi surface
(metals)

??



Outline

1. Introduction: ‘post-particle physics of metal’

2. Limit 1: Holographic fermions with too little back-reaction

3. Limit 2: Holographic fermions with too much back-reaction

4. Limit 3: Quantum electron stars in AdS

5. How (not) to make a gravitating quantum electron star
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Hong Liu, JM, David Vegh, Non-Fermi Liquids from Holography, 0903.2477

Tom Faulkner, HL, JM, DV, Emergent quantum criticality, Fermi surfaces, and

AdS2, 0907.2694
TF, Nabil Iqbal, HL, JM, DV, 1003.1728, 1101.0597 and,

at long last, 1306.6396

Sean Hartnoll, Horizons, holography and condensed matter, 1106.4324

Andrea Allais, JM, S. Josephine Suh, A Quantum Electron Star, 1202.5308

Andrea Allais, JM, ...a Gravitating Quantum Electron Star, 1306.6075



Fermi Liquids

Basic question: What is the effective field theory for a system with a
Fermi surface (FS)?
Lore: must be Landau Fermi liquid [Landau, 50s].
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ε
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Recall :

if we had free fermions, we would fill single-particle

energy levels ε(k) until we ran out of fermions: →
Low-energy excitations:

remove or add electrons near the Fermi surface εF , kF .

Idea [Landau]: The low-energy excitations of the
interacting theory are still weakly-interacting fermionic, charged
‘quasiparticles’.
Elementary excitations are free fermions with some dressing:

in medium−→



The standard description of metals

The metallic states that we understand well are described by
Landau’s Fermi liquid theory.
Landau quasiparticles → poles in single-fermion Green function GR

at k⊥ ≡ |~k| − kF = 0, ω = ω?(k⊥) ∼ 0: GR ∼
Z

ω − vFk⊥ + iΓ
Measurable by ARPES (angle-resolved photoemission):
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Intensity ∝
spectral density :

A(ω, k) ≡ ImGR(ω, k)
k⊥→0→ Zδ(ω − vFk⊥)

Landau quasiparticles are long-lived: width is Γ ∼ ω2
?,

residue Z (overlap with external e−) is finite on Fermi surface.
Reliable calculation of thermodynamics and transport relies on this.



Ubiquity of Landau Fermi liquid

Physical origin of lore:
1. Landau FL successfully describes 3He,
metals studied before ∼ 1980s, ...

2. RG: Landau FL is stable under almost all perturbations.

[Shankar, Polchinski, Benfatto-Gallivotti 92]
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Non-Fermi liquids exist but are mysterious

e.g.: ‘normal’ phase of optimally-doped cuprates: (‘strange metal’)
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among other anomalies: ARPES shows gapless modes at finite k (FS!)

with width Γ(ω?) ∼ ω?, vanishing residue Z
k⊥→0→ 0.

Working defintion of NFL:

Still a sharp Fermi surface
but no long-lived quasiparticles.

T

Most prominent
mystery of the strange metal phase:
e-e scattering: ρ ∼ T 2, e-phonon: ρ ∼ T 5, ...

no known robust effective theory: ρ ∼ T .



Another source of NFL: how do fermi liquids die?

Some systems have both a Fermi liquid phase, and a phase without
a Fermi surface (Mott insulator).
e.g. spin- 1

2
Hubbard model near half-filling:

H =
∑
〈ij〉

t c†i cj + U
∑
i

n↑i n
↓
i

t: kinetic term U: on-site repulsion

Mott insulator Fermi liquid t/U

Mott critical point fig from [Senthil, 0803.4009]

t/U →∞: free electrons, FL.
t/U → 0: each electron picks a site and sits there (Mott insulator).



Critical fermi surfaces

but:
Theorem [Luttinger]: The volume inside the fermi surface is
proportional to the number of electrons, which is conserved.
It can’t just shrink if the number of particles is fixed.

At a continuous transition: “critical fermi surface” [Brinkman-Rice, Senthil]:
Z → 0.
Z = jump in momentum space occupation number at the fermi
momentum n(k) =

∫
dω
π f (ω)ImG (ω, k)

f (ω) ≡ 1
eβω+1

, ω measured from µ.
n(k)

n(k)

n(k)

K

K
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(a)

(b)

(c)

a) FL
b) mott insulator
c) critical fermi surface
∂

(`)
k n(k) =∞ for some `

Z is like an order parameter for the FL phase.



Non-Fermi Liquid from non-Holography
• Luttinger liquid in 1+1 dimensions. X
• loophole in RG argument:
couple a Landau FL perturbatively to a bosonic mode
(e.g.: magnetic photon, slave-boson gauge field, statistical gauge field,

ferromagnetism, SDW, Pomeranchuk order parameter...)

k k − q

q

k

→ nonanalytic behavior in
GR(ω) ∼ 1

vF k⊥+cω2ν at FS:
NFL.

Not strange enough:
These NFLs are not strange metals
in terms of transport.
FL killed by gapless bosons:

small-angle scattering dominates
=⇒ ‘transport lifetime’ 6= ‘single-particle lifetime’

boson dispersion

i.e. in models with Γ(ω?) ∼ ω?, ρ ∼ Tα>1.



A goal for holography

Can we formulate a tractable effective description of the
low-energy physics of a system
with a Fermi surface,
but without long-lived quasiparticles?

Disclaimer about bias: I am defining the problem in terms of
single-particle response.
Definition: Fermi surface ≡ {k | G−1(k , ω) = 0 at ω = 0}

(The kind of function I have in mind is G ∼ 1
cω2ν+|k|−kF

.)

Here G is a two-point correlator of a gauge-invariant fermion operator, like an

electron, effectively.

This will be worthwhile even if the toy model has exotic short-distance physics.

Benefit of holography: 0th-order approx far from weakly-coupled particles.



Finite-density states in holography
To describe low-temperature states of holographic matter
(not a CFT at all scales), we need more ingredients.
Suppose the CFT has a conserved U(1) current.

→ massless gauge field Aµ in bulk.

Wilson-natural starting point: ∆Sbulk = − 1

4g2
F

∫
dd+1x

√
gFABF

AB .

Max eqn : 0 =
δSbulk
δAC

∝ 1
√
g
∂A

(√
ggABgCDFBD

)
Max eqn near AdS bdy: A ∼ A(0)(x) +

(z
L

)d−2
A(1)(x)

At ∼ µ︸︷︷︸
source

+
(z
L

)d−2
ρ︸︷︷︸

response

.

ΠAt =
∂L

∂ (∂zAt)
= Ez = A(1) = ρ.

Conclusion: tr e−β(H−µN) ' e−Sbulk[g ,A,...]|A∼µdt



Minimal ingredients for a holographic Fermi surface

Consider any relativistic CFT with a gravity dual → gµν

a conserved U(1) symmetry proxy for fermion number → Aµ

and a charged fermion proxy for bare electrons → ψ.

∃ many examples. Any d > 1 + 1, focus on d = 2 + 1.



The problem we really want to solve
Wilson tells us to use the following action in the bulk:

Ld+1 =
R+ Λ

GN
− 1

q2
FµνF

µν + ψ̄i ( /D −m)ψ

↑

(with AdS boundary conditions,

and a chemical potential: At ≡ Φ→ µ at the boundary.)

κ2Λ� 1, q � 1 is large N.



Limit 1:
Completely ignore bulk matter fields in constructing the geometry

Ld+1 =
R+ Λ

GN
− 1

q2
F 2 + ψ̄i ( /D −m)ψ

This is correct when GN → 0, q → 0 fixing GN/q.

Then the solution of the bulk EoM with the right boundary conditions is the

extremal charged black hole in AdS (‘Reissner-Nördstrom’):

ds2 = −f (r)dt2 +
dr 2

f (r)
+

r 2

R2

(
dx2 + dy 2

)
,

f (r) =
r 2

R2

(
1 +

Q2

r 3
− M

r 3

)
, Φ = µ

(
1−

( rH
r

))
.

‘Extremal’ means T = 0. f ∼ (r − rH)2 near the horizon.



Extremal black hole in AdS
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horizon
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+
+
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++++

black hole
charged

Near-horizon geometry is AdS2 × Rd−1.

ds2 ∼ −dt
2 + du2

u2
+ d~x2 u ≡ 1

r − rH

The conformal invariance of this metric is emergent.

t → λt, x → λ1/zx with z →∞.

boundary

d+1
AdS

d−1

xRAdS
2

horizon

r−1<<1 r>>1
ω � µ ω � µ

AdS/CFT =⇒ the low-energy physics governed by dual IR CFT.
(There is a lot more to say about this IR fixed point.)



Fermi surfaces
To find FS: look for sharp features in fermion Green functions GR

at finite momentum and small frequency. [S-S Lee]

To compute GR : solve Dirac equation in charged BH geometry.
‘Bulk universality’: results only depend on q,m.

GR(ω, k) ∼ 1

G(k, ω) + k⊥

The location of the Fermi surface is
determined by short-distance physics
(analogous to band structure –

a, b ∈ R from normalizable sol’n of ω = 0 Dirac

equation in full BH)

but the low-frequency scaling behavior near
the FS is universal (determined by near-horizon

region – IR CFT correlator G = c(k)ω2ν).

In hindsight: “semi-holographic” interpretation [FLMV, Polchinski-Faulkner]

quasiparticle decays by interacting with z =∞ IR CFT d.o.f.s dual
to AdS2 × IR2 region.



Death of the quasiparticles

Rewrite spinor equation as
Schrödinger equation (with E = 0)(
−∂2

s + V (r(s))
)

Ψ(z(s)) = 0.

Spinor boundstate at ω = 0 tunnels
into AdS2 region with rate

Γ ∝ e−2
∫
ds
√

V (s) ∼ e2ν lnω = ω2ν

(WKB approx good at small ω)
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Ds = -2lnHÈΩÈL

FT interpretation: quasiparticle decays by interacting with IR CFT.

ν < 1
2 ν = 1

2 ν > 1
2



ν = 1
2 : Marginal Fermi liquid

GR ≈
h1

k⊥ + c̃1ω lnω + c1ω
, c̃1 ∈ R, c1 ∈C

Γ(k)

ω?(k)

k⊥→0→ const, Z ∼ 1

| lnω?|
k⊥→0→ 0.

A well-named phenomenological model of high-Tc cuprates near optimal doping

[Varma et al, 1989].



Charge transport by holographic Fermi surfaces

T

Most prominent mystery →
of strange metal phase: ρDC ∼ T

We can compute the contribution

to the conductivity from the Fermi surface

[Faulkner-Iqbal-Liu-JM-Vegh, 1003.1728 and (finally!) 1306.6396]:

ρFS ∼ T 2ν

Dissipation of current is controlled by

the decay of the fermions into the AdS2 DoFs.

=⇒ single-particle lifetime controls transport.

z = 1

↓

z � 1

marginal Fermi liquid: ν = 1
2 =⇒ ρFS ∼ T .

[Important disclaimer: this is NOT the leading contribution to σDC!]



Drawbacks of this construction

1. The Fermi surface degrees of freedom are a small part (o(N0))

of a large system (o(N2)). (More on this in a moment.)

2. Too much universality! If this charged black hole is inevitable,
how do we see the myriad possible dual states of matter (e.g.
superconductivity...)?

3. The charged black hole
violates the 3rd Law of Thermodynamics (Nernst’s version):
S(T = 0) 6= 0 – it has a groundstate degeneracy.

This is a manifestation of the black hole information paradox:

classical black holes seem to eat quantum information.

Problems 2 and 3 solve each other: degeneracy =⇒ instability.
The charged black hole describes an intermediate-temperature phase.

There are many possible IR endpoints (superconductor, density waves,

things we haven’t thought of...).
The dominant one depends on the operator content of the CFT.



Stability of the groundstate

Charged bosons: In many explicit dual pairs, ∃ charged scalars.
• At small T , they can condense spontaneously breaking the U(1)

symmetry, changing the background [Gubser, Hartnoll-Herzog-Horowitz].

spinor: GR(ω) has poles only in LHP of ω [Faulkner-Liu-JM-Vegh, 0907]

scalar: ∃ poles in UHP 〈O(t)〉 ∼ e iω?t ∝ e+Imω?t

=⇒ growing modes of charged operator: holographic superconductor

+

+ + + + + 

-

++++++++++

AdS4

AdS
2 
! !2

Horizon

Boundary 

++++++++++

r = rh

r

(t, x, y)

Boundary why: black hole spontaneously
emits
charged particles [Starobinsky, Unruh, Hawking].
AdS is like a box: they can’t escape.

Fermi:
negative energy states get filled.
Bose: the created particles then cause
stimulated emission (superradiance).
A holographic superconductor is a “black hole laser”.



Stability of the groundstate, cont’d

0 0.05 0.1 0.15 0.2 0.25 0.3

T
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)

Hole doping x

r ~ T
2

r ~ T + T
2

or

T
FL

?
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r ~ T

r(T)
S-shaped

T*

d-wave SC

r ~ T
n

(1 < n < 2)

A
F
M

upturns

in r(T)

• Many systems
to which we’d like to apply this
also have a superconducting region.

• If the boson’s bulk mass/charge
is big enough, they don’t condense.
[Denef-Hartnoll 09]:
(vs: a weakly-coupled charged boson

at µ 6= 0 will condense.)
Finding such string vacua

is like moduli stabilization.



Idea: make the bulk fermions more important (solves problem 1).

They will back-react on the geometry (solves problems 2 and 3).
[Hartnoll-Polchinski-Silverstein-Tong 09]

Perhaps there is a stable geometry sourced by the fermions.

Problem: it’s hard.

Limit 2:
Very heavy fermions in the bulk



Electron stars

[Hartnoll and collaborators, de Boer-Papadodimas-Verlinde]

Choose q,m to reach a regime where
the bulk fermions can be treated as a

(gravitating) fluid
(Oppenheimer-Volkov aka Thomas-Fermi

approximation).

−→ “electron star”

But:
• In the regime of parameters studied here (large mass)

the dual Green’s function exhibits many Fermi surfaces.
[Hartnoll-Hofman-Vegh, Iqbal-Liu-Mezei 2011]

• Large mass =⇒ lots of backreaction =⇒ kills IR CFT
=⇒ stable quasiparticles at each FS.



Thomas-Fermi electron stars, cont’d

Comment in bitter hindsight:

The motivation for the large-mass limit was to guarantee validity
of the Thomas-Fermi approximation.

The actual regime of validity of this approximation is not clear
(and is larger).

To do better, we need to take into account the wavefunctions of the bulk

fermion states: a quantum electron star.



The Thomas-Fermi approximation can be wrong
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Solid curves: Exact

charge density in AdS

with Φ(z) = µ.

Dashed curves: TF
approximation.

µlocal(z) = Φ√
gtt

= µz .

For m ∼ 1, TF gives

wrong UV physics

(z → 0).

Notice: the approximation breaks down in the region of large
warping (near the Poincaré horizon).



A (warmup) quantum electron star

Limit 3:

Find back-reaction of fermions on the gauge field, but ignore gravitational

back-reaction of both fermions and gauge fields.

Ld+1 =
R+ Λ

GN
− 1

q2
F 2 + ψ̄i ( /D −m)ψ

Probe limit: GN → 0 [like HHH 0803]

QFT Interpretation: most CFT dofs are neutral. (c ∼ L2

GN︸ ︷︷ ︸
∝〈TT〉

� 1
q2 ∝ 〈jj〉)

A solution of QED in AdS [A. Allais, JM, S. J. Suh 12].



Towards a quantum electron star

ψ
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[Sachdev, 2011]: A holographic model of a
Fermi liquid.

Like AdS/QCD: a toy model of the
groundstate of a confining gauge
theory from a hard cutoff in AdS.

Add chemical potential.

Compute spectrum of Dirac field,
solve for backreaction on Aµ.
Repeat as necessary. (Hartree-Fock)

The system in the bulk is a Fermi liquid

(in a box determined by the dual gauge

dynamics).



Towards a quantum electron star

ψ

1 2 3 4
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[Sachdev, 2011]: A holographic model of a
Fermi liquid.

Like AdS/QCD: a toy model of the
groundstate of a confining gauge
theory from a hard cutoff in AdS.

Add chemical potential.

Compute spectrum of Dirac field,
solve for backreaction on Aµ.
Repeat as necessary. (Hartree-Fock)

The system in the bulk is a Fermi liquid

(in a box determined by the dual gauge

dynamics).



Towards a fermion-driven deconfinement transition

Lots of low-E charged dofs
screen gauge interactions.

�
Effect of fermions on the
gauge dynamics =
gravitational backreaction.

A real holographic model of
confinement: AdS soliton

first attempt: →

η

ψ

What’s the endpoint of this transition?



A quantum electron star in AdS

Zeroth-order problem: what can the state of the bulk fermions be if the

geometry has a horizon?

Probe limit (GN → 0):
Fix the geometry to be AdS

with an IR cutoff.

/DΦψ = 0

Φ′′ = −q2ρ

ψ =: (−gg zz)−
1
4 e−iωt+ikix

i
χ

Normalizable BCs at z = 0,

hard-wall BC at z = zm(
Φ(z) + k ∂

∂z −
m
z

− ∂
∂z −

m
z Φ(z)− k

)
χn = ωnχn

Φ′′(z) = −q2 (ρ(z)− ρ(z)|Φ=0) ,

ρ(z) ≡
∑

n,ωn<0

ψ2
n(z)



A quantum electron star in AdS
The limit zm →∞ exists! :
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the AdS gravitational well.
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The padded room

Compute charge density:

〈n(z)〉 = 〈ψ†(z)ψ(z)〉 =
∑
k

nk(z) ∼
∫ Λ

d2k
1

k2
Φ′′(z) + finite

Cutoffs everywhere: UV cutoff on AdS radial coordinate, bulk UV cutoff

(lattice), UV cutoff on k integral, IR cutoff on AdS radial coordinate: zm.

Charge renormalization.
Define charge susceptibility by linear

response:

χ ≡
∑
k

χ(k), χ(k) =
∆ρk(z?)

Φ′′(z?)

q2
R = q2

0

1

1− q2
0χ

�



Physics check

Chiral anomaly.
Each k mode is a D = 1 + 1 fermion field Sk =

∫
drdt iψ̄k

(
/D + m + iγ5k

)
ψk

?
=⇒ ∂rnk → 0 when m, k → 0.

Not so in numerics:

∂µj
µ
5 =

1

2π
εµνF

µν = − 1

π
Φ′ X



Semi-holographic interpretation

In retrospect, the dual system can be regarded as

a Fermi Surface coupled to relativistic CFT (with gravity dual)

Φ(z) : how much of the chemical potential is seen by the dofs of
wavelength ∼ z .
Convergence of EOM requires Φ(∞) = 0, complete screening in far IR.

Φ(∞) = 0 means FS survives this
coupling to CFT:
FS at {ω = 0, |~k | = kF 6= 0} is
outside IR lightcone {|ω| ≥ |~k|}.
Interaction is kinematically forbidden.
[Landau: minimum damping velocity in SF;

Gubser-Yarom; Faulkner et al 0911]

In probe limit, quasiparticles survive.

With “Landau damping,” IR speed of light

smaller, maybe not.
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Electron stars minus zero/no limit
[Andrea Allais, JM, 1306.6075]



Towards gravitating quantum electron stars

When we include gravitational backreaction
(dual to effects of FS on gauge theory dynamics)

the IR geometry can be different from the
UV AdS.

Optimism: happy medium between

AdS2 (no fermions)

and
classical electron star (heavy fermions).



How to construct a gravitating quantum electron star

[Andrea Allais, JM 1306.6075]

Covariant IR regulator: spatial sections are S2s of radius R.
Other virtue: unambiguous IR boundary conditions.

ds2 =
1

β2(z)

[
−dt2 + dz2 + α2(z)dΩ2

2

]
, A = Φ(z)dt .

UV: β(z)
z→0∼ z/L IR: α(z)

z→zm∼ (z − zm) .

Radius of the CFT’s S2 is R = α(0) .
Increase zm to increase R = α(0).

Physics depends on µR. WLOG µ = 1.



Brief comments on methods
[Andrea Allais, JM 1306.6075]

Again, two steps:

10 Given geometry, find sources

20 Given sources, find geometry

30 GOTO 10

• The Dirac Hamiltonian with this ansatz is compact and
Hermitian: discrete spectrum.

• Adapted spectral methods were required to diagonalize it
efficiently.

• The renormalization of the bulk stress tensor is much harder
than the charge density. 〈T 〉 ∼ a

s4 + b
s2 + c ln s + finite.

• Covariant regulators (heat kernel, zeta function, Pauli-Villars) are not
feasible numerically.

• We had to resort to a point-splitting regulator and adiabatic
subtraction [Birrell-Davies].

• Any deviation from the true and righteous path was fatal.



Construction of stress tensor
Point split:

Jµ0 (x) = 〈ψ̄(x ′)γµψ(x)〉
Tµν

0 (x) = 〈ψ̄(x ′)γ(µiDν)ψ(x)〉 .

x ′ is a point along a geodesic from x a distance s in the direction tµ.

Tµν
0 (x) = − 1

π2s4
(gµν − 4tµtν) + ...︸ ︷︷ ︸

local, divergent, geometric

+ Tµν
finite(t)︸ ︷︷ ︸

nonlocal, finite, cutoff-dependent

+O(s2)

Tµν
ren ≡ Tµν

0 (t)− Tµν
adiabatic︸ ︷︷ ︸

geometric, finite, cutoff-dependent

Tadiabatic is the derivative expansion of the bare stress tensor.
It completely misses the non-local finite response, but completely cancels the

symmetry-breaking effects of the point-splitting.

(determined analytically.)

For tµ = (∆t,~0), both Tµν
0 and Tµν

adiabatic are covariantly conserved.



Adiabatic subtraction

〈T 〉 ∼ a

s4
+

b

s2
+ c ln s + finite.

UV divergences come from local

contributions. To compute the contribution

at each point, Taylor expand around that

point [Schwinger, de Wit, Birrell-Davies].

a = δΛ gµν

b = δ
(

1
GN

) (
Rµν − 1

2gµνR
)

It works!
→ a covariant, conserved Tµν , with
Tλ

λ =
1

2880π2

(
− 7

4
RµνρσR

µνρσ − 2RµνR
µν + 5

4
R2 − 3�R

)
.

the correct Weyl anomaly.

Spinor energy density in empty AdS : −→
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Third subtraction: Log@sD



Results [Andrea Allais, JM 1306.6075]

• GN = 0: we reproduce our previous hard-wall results.
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(Note that we only calculate spherical harmonics with discrete `; approaches

continuous k ∼ `
R

at large R.)

• For R < 3
2L: µ < gap. No fermions. Global AdS (dashed line below):

ds2 =
L2

R2 sin2 z
R

[
−dt2 + dz2 + R2 cos2 z

R
dΩ2

2

]
, A =

1

L
dt .



Results, cont’d

[Andrea Allais, JM

1306.6075]

• Gravitating
electron stars:
red to blue:

various zm

ds2 = 1
β2(z)

(
−dt2 + dz2 + α2(z)dΩ2

2

)
A = Φdt .
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Bad news: for GN > 0, as we increase zm, R stops growing!



Results, cont’d

Instead, β(zm)
zm→zcm(q)→ ∞ ! −→

(Personally) Worse news: TF approximation
works well in this regime. Can be used to
study approach to transition.
(breaks down at transition)

Location of the critical zm
for various q: −→
(predicted accurately by TF)
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+ We’ve found a deconfinement-like quantum phase transition,
driven by the fermion density (!):
the bulk HDirac becomes non-compact. (Recall: holographic picture of

confinement.)

− This transition is an obstacle to the thermodynamic limit
µ� 1/R with our present methods (compact HDirac is crucial.).



Accuracy of TF at m = 0
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Dashed: Hartree-Fock answer.
q2 = 1.0,, κ2/L2 = 0.1, mL = 0.0

zm/L = 8, 16, 20

This is a mystery to me at the moment.



Concluding comments

1. This may seem like a lot of effort, but it’s still a lot more
tractable than directly solving a strongly-coupled quantum
many body problem (which has a sign problem).

2. Radial dependence of the bulk fields encode running couplings
in the dual QFT
(along with information about the state).
Q: How should we interpret holographically
the (quantum) information in bulk fermion fields?
[possible answer: Sung-Sik Lee 1305.3908]

3. Open Q: How to get beyond this ‘deconfinement’ transition?
(Directly study non-compact Dirac operator? Other IR regulator?)

More general Q: What other Fermi surface states can arise
holographically?



Public service announcement

Please practice holography
responsibly.



Please Practice Holography Responsibly

Holography gives us tractable toy models of strongly correlated systems.

Toy models are only useful if we ask the right questions.

I critical exponents depend on ‘landscape issues’
(parameters in bulk action)

I thermodynamics doesn’t distinguish weak and strong coupling
(in examples: N = 4 SYM, lattice QCD)

I transport is very different
transport by weakly-interacting quasiparticles is less effective(η

s

)
weak

∼ 1

g4 ln g
�

(η
s

)
strong

∼ 1

4π
.

I EFT of strange metals: ?

I far from equilibrium physics: ?

I source of optimism: Humans are dumb. Simple pictures can
be very useful.



End of second lecture.



Appendices



Frameworks for non-Fermi liquid
• a Fermi surface coupled to a critical boson field
[Recent work: S-S Lee, Metlitski-Sachdev, Mross-JM-HL-Senthil, 1003.0894]

L = ψ̄ (ω − vFk⊥)ψ + ψ̄ψa + L(a)

small-angle scattering dominates =⇒ transport is not that of strange metal.

• a Fermi surface mixing with a bath of critical fermionic
fluctuations with large dynamical exponent
[FLMV 0907.2694, Faulkner-Polchinski 1001.5049, FLMV+Iqbal 1003.1728]

L = ψ̄ (ω − vFk⊥)ψ + ψ̄χ+ ψχ̄+ χ̄G−1χ χ: IR CFT operator

�=� +

�
+

�
+. . .

〈ψ̄ψ〉 =
1

ω − vFk⊥ − G
G = 〈χ̄χ〉 = c(k)ω2ν

ν ≤ 1
2 : ψ̄χ coupling is a relevant perturbation.

The large z of the IR CFT allows efficient current dissipation.



Photoemission ‘exp’ts’ on holographic superconductors

E (meV)

SBH(T = 0) =⇒ instability.
With charged scalars in bulk, groundstate
is superconducting. [Gubser; Hartnoll et al 2008]

In SC state: a sharp peak forms in A(k, ω).

With a suitable coupling between ψ and ϕ,

the superconducting condensate

opens a gap in the fermion spectrum.

[Faulkner, Horowitz, JM, Roberts, Vegh, 0911.3402]

For qϕ = 2qψ

Lbulk 3 η5ϕψ̄CΓ5ψ̄T + h.c

The (gapped) quasiparticles
are exactly stable in a certain
kinematical regime
(outside the lightcone of the IR CFT) –
the condensate lifts the IR CFT modes

into which they decay.



Obstacles to covariant bulk fermion stress tensor
Consider a massless Dirac fermion in 1+1 dimensions, Φ = 0.

Fixed metric: ds2 = −ft(z)dt2 + fz(z)dz2

For convenience take z ' z + 2π. WLOG fz = 1 gauge.
Conformal anomaly:

Tµ
µ =

1

4π
R(z) =

1

4π

(
1

2

(
f ′2t
ft

)2

− f ′′t
ft

)

H =

 0 −
(

ft
fz

)1/4

∂z
(

ft
fz

)1/4(
ft
fz

)1/4

∂z
(

ft
fz

)1/4

0

 , Hψa = ωaψa.

Latticize, add up:

Tµ
µ =

∑
a ∈ spectrum of H

θ(−ωa)ψ†a (...)ψa =
1

4π

(
3

4

(
f ′2t
ft

)2

− f ′′t
ft

)

Not a scalar!



Obstacles, cont’d

Why not covariant?

e.g.: ft = 1 + .3 cos z + .2 cos 2z ,

n = 249 sites.

IPRk ≡
∫
dz |ψ|2k



Solution, pt 1: Even more regulators!

• An additional (bulk UV) regulator is required:

ρbare(s) ≡
∑
a

θ(−ωa)ψ†aψa e−s|ωa|

Cuts off (exponentially) the contribution of the localized modes.
Must have: 1/s � 1/a to keep the lattice artifacts out.

(This is point-splitting in t. Not covariant.
Hamiltonian Pauli-Villars would also work in principle, and is covariant. But it
only kills the UV bits by a power-law suppression: 1/p2 − 1/(p2 + M2).

Not fast enough.)


