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Useful Theory References

M. Fisher, P. Weichman, G. Grinstein and D. Fisher
“Boson localization and the superfluid-insulator transition”,
Phys. Rev. B, 40, 546, (1989).

K. Damle and S. Sachdev | “Nonzero temperature transport
near quantum critical points”, Phys. Rev. B, 56, 8714 (1997).

S. Sachdev | “Quantum Phase Transitions”, Cambridge.
Chapter 8 — Physics close to and above the UCD.
Chapter 9 — Transport in d = 2.

Chapter 10 — Boson Hubbard model.




Nernst Effect in the Cuprates
Xu, Ong, Wang, Kakeshita and Uchida, Nature 406, 486 (2000)
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Ong’s Data
PRB 73, 024510 (2010) Numbers indicate v in nV/KT
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The Bose—Hubbard Model
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Fisher, Weichman, Grinstein and Fisher, PRB 40, 546 (1989)
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Effective Field Theory

Set up path integral representation for
7 = Tr(e PH)

Using a Hubbard Stratonovich transformation to decouple the
hopping term
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and integrating over the b, one may ultimately obtain
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Currents and Normal Modes

Rather than imaginary time diagrams, include temperature via a

transport equation for “normal modes” of complex bosonic field:
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where £ = vk? + m2. The (uniform) electric current reads

< Qf(g )d Vk f—|—(k7t)_f—(kat)]
where Q) = 2e, v = k/e and

fr(k,t) = (al. (k,t)ay (k1))

Dropped “anomalous” terms (aa) and (a'a') for w < 2m.




Quantum Boltzmann Equation
Real time & finite T Damle & Sachdev, PRB 56, 8714 (‘97)

Opposite charge particles + applied field + interactions |®|*
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We have suppressed the ¢ dependence
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Universal Transport
Damle and Sachdev, PRB 56, 8714 (1997)
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Crossover between hydrodynamic and collisionless regimes



Transport near Quantum Critical Points

Linear response for SF-MI transition in Bose-Hubbard

Damle and Sachdev, PRB 56, 8714 (1997)
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Bhaseen, Green and Sondhi, PRL 98, 166801 (2007)
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Hartnoll, Kovtun, Miiller and Sachdev, PRB 76, 144502 (2007)
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Relativistic hydrodynamics & AdS/CFT link all coeffs

QBE  Miiller et al, PRB (2008)

Bhaseen et al, PRB (2009)

Viscosity /Entropy Quark Gluon Plasma Graphene



Linearized Equations
In the absence of E

felk,t) =n(ey) = 1/(ePo — 1)
In the presence of E one may parameterise
frk,w) =210(w)n(er) £ k. E(w)yY(k,w)

To linear order in E, and after three angular integrals and two
radial (in d = 3 to leading order) one eventually obtains...

—iwtp(k,w) + 1228 — &2 [0 gk, [F) (k, k1)w(k,w) + Fa(k, k1 )k, w))

Integral equation for the departure from equilibrium




Kernels

After a considerable slog, the kernels F;(k, k1) can be explicitly

evaluated. For example,

o n(kl)n(k — ]431)
25 k2n(k)

Fy = Ok — k1)pa(k, k1) — O(k1 — k)pa(kr, k)]

where

i, y) = 8" [Linu) + Li, (e~P%) — Liy (e=#Y) — Lin(e—ff(w—w)} .

Li,(z) is the polylogarithm of order p, n(k) is the Bose distribution:

=, 2" 1
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Note that the mass has been set equal to zero in these expressions.
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Note that the kernels have integrable singularities when k£ = k1.




Electrical Conductivity
Q f (27T)d Vi f—l—(ka t) - f—(kat)]

Substituting in the parameterization of fi(k,w) into the current

I(w) = 207 / oy V@)U (k )

Tenlw) = 2% [ &k () y(k,w)
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Universal Transport
Damle and Sachdev, PRB 56, 8714 (1997)
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Nernst Coeflicient

Ong, Ussishkin, Sondhi, Oganesyan, Huse,...
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Defining relations of the transport coefficients
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Set JY =0 wv=5 o

Particle-hole symmetry o,, =0 |v = % S

Need ay,: Thermal response to electric field with no temp gradient



QBE in a Magnetic Field

Bhaseen, Green and Sondhi, Magnetothermolectric Response at a
Superfluid—Mott-insulator Transition, PRL 98, 166801 (2007)

To compute T’y we may equivalently consider the transverse heat
current which flows in response to an electric field

o 0
% + Q(E(t) + vi X B)% =I'[f+, f-]

In linear response we may consider

d
3w = [ gy evve ) + /- (k)

We need to solve QBE for distribution functions

Turns out to be useful to recall the relativistic kinematics of a
charged particle in crossed F and B fields



Solution in Drift Regime E < cB

Move to frame moving with drift velocity where E’ vanishes

ExB

Vn =
E

Particle in pure magnetic field which doesn’t affect its energy so we
expect a Bose-Distribution in moving frame. Solution in lab frame:

o 5, o €k—VD.k
f+(k) = folex) = fo (\/1 —v%/@)

Solution of QBE even with leading order collision term
Oy = ——
Y dBT | (2mh)d Dek,

gy = 2% S is the entropy density of a scalar field

Heat flow by entropy drift: Jp, = 2(TS)vp = 2TS% and Jp, = Tak



Temperature Gradient

0 0
Ot 1 v 2% 4 Qv x B).2E = I [fy, f]
Absence of any material inhomogenity
of of+ \ _ of
e =vr (%) = VT (-~ 5)
Longitudinal and transverse shifts of distribution function

fx(k) = fo(ex) + k. Uy (k) £ Qk.(U x B)y (k)
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To lowest order in epsilon expansion
(k) =0 w1 (k) = oo (—52)

Reproduces previous result

Onsager satisfied without magnetization subtractions



Thermal Transport Coeflicient
Bhaseen, Green and Sondhi, PRL 98, 166801 (2007)

To lowest order in epsilon

b)) = 0] |oL(k) = oot (~22)
To next order in the epsilon expansion

(k) = eer, [ dkr [ (k)F1(k, k1) + 1 (k1)Fa(k, k1))

Yields finite thermal transport coeflicient

In contrast to zero field case where response is infinite

Dependence on epsilon is inverse to zero field conductivity



Hydrodynamics and AdS/CFT

Hartnoll, Kovtun, Miiller and Sachdev, Theory of the Nernst effect
near quantum phase transitions in condensed matter and in dyonic
black holes, Phys. Rev. B 76, 144502 (2007)
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“Wiedemann—Franz like”

Thermal conductivity inversely related to conductivity

All transport coefficients are related to electrical
conductivity and a thermodynamic variables

Exact duality relation may be obtained by QBE and e-expansion

Bhaseen, Green and Sondhi, Magnetothermoelectric Response near
Quantum Critical Points, PRB 79, 094502 (2009)



Crossover of Thermal Coefficient

Bhaseen, Green and Sondhi, Magnetothermoelectric Response near
Quantum Critical Points, PRB 79, 094502 (2009)
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Within accuracy of 3D Monte Carlo integrations
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Can also be extracted analytically from Boltzmann



Implications for Nernst
Hartnoll, Kovtun, Miiller and Sachdev, PRB 76, 144502 (2007)

Impurities and chemical potential Divergences regulated
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Generalizations exist for all other transport coefficients
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Diverges in clean PH limit: v — 7/T

Graphene | Miiller, Fritz and Sachdev, PRB 78, 115406 (2008)




