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Nernst Effect in the Cuprates

Xu, Ong, Wang, Kakeshita and Uchida, Nature 406, 486 (2000)
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Ong’s Data

PRB 73, 024510 (2010) Numbers indicate ν in nV/KT 3
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FIG. 3: The phase diagram of LSCO showing T

onset

of the

Nernst signal, the transition T




and the pseudogap temper-

ature T

�

. In the \Nernst" region between T

onset

and T




,

vorti
ity is observed by the Nernst and torque magnetome-

try experiments. The numbers indi
ate � = e

N

=B in nV/KT

(initial slope of the e

N

-H 
urve). [Ref. [13℄℄

Above the SC dome in the phase diagram of LSCO, the

vortex-Nernst signal is observed in the \Nernst region"

shown in gray s
ale in Fig. 3. The 
ontour lines indi-


ate the initial value of the Nernst 
oeÆ
ient � = e

N

=B.

Clearly, the Nernst region is 
losely related to the SC

dome de�ned by T




vs. x. On the OD side, it terminates

at x � 0.25, while on the UD side, it rea
hes to 0.03.

The onset temperature T

onset

is de�ned as the tem-

perature above whi
h e

N


annot be resolved from the

negative quasiparti
le (qp) 
ontribution [10℄. As shown,

T

onset

peaks at x = 0.10 instead of the OP doping x =

0.17 (all the 
ontours also show this skewed pro�le so it

is not due to diÆ
ulties in resolving T

onset

). The max-

imum value of T

onset

(130 K) is signi�
antly lower than

values of the pseudogap temperature T

�

quoted for the

UD region (T

�

is only roughly known in LSCO).

III. TORQUE MAGNETOMETRY

The vortex interpretation of the Nernst signals has re-


eived strong support from high-resolution torque mag-

netometry [14, 15℄. Be
ause the super
urrent in 
uprates

is quasi-2D, torque magnetometry is ideal for probing its

diamagneti
 response. If the angle �

0

between H and 


is small, the torque signal � =m�B may be expressed

as [14, 15℄

� = [��

p

H

z

+M(T;H

z

)℄V B

x

; (1)

where V is the 
rystal volume, ��

p

= �

z

� �

x

is the

anisotropy of the paramagneti
 (ba
kground) sus
eptibil-

FIG. 4: (
olor online) Curves of torque � vs. H in OP Bi

2212. At the highest T (140 K), the magnetization is para-

magneti
 (M = �

p

H), and � � H

2

. As T de
reases towards

T




= 86.5 K, a negative diamagneti
 
ontribution be
omes

apparent and grows rapidly to pull the torque negative. Hys-

tereses is large below 35 K.

FIG. 5: (
olor online) Magnetization 
urves M vs. H in OP

Bi 2212 obtained from � shown in Fig. 4. The right panel

shows 
urves above 80 K in expanded s
ale. At low T (left

panel), the �eld at whi
h M extrapolates to zero (H


2

) is

estimated to be 150-200 T. Note that as T ! T

�




, H


2

does

not de
rease below 45 T.

ity andM(T;H) the diamagneti
 magnetization of inter-

est (we 
hoose axes zjj
 and x in the ab plane; hereafter

we write H

z

= H).

Above �4 K, we �nd experimentally that ��

p

is domi-

nated by the paramagneti
 van Vle
k sus
eptibility �

orb

.

Be
ause �

orb

is H independent and only mildly T de-

pendent, while M(T;H) varies strongly with T and is

nonlinear in H , the 2 
ontributions are easily separated.

Figure 4 shows how � varies with H to 32 T in OP Bi

2212. Above 120 K, only the paramagneti
 term ��

p

is

visible. Below 120 K, the diamagneti
 term M in
reases

rapidly to pull the 
antilever de
e
tion to large negative

values as T de
reases below T




(86.5 K).



The Bose–Hubbard Model

H = −t
∑

〈ij〉(a
†
iaj + h.c.) + U

2

∑

i ni(ni − 1)− µ
∑

i ni

SF

3U

2U

U

0 t/U

µ

MI

Fisher, Weichman, Grinstein and Fisher, PRB 40, 546 (1989)

L =
∫

dDx |∂µΦ|2 −m2|Φ|2 − u0

3 |Φ|4



Effective Field Theory

Set up path integral representation for

Z = Tr(e−βH)

Using a Hubbard Stratonovich transformation to decouple the

hopping term

e−W
∫

β

0
dτ

∑
〈ij〉(b

†
i
bj+b

†
j
bi) →

∫

DΦ∗DΦexp(−
∫ ∞

0

dτ(−Φib
†
i − Φ∗

i bi) + Φ∗
iW

−1
ij Φj)

and integrating over the bi one may ultimately obtain

Z =

∫

DΦDΦ∗e−
∫

β

0
dτ

∫
ddxLB

where

LB = K1Φ
∗ ∂Φ

∂τ
+K2

∣

∣

∣

∣

∂Φ

∂τ

∣

∣

∣

∣

2

+K3 |∇Φ|2 +K4 |Φ|2 +K5|Φ|4



Currents and Normal Modes

Rather than imaginary time diagrams, include temperature via a

transport equation for “normal modes” of complex bosonic field:

Φ(x, t) =

∫

ddk

(2π)d
1√
2εk

[

a+(k, t)e
ik.x + a†−(k, t)e

−ik.x
]

Π(x, t) = −i
∫

ddk

(2π)d

√

εk
2

[

a−(k, t)e
ik.x − a†+(k, t)e

−ik.x
]

where εk =
√
k2 +m2. The (uniform) electric current reads

〈J(t)〉 = Q
∫

ddk
(2π)d

vk [f+(k, t)− f−(k, t)]

where Q = 2e, vk = k/ǫk and

f±(k, t) = 〈a†±(k, t)a±(k, t)〉

Dropped “anomalous” terms 〈aa〉 and 〈a†a†〉 for ω < 2m.



Quantum Boltzmann Equation
Real time & finite T Damle & Sachdev, PRB 56, 8714 (‘97)

Opposite charge particles + applied field + interactions |Φ|4

(

∂
∂t

±QE(t). ∂
∂k

)

f±(k, t) = − 2u2
∗

9

∫

dµF±

dµ ≡ ddk1
(2π)d

ddk2
(2π)d

ddk3
(2π)d

1

16 εkεk1
εk2

εk3

×

(2π)dδd(k+ k1 − k2 − k3)(2π)δ(εk + εk1
− εk2

− εk3
).

F±(k,k1,k2,k3) ≡ 2f±(k)f∓(k1)[1 + f±(k2)][1 + f∓(k3)]

+f±(k)f±(k1)[1 + f±(k2)][1 + f±(k3)]

−2[1 + f±(k)][1 + f∓(k1)]f±(k2)f∓(k3)

−[1 + f±(k)][1 + f±(k1)]f±(k2)f±(k3)

We have suppressed the t dependence

εk =
√
k2 +m2 ǫ = 3− d u∗ = 24π2ǫ

5 m2 = 4ǫT 2

15



Universal Transport
Damle and Sachdev, PRB 56, 8714 (1997)

σ(ω) = (2e)2Td−2

ǫ2
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Figure 11.2: The real part of the universal function �

I

(

e

!), which is related to the

low frequency part of the conductivity (�

I

(!)) by (11.5). The results are obtained

by the numerical solution of (11.4), followed by the integration in (11.6). This func-

tion describes the inelastic collision-induced broadening of the ! = 0 delta function

in Fig 9.1 at a frequency scale of order �

2

T . The conductivity has an additional

continuum contribution (�

II

(!)) at frequencies larger than ! � �

1=2

T which is not

shown above (see Fig 2.4).

at non-zero temperatures above the super
uid-insulator quantum critical point in

the d = 2 disorder free Bose- Hubbard model. The uncertainty in the numerical

determination of the coe�cient of 1=�

2

in (11.12) is believed to be restricted to

the fourth decimal place. As mentioned earlier in Chapter 2, the result (11.13)

is remarkably close to the self-dual result of 4e

2

=h which is expected to hold if

the critical theory is symmetric under exchange of vortex and particle degrees of

freedom [52, 59]. Moreover, the results of many measurements [41] of this quantity

at low-temperatures above the superconductor-insulator quantum critical point in

disordered thin �lms also seem to cluster around 4e

2

=h, although there is considerable

spread in the results of di�erent experiments. Evidence for a similar symmetry, albeit

in a di�erent experimental context, has also emerged from recent experiments [74]

on quantum hall transitions. This symmetry is rather surprising as there is no

fundamental reason for the Hamiltonian of the system written in terms of the bosons

to be equivalent to the Hamiltonian when written in terms of the vortices (in fact,

the interaction between the bosons is certainly expected to be di�erent from the

inter-vortex interaction in the vortex picture [52] for the super
uid-insulator critical

point).

Our transport theory considerations below Eqn 2.10 in Chapter 2 seem to suggest

a possible resolution: The inequivalent Hamiltonians for the bosons and the vortices

should certainly be apparent in the collisionless regime ! � T , where transport

properties are directly controlled by the properties of the elementary excitations of

the system. On the other hand, transport properties in the collision-dominated hy-

drodynamic regime ! � T could well be less sensitive to the details of the underlying

Hamiltonian. The expectation that �(0) should be insensitive to di�erences in the

interaction Hamiltonian of bosons or vortices is motivated by the belief that the main

106

Two spatial dimensions σ(0) ≈ 1.037
(

4e2

h

)

Crossover between hydrodynamic and collisionless regimes



Transport near Quantum Critical Points
Linear response for SF-MI transition in Bose–Hubbard

Damle and Sachdev, PRB 56, 8714 (1997)

σ(ω) =
(2e)2T d−2

ǫ2
Σ
( ω

ǫ2T

)

d = 3− ǫ σ(0) ≈ 1.037
(

4e2

h

)

Bhaseen, Green and Sondhi, PRL 98, 166801 (2007)

αxy =
S
B

κ̄xx ≃ gǫ2
T d+3

(2e)2B2
g ≈ 5.5

Hartnoll, Kovtun, Müller and Sachdev, PRB 76, 144502 (2007)

κ̄xx(B) = TS2

B2σxx(0)

Relativistic hydrodynamics & AdS/CFT link all coeffs

QBE Müller et al, PRB (2008) Bhaseen et al, PRB (2009)

Viscosity/Entropy Quark Gluon Plasma Graphene



Linearized Equations

In the absence of E

f±(k, t) = n(εk) = 1/(eβεk − 1)

In the presence of E one may parameterise

f±(k, ω) = 2πδ(ω)n(εk)± k.E(ω)ψ(k, ω)

To linear order in E, and after three angular integrals and two

radial (in d = 3 to leading order) one eventually obtains...

−iωψ(k, ω) + 1
k

∂n(k)
∂k

= −ǫ2
∫∞

0
dk1 [F1(k, k1)ψ(k, ω) + F2(k, k1)ψ(k1, ω)]

Integral equation for the departure from equilibrium



Kernels

After a considerable slog, the kernels Fi(k, k1) can be explicitly

evaluated. For example,

F1 =
6π

25

n(k1)n(k − k1)

k2 n(k)
[Θ(k − k1)µ2(k, k1)−Θ(k1 − k)µ2(k1, k)]

where

µn(x, y) ≡ β−n
[

Lin(1) + Lin(e
−βx)− Lin(e

−βy)− Lin(e
−β(x−y))

]

.

Lip(z) is the polylogarithm of order p, n(k) is the Bose distribution:

Lip(z) =

∞
∑

n=1

zn

np
, n(k) =

1

eβk − 1
.

Note that the mass has been set equal to zero in these expressions.



F2 ≡ Fa2 + Fb2

Fa
2 =

2π

75

[1 + n(k)]n(k + k1)

k4 n(k1)
La
2(k, k1)

Fb
2 =

4π

75

n(k)n(k1 − k)

k4 n(k1)

[

Θ(k − k1)L
b
2(k, k1)− (k ↔ k1)

]

La
2 = 24λ−4 + 12[ k η3 + (k ↔ k1) ]− 6kk1λ

+
2

Lb
2 = −3 [4µ4 + 2(k − k1)µ3 − kk1µ2 + 4k1ν3 + 2kk1ν2]

λ±n ≡ β−n
[

Lin(e
−βx) + Lin(e

−βy)± Lin(e
−β(x+y))± Lin(1)

]

ηn ≡ β−n
[

Lin(e
−βx)− Lin(e

−βy)− Lin(e
−β(x+y)) + Lin(1)

]

νn ≡ β−n
[

Lin(e
−βx)− Lin(e

−βy)
]

Note that the kernels have integrable singularities when k = k1.



Electrical Conductivity

J(t) = Q
∫

ddk
(2π)d

vk[f+(k, t)− f−(k, t)]

Substituting in the parameterization of f±(k, ω) into the current

J(ω) = 2Q2

∫

ddk

(2π)d
vkk.E(ω)ψ(k, ω)

It follows that electrical conductivty is given by

σxx(ω) = 2Q2
∫

ddk
(2π)d

(

k2
x

εk

)

ψ(k, ω)

Introducing rescaled variables k̄ ≡ k
T

ω̃ = ω
ǫ2T

ψ(k, ω) = Ψ(k̄,ω̃)
ǫ2T 3

σ(ω) = Q2Td−2

ǫ2
Σ(ω̃) Σ(ω̃) = 1

(3π)2

∫∞

0
dk̄k̄3Ψ(k̄, ω̃)



Universal Transport

Damle and Sachdev, PRB 56, 8714 (1997)
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Figure 11.2: The real part of the universal function �

I

(

e

!), which is related to the

low frequency part of the conductivity (�

I

(!)) by (11.5). The results are obtained

by the numerical solution of (11.4), followed by the integration in (11.6). This func-

tion describes the inelastic collision-induced broadening of the ! = 0 delta function

in Fig 9.1 at a frequency scale of order �

2

T . The conductivity has an additional

continuum contribution (�

II

(!)) at frequencies larger than ! � �

1=2

T which is not

shown above (see Fig 2.4).

at non-zero temperatures above the super
uid-insulator quantum critical point in

the d = 2 disorder free Bose- Hubbard model. The uncertainty in the numerical

determination of the coe�cient of 1=�

2

in (11.12) is believed to be restricted to

the fourth decimal place. As mentioned earlier in Chapter 2, the result (11.13)

is remarkably close to the self-dual result of 4e

2

=h which is expected to hold if

the critical theory is symmetric under exchange of vortex and particle degrees of

freedom [52, 59]. Moreover, the results of many measurements [41] of this quantity

at low-temperatures above the superconductor-insulator quantum critical point in

disordered thin �lms also seem to cluster around 4e

2

=h, although there is considerable

spread in the results of di�erent experiments. Evidence for a similar symmetry, albeit

in a di�erent experimental context, has also emerged from recent experiments [74]

on quantum hall transitions. This symmetry is rather surprising as there is no

fundamental reason for the Hamiltonian of the system written in terms of the bosons

to be equivalent to the Hamiltonian when written in terms of the vortices (in fact,

the interaction between the bosons is certainly expected to be di�erent from the

inter-vortex interaction in the vortex picture [52] for the super
uid-insulator critical

point).

Our transport theory considerations below Eqn 2.10 in Chapter 2 seem to suggest

a possible resolution: The inequivalent Hamiltonians for the bosons and the vortices

should certainly be apparent in the collisionless regime ! � T , where transport

properties are directly controlled by the properties of the elementary excitations of

the system. On the other hand, transport properties in the collision-dominated hy-

drodynamic regime ! � T could well be less sensitive to the details of the underlying

Hamiltonian. The expectation that �(0) should be insensitive to di�erences in the

interaction Hamiltonian of bosons or vortices is motivated by the belief that the main
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(

4e2
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Nernst Coefficient

Ong, Ussishkin, Sondhi, Oganesyan, Huse,...

ν ≡ 1

B

Ey

(−∇T )x
Defining relations of the transport coefficients





Jtr
e

Jtr
h



 =





σ α

Tα κ̄









E

−∇T





Set Jy = 0 ν = 1
B

αxyσxx−αxxσxy

σ2
xx+σ2

xy

Particle-hole symmetry σxy = 0 ν = 1
B

αxy

σxx

Need αxy: Thermal response to electric field with no temp gradient



QBE in a Magnetic Field
Bhaseen, Green and Sondhi, Magnetothermolectric Response at a

Superfluid–Mott-insulator Transition, PRL 98, 166801 (2007)

To compute Tαxy we may equivalently consider the transverse heat

current which flows in response to an electric field

∂f±
∂t

±Q(E(t) + vk ×B).
∂f±
∂k

= I∗[f+, f−]

In linear response we may consider

Jh(ω) =

∫

ddk

(2π)d
ǫkvk [f+(k, ω) + f−(k, ω)]

We need to solve QBE for distribution functions

Turns out to be useful to recall the relativistic kinematics of a

charged particle in crossed E and B fields



Solution in Drift Regime E < cB

Move to frame moving with drift velocity where E′ vanishes

VD =
E×B

|B|2

Particle in pure magnetic field which doesn’t affect its energy so we

expect a Bose-Distribution in moving frame. Solution in lab frame:

f±(k) = f0(ε
′
k
) = f0

(

εk − vD.k
√

1− v2D/c
2

)

Solution of QBE even with leading order collision term

αxy =
2c2

dBT

∫

ddk

(2π~)d
k2
(

−∂f0
∂εk

)

αxy = 2 S
B

S is the entropy density of a scalar field

Heat flow by entropy drift: Jh = 2(TS)vD = 2TS E
B

and Jh = TαE



Temperature Gradient
∂f±
∂t

+ vk.
∂f±
∂x

±Q(vk ×B).∂f±
∂k

= I±[f+, f−]

Absence of any material inhomogenity

∂f±
∂x

= ∇T
(

∂f±
∂T

)

= ∇T
(

− εk
T

∂f0
∂εk

)

Longitudinal and transverse shifts of distribution function

f±(k) = f0(εk) + k.Uψ(k)±Qk.(U×B)ψ⊥(k)

U ≡ −∇T
T

To lowest order in epsilon expansion

ψ(k) = 0 ψ⊥(k) =
εk

Q2B2

(

− ∂f0
∂εk

)

Reproduces previous result

Onsager satisfied without magnetization subtractions



Thermal Transport Coefficient

Bhaseen, Green and Sondhi, PRL 98, 166801 (2007)

To lowest order in epsilon

ψ(k) = 0 ψ⊥(k) =
εk

Q2B2

(

− ∂f0
∂εk

)

To next order in the epsilon expansion

ψ(k) = ǫ2εk
∫

dk1 [ψ⊥(k)F1(k, k1) + ψ⊥(k1)F2(k, k1)]

Yields finite thermal transport coefficient

κ̄ = gǫ2 Td+3

Q2B2 g ≈ 5.5 (~ = c = kB = 1)

In contrast to zero field case where response is infinite

Dependence on epsilon is inverse to zero field conductivity



Hydrodynamics and AdS/CFT
Hartnoll, Kovtun, Müller and Sachdev, Theory of the Nernst effect

near quantum phase transitions in condensed matter and in dyonic

black holes, Phys. Rev. B 76, 144502 (2007)

κ̄xx(B) = TS2

B2σxx(0)

“Wiedemann–Franz like”

Thermal conductivity inversely related to conductivity

All transport coefficients are related to electrical

conductivity and a thermodynamic variables

Exact duality relation may be obtained by QBE and ǫ-expansion

Bhaseen, Green and Sondhi, Magnetothermoelectric Response near

Quantum Critical Points, PRB 79, 094502 (2009)



Crossover of Thermal Coefficient
Bhaseen, Green and Sondhi, Magnetothermoelectric Response near

Quantum Critical Points, PRB 79, 094502 (2009)

r ∝ B2/(ǫT )4

Within accuracy of 3D Monte Carlo integrations

g∞ ≈ 5.55 g0 = 8π(2π2/45)2/(1.037) ≈ 4.66

κ̄xx(B) = TS2

B2σxx(0)

Can also be extracted analytically from Boltzmann



Implications for Nernst

Hartnoll, Kovtun, Müller and Sachdev, PRB 76, 144502 (2007)

Impurities and chemical potential Divergences regulated

αxy =

(

2ekB
h

)(

S/kB
B/φ0

)[

γ2 + ω2
c + γ/τ(1− µρ/TS)

(γ + 1/τ)2 + ω2
c

]

φ0 = h
2e ωc ≡ 2eBρ

ε+P
γ ≡ σQB2

ε+P

Generalizations exist for all other transport coefficients

ν =
1

B

(

kB
2e

)(

ε+ P

kBTρ

)[

ωc/τ

(ω2
c/γ + 1/τ)2 + ω2

c

]

Diverges in clean PH limit: ν → τ/T

Graphene Müller, Fritz and Sachdev, PRB 78, 115406 (2008)


