From Critical Phenomena to Holographic Duality in Quantum Matter

Joe Bhaseen

TSCM Group King's College London

2013 Arnold Sommerfeld School

"Gauge-Gravity Duality and Condensed Matter Physics" Arnold Sommerfeld Center for Theoretical Physics, Munich 5 - 9 August

Lecture 1

"Introduction to Relativistic QFT & CFT in Condensed Matter"

Accompanying Slides

Central Charge in Gapless Regime XXZ

Chen et al, Entanglement entropy scaling of the XXZ chain,

arXiv:1306.5828

Central charge of XXZ obtained from entanglement entropy in gapless regime $-1 \leq \Delta \leq -0.5$. Results show that c = 1 for $\Delta \in (-1, -0.5]$. FM point $\Delta = -1$ needs special treatment.

Entanglement entropy useful for characterising phases <u>and</u> identifying phase transitions

Multiscale Entanglement Renormalization Ansatz (MERA) & AdS/CFT

Central Charge in Gapless Regime XXZ

Chen et al, Entanglement entropy scaling of the XXZ chain,

arXiv:1306.5828

Central charge of XXZ obtained from ground state energy in gapless regime $-1 \leq \Delta \leq -0.5$. Results show that c = 1 for $\Delta \in (-1, -0.5]$. FM point $\Delta = -1$ needs special treatment.

Quasi-1D Quantum Antiferromagnets

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i . \mathbf{S}_j$$

Tennant et al, PRB 52, 13368 (1995)

FIG. 2. The crystal structure of $KCuF_3$. The two polytype structures (a) and (d) are shown. These are distinguished by the different displacements of fluorine ions in the *a-b* plane.

KCuF₃
$$S = 1/2$$
 $J \simeq 34 \text{ meV}$ $J_{\perp} \simeq -1.6 \text{ meV}$

Spinons

Novel disordered ground state

 $S_i^+ S_j^-$ causes spin flips

Excitations are **spinons** not conventional spin waves

Excitations are produced in **pairs**

Mobile domain walls

Consequence

Excitations are produced in pairs

Neutron scattering ought to see a continuum of states

des Cloizeaux & Pearson, Phys. Rev. 128, 2131 (1962)

$$E_{\rm L} = \frac{\pi J}{2} |\sin(q)| \qquad E_{\rm U} = \pi J |\sin(q/2)|$$

Gapless Critical Theory

Neutrons $S(q, \omega)$

Lake et al, Quantum criticality and universal scaling of a quantum antiferromagnet, Nature Materials 4, 329 (2005)

(a) 6 K (b) 50 K (c) 150 K (d) 300 K $T_N=39$ K

Dimensional Crossover

Lake et al, Quantum criticality and universal scaling of a quantum antiferromagnet, Nature Materials 4, 329 (2005)

1D behavior observed in anisotropic materials in appropriate energy and temperature windows

Universal Scaling

Lake et al, Quantum criticality and universal scaling of a quantum antiferromagnet, Nature Materials 4, 329 (2005)

$$S(\pi, E) = \frac{e^{E/kT}}{e^{E/kT} - 1} \frac{A}{T} \operatorname{Im} \left[\rho \left(\frac{E}{4\pi T} \right)^2 \right] \qquad \rho(x) = \frac{\Gamma(\frac{1}{4} - ix)}{\Gamma(\frac{3}{4} - ix)}$$

Critical scaling in quantitative agreement with theory

Regimes

Lake et al, Quantum criticality and universal scaling of a quantum antiferromagnet, Nature Materials 4, 329 (2005)

1D critical behavior observed in anisotropic materials in appropriate energy and temperature windows c.f. avoided quantum criticality

Integer v Half Integer Spin Chains CsNiCl₃ S = 1 $J \simeq 2.28 \text{meV}$ $J_{\perp} \simeq 0.044 \text{ meV}$ Kenzelmann *et al*, PRB **66**, 024407 (2002)

Haldane Gap

Ising Model in a Magnetic Field 2D classical Ising Model solved exactly by Onsager

Fermions

In a magnetic field remains unsolved on the lattice

However, close to T_c , continuum perturbed CFT

A. B. Zamolodchikov, Int. J. Mod. Phys. A 4, 4235 (1989)

$$\mathcal{A} = \mathcal{A}_{\mathbb{Z}_2} + h \int d^2 x \, \sigma(\mathbf{x})$$

No longer critical \sim massive

E₈ Mass Spectrum

248 generators!

$$m_1 = m$$
 $m_2 = 2m \cos \pi/5$ $m_3 = 2m \cos \pi/30$...

Analogue of quark confinement

Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E_8 Symmetry, Science **327**, 177 (2010)

Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E_8 Symmetry, Science **327**, 177 (2010)

$$H = -J \sum_{i} S_{i}^{z} S_{i+1}^{z} - h_{x} \sum_{i} S_{i}^{x} - h_{z} \sum_{i} S_{i}^{z}$$

Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E_8 Symmetry, Science **327**, 177 (2010)

 $H = -J\sum_{i} S_{i}^{z} S_{i+1}^{z} - h_{x} \sum_{i} S_{i}^{x} - h_{z} \sum_{i} S_{i}^{z}$

Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E_8 Symmetry, Science **327**, 177 (2010)

 $H = -J \sum_{i} S_{i}^{z} S_{i+1}^{z} - h_{x} \sum_{i} S_{i}^{x} - h_{z} \sum_{i} S_{i}^{z}$

Linear Confinement

Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E_8 Symmetry, Science **327**, 177 (2010)

Graphene

Castro Neto et al, "The electronic properties of graphene", RMP (2009)

Emergent Lorentz invariance with effective speed of light

ARPES Angle Resolved Photo Emission

Bostwick et al, Nature Physics 3, 36 (2007)

Solid line fit to single particle dispersion $(k_x \leftrightarrow k_y)$

 $E \ge k$ along a line through K-point parallel to $\Gamma \mathcal{M}$

Increasing electron density $(per cm^2)$

Relativistic QHE in Graphene

Novoselov et al, Two-Dimensional gas of massless Dirac fermions in graphene, Nature **438**, 197 (2005)

Zhang et al, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature **438**, 201 (2005)

Disorder Plateau Transitions SUSY $NL\sigma M$

Summary

Relativistic QFT plays a useful role in describing quantum systems
Strong links between high energy & condensed matter
Lorentz invariance, Dirac fermions, spin chains, Graphene
CFT & central charge, entanglement & numerics
Emergent excitations, fractionalization & confinement, topology
Evidence for scaling close to a quantum critical point
Perturbed CFTs & novel symmetries
Theory and Experiment

Ideas & themes recur in condensed matter physics

Can we describe emergent phenomena in higher D?

Can we use gauge-gravity duality to treat them?

Universality