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• Experiments are always in a trap:

Ideal Fermi Gases I



• Number of states below a certain energy (for one spin state) 
is:

• This means that the Fermi energy is:

Ideal Fermi Gases II
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• Differently: For the homogeneous gas:                   . So in the 
trap

• By integrating over space we find again:

• Note that the size of the cloud is:
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• Comparison between bosons and fermions:

Ideal Fermi Gases IV
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Ultracold Fermi Mixtures I 

• Experimental control over: - temperature and density

• Degenerate Fermi mixtures
- Neutron stars  (T = 106 K, TF = 1011 K, T= 10-5 TF )
- (High-Tc) superconductors     (T = 102 K, TF = 105 K, T = 10-3 TF )
- Ultracold atomic Fermi gases   (T = 102 nK, TF = μK, T = 10-1 TF )

- external potentials, disorder 
- number of particles, their 

quantum state
- and even interactions!



• Collisions are s-wave

and we thus only have 
interactions between two
different spin states.

• This implies also:

Ultracold Fermi Mixtures II
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• Hyperfine and 
Zeeman interactions:

• Central or exchange 
interaction

• Together they lead to 
Feshbach resonances!

Ultracold Fermi Mixtures III



• Interaction strength or 
scattering length:
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• Binding energy:
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• Flow without friction. Described by a macroscopic wave 
function:

or more general                                    and     .

• This implies the existence 
of quantized vortices with

which is really the trademark 
of superfluidity.

Superfluidity I
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• Observed in a rotating 
Bose-Einstein condensate:

• What about a Fermi gas?

Superfluidity II



• Presently much debate over: 

Superfluidity III
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• In second-quantization language the hamiltonian is

• How do we treat Bose-Einstein condensation now?

BEC I

l l l

l l l l

2 2†

† †

0

( ) ( ) ...
2

1... ( ) ( ) ( ) ( ) ,
2

H d
m

V d

ψ μ ψ

ψ ψ ψ ψ

⎧ ⎫∇
= − − +⎨ ⎬

⎩ ⎭

+

∫

∫

x x x

x x x x x

=



• Our most simple variational ground-state wave function   
for a Bose-Einstein condensed gas is now

• However, for             we expect that we are also allowed 
to use the more convenient wave function

BEC II
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• The latter ground-state wave function has the property 
that

• This suggests that Bose-Einstein condensation is 
associated with spontaneous symmetry breaking, i.e.,

• This is the macroscopic wavefunction of superfluidity!

BEC III
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• It is nice to understand spontaneous symmetry breaking a  
bit better. At a fixed number we have

• At fixed phase we have, however, 

Symmetry Breaking I
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• This shows that the phase and the number of particles are  
conjugate variables, i.e.,

• Moreover, the energy obeys due to the definition of the  
chemical potential

Symmetry Breaking II
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• The thermodynamic potential thus obeys

• which leads to the Schrödinger equation

Symmetry Breaking III
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• So the absolute ground state of the gas is the symmetry 
unbroken state

• However, if             it takes a very long time for the gas 
to ‘diffuse’ to this state and we can safely assume that

Symmetry Breaking IV
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• In second-quantization language the hamiltonian is

• Now we have Bose-Einstein condensation of pairs so:

BCS I
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• Introducing the Hamiltonian can
be approximated by

• This is thus a mean-field theory!

BCS II
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- The BCS Ansatz

- The microscopic Hamiltonian

- Interaction vs. scattering length

- Expectation values

Zero Temperature I
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- Normalization and minimization of                           , 

- Gap and number equation:

Zero Temperature II

with

- We have introduced:                                            

,      

.      

and                                                            

.                                                              

.                                                               

.                                                               



Summary

• BEC:

• BCS:

leads to gap equation for .
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- Cooper condensate 
wavefunction:

The BEC-BCS Crossover I 
- Fermi energy



MIT:  the study of vortices Innsbruck:  the study of collective modes

The BEC-BCS Crossover II



Imbalanced Fermi Gas at Unitarity

- Mean-field Hamiltonian,

- The Bogoliubov quasi-particles,

- Mean-field substitution, where                                  , such that

- The quasi-particle dispersions,



Sarma Phase

- Then, ground state becomes 
gapless polarized superfluid.

-Typically, Sarma phase is unstable 
at zero temperature. 

- In principle,  majority becomes 
gapless, when            .

- BCS ground state energy and ideal gas of quasi-particles

- Occupation numbers:
.



Thermodynamics
- Thermodynamic potential density

-Second-order  
transition:

-First-order  
transition:
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Homogeneous Phase Diagram

- Forbidden region (FR) 
gives rise to phase separation.

- Crossover from fully gapped
BCS superfluid to gapless
Sarma (S) superfluid, when 
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- (Local) polarization:

- Fermi temperature:

.



The Local-Density Approximation (LDA)

-Trapping potential:

- In the trap: decreasing        , constant h.

- LDA :
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Phase Diagram in a Trap

- Superfluid phase: 2nd

order transition in the 
trap.

- Phase separation: 1st

order transition in the 
trap.

(Global) polarization:

- Normal phase: normal
throughout trap.

Superfluid Phase

/ cP P



‘Old’ MIT Experiments

Shell structure with fully 
paired core and normal 
outer region. 

1st or 2nd order?



• Measurements locally in the trap. For the first time MIT also 
experimentally show phase separation.

‘New’ MIT Experiment: Homogeneous Phase Diagram

Shin et al., Nature 451, 689 (2008)

• Not understood why Rice sees deformation and no upper critical
imbalance (known as Clogston limit).



The Rice Experiments 

Partridge et al., PRL 97, 190407 (2006)

Shin et al. , PRL 97, 030401 (2006)

• Typical gas clouds with super-
fluid core at MIT.

• Gas clouds at lowest and higher
temperature of Rice

• No deformation 

a) Deformation  c) No deformation



• Spin-down particle in sea of spin-up particles: fermion or Cooper pair? 

Zero T, Unitary, Normal Phase: MC Equation of State
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• Dashed line

• Quantum phase transition at 
P = 0.39 (homogeneous) and 
P = 0.78 (trap with LDA)! Lobo et al. , PRL 97, 200403 (2006) 

or                             ?
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Quantum Monte Carlo
equation of state  



Renormalization Group Approach

- Integrate out modes in high-momentum shell Λ of width dΛ. 
Absorb result in couplings. Integrate out new shell, etc. 

- Use RG as (non-perturbative) method to solve iteratively many-body  
problem.
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- Starting point. The microscopic action

- Technically, we have to 
calculate one-loop diagrams.  

- Infinitesimal width makes
higher-loop diagrams vanish.



RG Theory for Imbalanced Fermi Gas
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• Integrate out momenta in a shell Λ
 

of infinitesimal width dΛ.
Renormalization of chemical potentials determines fermionic self-energy.
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• Interaction: ‘ladder diagram’ (scattering of particles), ‘bubble diagram’
(screening by particle-hole excitations). Coupled diff. equations!

Due to infinitesimal width 
higher loop diagrams vanish!

• Phase transition:              diverges (Thouless criterion). Self-energies  
diverge. Unphysical! CM-momentum/frequency dependence important!
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• One spin-down particle in a sea of spin up particles. 
Density of spin-down particles is zero. Self energy 
due to strong interactions (unitarity limit).

RG Theory for T=0, Unitary, Extremely Imbalanced Gas 
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• QPT from zero to nonzero 
down-density at 
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• Crucial to let chemical potential flow!



• In the extremely weakly interacting limit the chemical potentials don’t
renormalize anymore, i.e. the selfenergies go to zero

RG Theory: Weakly Interacting, Balanced Fermi Gas

• Differential form of gap equation with (some kind of) Gorkov’s 
correction
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• Exactly solvable! Leads to the BCS 
transition temperature reduced by a factor   
of e (with relative momentum it is 2.2)

• Flow to (stationary) Fermi surface. Natural 
endpoint because here excitations of  lowest 
energy.
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• Again, flowing of         crucial,
since

• Three Fermi levels in the system! But only one pole in RG equations

RG Theory: Unitarity Limit, Imbalanced Case

• Tricritical point determined by 
following class of Feynman diagram
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• Flow automatically to average Fermi level
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Experiments:



Conclusion and Outlook I

- Ultracold quantum gases are ideal quantum simulators. The field is 
able to address fundamental questions on many-body quantum 
systems in great detail.

- A first good example is the detailed study of the BEC-BCS crossover,
which gives a unified view on BEC- and BCS-like superfluidity.

- A second example is the study of the strongly interacting Fermi
mixture with a population imbalance, whose phase diagram is 
important to condensed matter, nuclear matter and astrophysics.

- Many more examples are under way. Fermi mixtures with a mass 
imbalance, with long-ranged anisotropic dipole interactions, the 
doped fermionic Hubbard model, etc. We recently worked on:



Conclusion and Outlook II

• Superfluid-normal interface and surface tension:



Conclusion and Outlook III

• Mass imbalance (6Li-40K) at unitarity:



Conclusion and Outlook IV

2D:3D:

• Imbalanced antiferromagnet:
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