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Wigner’s Random Matrix Model
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Eigenvalue distribution in 't Hooft limit
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Matrix Models and 2d Gravity
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Non-planar diagrams

Sum of diagrams



String Partition Function
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ribbon diagrams genus g
1/N expansion string surface



Triangulations of surface

Dual graph
Limit of large number of vertices



Eigenvalue Dynamics
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Effective action (repulsive Coulomb force)
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General Matrix Model
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‘t Hooft limit
N, »x, g =0, N,g =u, = fixed

Filling fractions (perturbative expansion)




Resolvent
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Resolvent
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Effective Geometry
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Periods (A)
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Periods (B)
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Spectral Curve

Hyperelliptic curve Xyt =W'(x)"+ f(x) '
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Spectral Curve

General phenomenon in matrix models (chains, external
fields, beta-ensembles, SO/Sp, etc). Spectral curve

P(z,y) =0
With meromorphic one-form

w = ydzx

Emergent geometry of large N systems



Complex Curves in Phase Space

algebraic curve = level set

2:H(x,y)=0
Hamilton-Jacobi theory
y = p(x)
branch pts = turning pts

Liouville form @ = ydx

action S(x)= ja)
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Topological string on hypersurface CY,

Calabi-Yau hypersurface in C*
X:uv+H(x,y)=0

uv+ H=0
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Quantum Curves
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Matrix models and chiral CFT

Eigenvalue density/matrix resolvent = collective boson field

dp(x)=Tr 1 n . ' P(x)
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Free scalar field
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Loop Equations & Virasoro Constraints

Invariance under diffeomorphism x — X(x)

Generated by stress-tensor

T(x)=1(d0) (x)

Loop equations

(TO)=W'(x)* + f(x)




Eynard-Orantin: All-Genus Solution

Recursion relations for correlation functions, completely geometric
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Lowers genus, adds more insertions. Reduces to Bergmann kernel
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Recursion Relations
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Quantum Spectral Curves

Random surfaces
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Toric Calabi-Yau

Geometry of M,
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Double Scaling Limts

Random triangulations: 2d gravity coupled
to (p,q) minimal CFT

Plz,y) =0 — y? =a%+ ...

Pure 2d gravity (p,q) = (2,3)
S:/\/§R+u\/§ y? =3

Topological gravity (p,q) =(2,1)
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Topological Gravity

Moduli space of Riemann surfaces
Mg s, dimM, s =39 —-3+s
Observables
Tn = c1(L)"

Correlation functions
Tn Tn,




Maryam Mirzakhani’s Work

Compute the volume of moduli space of surfaces

Fy = vol(M,)

Weil-Peterson metric: pick a constant negative curvature
metric on the surface, equivalent to flat SL(2,R) connection.
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Related to tautological classes

W= T4 (T2)

Contact terms
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Spectral curve (Eynard)
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Jackiw-Teitelboim Gravity

Hyperbolic metrics
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Constant curvature metrics

R=-1

Dual to Schwarzian theory on the boundary, eqv SYK model
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Open Strings
Introduce vector degrees of freedom
/d@dwd@ o TIW (2)+9p(P—2)1)

External quark line

Vi




Open Strings

Integrate out vector-valued variables

/dCI) e W) det (D — 2)

Vertex operators = D-branes = fermions in chiral CFT

y(x)=e"™ = det(x — (I)]
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Topological D-Branes

H(x,y)=0
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Open string partition function
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Quantum Wave Function

Single brane wave function ‘W(x)
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Quantization of phase space
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Gaussian Matrix Model

\PN (x)= <det((1) — X)>N = HN_1 (X),e—xz/z

Eigenfunctions of harmonic oscillator
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Topological Gravity

Airy equation
(0% — )T =0

D-brane (open string) partition function
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Open Topological Strings

Surfaces with b holes, s bulk and r boundary punctures
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Attempted definition

(Tny " Tn,0') = / c1(L1)™ - c1(Lg)™
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Boundary puncture operator, dual to bdry cosm constant.



Open Topological String Anomaly

Moduli space in not orientable
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Open Topological String Anomaly

Compactified moduli space has a boundary in (real) codim 1.
Degeneration of boundary:

@ — s
. ] 42 21 Sg

Realdimn-3 -> dimn-4



LG-model

Matter for (p,1) model is topological gravity coupled to
twisted N=2 SUSY minimal model (Landau-Ginzburg)

W(g) = ¢"
In particular for “pure” topological gravity
W(¢) = ime*

After twisting W is spin one, so ¢ is spin %
(in general spin 1/p).
Choice of spin structure

¢ €S, S®2 = K



Closed Surfaces

Spin structures are odd or even, measured by the number
of fermion zero modes

w = dim H°(X,S) = 0,1 (mod 2)

Sum over spin structures for fixed genus g
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Redefine the coupling constant
gs — V2g,



Open Surfaces

Can we extend (-1)¥ to surfaces with boundaries?

Solved by mathematicians (Pandharipande, Solomon, Tessler)

Two choices of spin bundle on boundary. Include puntures that
alternate between the two choices.



LG-model

This prescription has a physical interpretation. In LG model
there can be two choices of branes B, B’, depending on the
orientation. Solutions of instanton equation

Op =W’
Quantize: only physical states in B-B’ channel.

Super gauge group interpretation

D= 4 B , A,D even, B,C odd.
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Anomalies
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Matrix Models

Can derive the modified Virasoro constraints.

Open string partition function

U(z) = /dv (eY7)
Satisfies
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Matrix Models

Consider the case of only puntures (bulk & boundary)

<6t07'0-|—’00> _ e(tov+’v3/3)/gs

Airy function!




Conclusions

The relation between matrix models and topological

Gravity can be extended to open strings. Many subtle
Effects to take care of.

Open problems:

 Extend Mirzakhani’s work to unoriented strings. Problem:
moduli space seems to be non-compact.

 Extend to topological supergravity. Moduli space of super-
Riemann surfaces. Some preliminary results suggests that it’s
related to the (-2,1) model, or LG with sinlgular potential
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