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Leonardo da Vinci (1452-1519)



Turbulence: Problem Statement Holography Machine Learning Challenges

Turbulence

Turba is a Latin word for crowd. Turbulence originally refers to
the disorderly motion of a crowd. Scientifically it refers to a
complex and unpredictable motions of a fluid.
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Turbulence

• Fluid turbulence is a major unsolved problem of physics.
• Emergent complex structure from simple rules (Newton’s

Second Law).
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Turbulence

• Most fluid motions in nature at all scales are turbulent.
Aircraft motions, river flows, atmospheric phenomena,
astrophysical flows and even blood flows are some
examples of set-ups where turbulent flows occur. Why ?

• Despite centuries of research, we still lack an analytical
description and understanding of fluid flows in the
non-linear regime. Reductionism is not effective.

• Insights to turbulence hold a key to understanding the
principles and dynamics of non-linear systems with a large
number of strongly interacting degrees of freedom far from
equilibrium. Probabilty measure ?
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Navier-Stokes Equations (1822)

• The incompressible Navier-Stokes (NS) equations provide
a mathematical formulation of the fluid flow evolution:

∂tv i + v j∂jv i = −∂ ip + ν∂jjv i + F i , ∂iv i = 0, i = 1, ...,d
(1)

• v i is the fluid velocity and p is the fluid pressure, ν is the
kinematic viscosity and F i is an external random force.

• The pressure is non-locally related to the velocity:

∇2p = −∂iv j∂jv i (2)
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Reynolds Number
• An important dimensionless parameter in the study of fluid

flows is the Reynolds number (1883)

Re =
lv
ν

(3)

where l is a characteristic length scale, v is the velocity
difference at that scale, and ν is the kinematic viscosity.

• The Reynolds number quantifies the relative strength of
the non-linear interaction v j∂jv i compared to the viscous
term ν∂jjv i .

• When the Reynolds number is of order 103 or more, one
observes numerically and experimentally a turbulent
structure of the flow.

• This phenomenological observation is general, and fluid
details are of no importance.
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Transition to Turbulence

(Source: Wikipedia)
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Turbulence in Nature

• Most flows in nature are turbulent. This is simple to see by
noting that the kinematic viscosity of water is ν ' 10−6 m2

sec

and that of air is ν ' 1.5× 10−5 m2

sec . Thus, a medium size
river has a Reynolds number Re ∼ 107.
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Turbulent Flows

• The turbulent velocity field exhibits highly complex spatial
and temporal structures and appears to be a random
process. Thus, even though the NS equations are
deterministic (in the absence of a random force), a single
realization of a solution to the NS equations is
unpredictable.

• Instead of studying individual solutions to the NS
equations, one is led to consider the statistics of the
solutions.
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Statistical Properties

• Numerical and experimental data show that the statistical
average properties exhibit a universal structure shared by
all turbulent flows, independently of the details of the flow
excitations.

• One defines the inertial range to be the range of distance
scales l � r � L, where the scales l and L are determined
by the viscosity and forcing, respectively.

• Turbulence at the inertial range of scales reaches a steady
state that exhibits statistical homogeneity and isotropy.
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The Statistical Approach
• Consider the statistics of velocity difference between points

separated by a fixed distance.

V(x)
V(y)
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Structure Functions

• Define the longitudinal velocity difference between points
separated by a fixed distance r = |~r |

δv(r) =
(
~v(~r , t)− ~v(0, t)

)
·
~r
r

(4)

• The structure functions exhibit in the inertial range a
scaling

Sn(r) = 〈(δv(r))n〉 ∼ r ξn (5)

• The exponents ξn are universal, and depend only on the
number of space dimensions.
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K41 Theory
• In 1941 Kolmogorov argued that in three space dimensions

the incompressible non-relativistic fluid dynamics in the
inertial range follows a cascade breaking of large eddies
to smaller eddies, called a direct cascade, where energy
flux is being transferred from large eddies to small eddies
without dissipation.
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Scale Invariance

• Kolmogorov further assumed scale invariant statistics, that
is

P(δv(r))δv(r) = F
(
δv(r)

rh

)
(6)

where P(δv(r)) is the probability density function, and h is
a real parameter.

• Treating the mean viscous energy dissipation rate ε as a
constant in the limit of infinite Reynolds number, he
deduced a linear scaling of the exponents

ξn =
n
3

(7)
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K41 Theory
• Longitudinal n-point functions:

Sn(r) ≡ 〈
(

(v(x)− v(y)) · r
r

)n
〉 ∼ r

n
3 (8)

• Energy spectrum:
E(k) ∼ k−5/3 (9)
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Intermittency

• All direct cascades are known numerically and
experimentally to break scale invariance and do not simply
follow Kolomogorov scaling.

• In two space dimensions the energy cascade is inverse,
that is the energy flux is instead transferred to large scales.

• Kolmogorov’s assumption that the random velocity field is
self-similar is incorrect in direct cascades, but it seems to
hold in the inverse cascade.

• The self-similarity assumption misses the intermittency of
the turbulent flows.
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Intermittency (Schematic)

Cantor function
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Anomalous Scaling

• The calculation of the anomalous exponents and their
deviation from the Kolmogorov scaling is a major open
problem.

n

Anomalous 

Exponents

1 2 3

1

n/3

ξn
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Anomalous Scaling

• We propose and derive under certain assumptions an
exact formula for the inertial range anomalous scalings ξn

ξn −
n
3

= G2(d)ξn(1− ξn) (10)

• G(d) is a numerical real parameter that depends on the
number of space dimensions d ≥ 2.

• It quantifies intermittency and the deviation from
Kolomogorov linear scaling ξn = n

3 .

C. Eling, Y.O. JHEP 1509 (2015) 150
Y.O. JHEP 1711 (2017) 040
Y.O. Eur.Phys.J. C78 (2018) no.8, 655
Y.O. arXiv:1809.10003 (Jacob Bekenstein: The
Conservative Revolutionary)
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Two Space Dimensions

• In two space dimensions the energy cascade is an inverse
cascade, where the energy flux flows to scales larger than
the injection scale.

• In this case, one has the energy spectrum agreeing with
the Kolmogorov scaling ξ2 = 2

3 .

• This implies that G2 = 0, and that all the other scaling
exponents follow the Kolmogorov scaling ξn = n

3 .
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Three Space Dimensions
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Figure: The dashed line represents Kolmogorov scaling. The best fit
value of the free parameter G2 is about 0.161. The error on the data
is about ±1 percent (Benzi et.al. 1995).
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Three Space Dimensions
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Figure: Fit to numerical data of numerical low moments (Chen et.al
2005). The dashed line represents Kolmogorov scaling. The best fit
value of the free parameter G2 is about 0.159.
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Four Space Dimensions
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Figure: Fit to the 4d exponents given in (Gotoh et.al. 2007). The solid
line is the 4d fit with G2 about 0.278.
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Random Geometry

• Formula (10) is (Knizhnik-Polyakov-Zamolodchikov)-type
relation (KPZ) that arises when coupling a dynamical
system to a random geometry (1988):

dµγ(x) ∼ eγφ(x)dµ (11)

• The Gaussian random field φ(x) has covariance
φ(x)φ(y) ∼ − log |x − y | .
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Scale Symmetry Breaking

• In the absence of a viscosity term, the (inviscid) NS
equations (1) exhibit two scale symmetries of space and
time:

x i → eσx i , t → ezσt (12)

• The local energy dissipation ε(x) = ν
2

(
∂iv j + ∂jv i)2

(alternatively the flux) breaks spontaneously the
symmetries of the inviscid NS equations to z = 2

3 :

∆K 41[v i ] =
1
3

(13)
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Inertial Range Dilaton

• The dilaton τ(x) is the fluctuation:

ε(x) = ε̄eδτ(x) (14)

• The dilaton action reads:

SD(τ, ĝ) =
d

Ωd (d − 1)!

∫
M

ddx
√

ĝ
(
τPĝτ + 2QQĝτ

)
(15)

• T. Levy, Y.O. JHEP 1806 (2018) 119, I. Hason,
arXiv:1708.08294, T. Levy, Y.O., A. Raviv-Moshe JHEP
1812 (2018) 122, JHEP 1910 (2019) 006, A. Kislev, T.
Levy, Y.O. JHEP 7 (2022) 1.
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Dilaton Field Theory

• Pĝ are the conformally covariant operators (GJMS 92):

Pĝ = (−∆)
d
2 + lower order (16)

• Qĝ is the Q-curvature scalar (Branson 91):

Qĝ =
1

2(d − 1)
(−�)

d
2−1R + ... (17)



Turbulence: Problem Statement Holography Machine Learning Challenges

Dilaton Dressing

• The operators in the theory are K41 operators OK 41
dressed by a dilaton factor:

O(x) = edατOK 41(x), α = γ(1−∆) (18)

where d∆K 41 is the undressed dimension of OK 41.
• We get the KPZ equation:

∆−∆K 41 =
γ2

2
∆(1−∆) (19)



Turbulence: Problem Statement Holography Machine Learning Challenges

Anomalous Scaling

• Consider the longitudinal structure functions Sn:

Sn(r) = 〈(δr v)n〉 ∼ r ξn (20)

where δr v is the longitudinal velocity difference between
points separated by a fixed distance r = |~r |:

δr v =
(
~v(~r , t)− ~v(0, t)

)
·
~r
r

(21)

• The K41 scaling dimension of (δr v)n is ∆K 41 = n
3 , thus

ξn −
n
3

= G2(d)ξn(1− ξn) (22)
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Trace Anomaly

Requiring that the inertial range universal structure and in
particular the anomalous scalings should not depend on the
forcing scale L:

atotal = adilaton + aK 41 = 0 (23)

and
G2(d) ' 2

Ωd (d − 1)!|aK 41(d)| (24)
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Summary

• Intermittency may be explained as a consequence of a
random measure introduced by the local energy
dissipation.

• This implies an exact formula for the anomalous scaling of
turbulence:

Sn(r) = 〈(δr v)n〉 ∼ r ξn

ξn −
n
3

= G2(d)ξn(1− ξn)
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Black Hole Dynamics

• The existence of horizon is crucial: fields can fall into the
black hole but cannot emerge, this breaks time reversal
symmetry and allows Einstein equations to describe
dissipative effects.
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Geometrization of the Fluid Variables

• The dynamics of the event horizon is described by the
Navier-Stokes equations (Damour (82), Bhattacharyya,
Hubeny, Minwalla and Rangamani (08), Eling, Fouxon,
Y.O. (09)).

• The fluid pressure and velocity in the geometrical picture :

V(x)
�

P(x)
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Energy Power Spectrum
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Figure: On the left: the double logarithmic plot of the ensemble
averaged energy power spectrum E(k) as a function of the wave
vector k at various time steps , compared with the expected k−5/3

scaling (red dotted line). On the right: the analogous plot for the
energy power spectrum computed from the fluid velocity on the
horizon.

With S. Waeber and A. Yarom (in peparation)
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Local Energy Dissipation

• The local energy dissipation:

ε(x) =
ν

2

(
∂iv j + ∂jv i

)2
. (25)

• The ensemble average of

εr (x) =
1

Vol(Bd (r))

∫
|x ′−x |≤r

ddx ′ε(x ′) , (26)

is independent of x by isotropy and of r by K41 scaling.
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Holographic Local Energy Dissipation
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Figure: The first (left) and second (right) moment of the local energy
dissipation εr (blue curve). As expected for two dimensional
turbulence, εr and its higher moments show no scaling in the inertial
range, indicated by the red dotted line. The black dotted curve shows
the energy dissipation computed from the horizon.
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Machine Learning of Fluid Flows

• Consider a non-linear PDE:

∂t~v(~x , t) = L~v(~x , t) (27)

• A neural network evolves velocity fields, ~v(~x , t = 0) to a
fixed time T

ΦT~v
(
~x , t = 0

)
= ~v

(
~x ,T

)
(28)

by learning from a set of i = 1 . . .N initial conditions
sampled at t = 0, ~vi

(
~x , t = 0

)
, and their corresponding

time-evolved solutions of ~vi
(
~x , t = T

)
.

• We generalized ΦT , to propagate solutions at intermediate
times, 0 ≤ t ≤ T .

With R. Rotman, A. Dekel, R. Ber, L. Wolf (arXiv:2207.14366)
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Machine Learning of Fluid Flows
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Machine Learning Complexity

• We train neural networks to distinguish turbulence fluid
configurations from chaotic ones, noise and real world
images.

• What is the relative complexity of the various classification
tasks involving turbulence?

• How does the pattern of complexity change with depth as
we go inside the neural network? How does it compare
with classifying real world images?

• Can we understand what features the neural network uses
to distinguish chaos from turbulence?

With R. Janik and T. Whittaker arXiv:2211.15382
R. Janik and P. Witaszczyk (effective dimension)
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Turbulence
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Chaos and Noise
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CNN

Figure: Schematic of the CNN. Each stage represents a set of
convolutional layers.
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Turbulence vs. Real World Images

Figure: Left panel shows effective dimensions for images of weakly
compressible turbulence vorticity vs. cats and dogs as well as for
classifying between cats and dogs. Right panel shows the
incompressible case.
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Turbulence vs. Chaos

Figure: Effective dimensions for classifying weakly compressible
turbulence vorticity (left) and incompressible turbulence vorticity
(right).
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Turbulence vs. Real World Images

Figure: Left panel shows effective dimensions for images of weakly
compressible turbulence vorticity vs. cats and dogs as well as for
classifying between cats and dogs. Right panel shows the
incompressible case.
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Learning Statistical Turbulence

Figure: Four sample image patches from the training set (top) and
four samples generated by the diffusion model (bottom).
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Learning Statistical Turbulence

Figure: The histogram of cosine distances between 16 generated
samples and the 8000 training images (left) and a pair of the most
similar sample and training image (right).
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Challenges

• Precision turbulence.
• Develop the field theory of turbulence.
• Holography - the fractal structure of the black hole horizon.
• Machine learning of turbulence statistical distribution.
• Superfluid turbulence.
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Thank You
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