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1 Introduction

In Classical Electrodynamics it is well known that a change of gauge of the electromag-
netic potential A′µ(x) = Aµ + ∂µχ(x) does not have any influence on the experimental
outcome, since the electromagnetic field strength tensor is left invariant. In Quan-
tum Electrodynamics this issue is more controversial. On the one hand, there is a
widespread belief that the gauge should not matter, on the other hand, the awareness
that there is no satisfactory formulation of this proof or fact si growing.
In fact, standard text book discussions of quantization of the electromagnetic field start
with fixing the gauge. In striking contrast to the claimed arbitrariness of the function
χ above, essentially with the Coulomb and the Lorentz gauge only two gauge fixing
conditions are discussed.
Even though there are few elaborations on the unitary equivalence of gauges such as
[HLL94] and [NTO94], the authors usually ignore mathematical pathologies that occur
in the course of the discussion.
The goal of this thesis is to shed some light on the problem of gauge invariance from a
mathematical point of view in the simple case of the quantized electromagnetic field
coupled to an external current j.
To address this problem, we will review Dirac’s elaboration on Singular Systems [Dir64]
in the first part of Chapter 2. Dirac explains that a system has intrinsic constraints, that
force the physical quantities to a submanifold, whenever the Legendre transformation
is not a local isomorphism. Moreover, he introduces a classification of the constraints,
from which the origin of gauge freedom and the necessity to fix the gauge in order to
define a consistent quantization procedure become clear.
In order to speak of a Quantum Theory, we need to fix a quantization map that describes
the transition from the Classical to the Quantum Theory. The standard procedure in
textbooks is the so-called canonical quantization. However, in the usual ansatz to define
such a quantization map, Groenewold showed that one encounters contradictions due
to the non-commutativity of observables in Quantum Theories [Gro46].
In the second part of Chapter 2, we obviate these contradictions by identifying classical
observables with Weyl elements, which are bounded functions of the fields. Field
theories are then uniquely defined by specifying a regular representation of the Weyl-
C∗-algebra, the C∗-algebra generated by the observables.
In this formalism, the quantization is defined by replacing the classical commutative
Weyl-C∗-algebra with some non-commutative analogue and specifying a regular repre-
sentation. Unitary equivalence of gauges can hence be addressed on the level of regular
representations of Weyl-C∗-algebras.
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1 Introduction

Applying Dirac’s procedure of Singular Systems to the classical Lagrangian of the
electromagnetic field reproduces the gauge freedom of the electromagnetic potential
Aµ(x)→ Aµ + ∂µχ(x). In this thesis, we will focus on the quantization of two different
gauges. On the one hand, the extensively studied Coulomb gauge and on the other
hand the seldom discussed Axial gauge.
While the representation of the Coulomb gauge observables turns out to be well-
defined, there are severe singularities for the Axial gauge representation which lead to
ill-definiteness of the observables. This discussion can be found in Chapter 3.
Mund, Schroer and Yngvarssn [MSY05] suggested a method of smoothing these sin-
gularities such that the representation is well defined. We adopt this idea to justify a
regularized Axial gauge representation, in the course of which the problem of unitary
equivalence of the different gauges under consideration can be stated on a rigorous
level. The problem of obtaining the Yngvarson-Mund-Schroer smearing by canonical
quantization of a certain classical theory will be discussed in Chapters 4 and 5.
Finally, in Chapter 6 and 7, we are in the position to investigate the unitary equivalence
of different gauges rigorously. We will show in Chapter 6 that such equivalence holds
if the total electric charge of the system is zero. Interestingly, for non-zero electric
charge the equivalence appears to fail due to a different low-energy behaviour of the
two gauges as will be proven in Chapter 7.
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2 Preliminaries

This chapter serves as introduction to the basic concepts and formalisms that we will
make use of to address the problem of the unitary equivalence of different gauges.

2.1 Conventions

First, let us point out which conventions are used in this work.
The spacetime will be assumed to be the pair (Mink4, η) consisting of the 4-dimensional
Minkowski space and the Minkowski metric η with signature (+,−,−,−).
Different types of indices will appear in this work. Greek indices are 4-vector indices,
i.e. indices labeling the components of a 4-vector and run from 0 to 3, whereas Latin
indices denote spatial components running from 1 to 3.
Whenever there appear indices that neither indicate 4-vector, nor spatial components,
we point out their range.
Furthermore, Heaviside units, i.e. c = h̄ = µ0 = ε0 = 1, are used in this work.

2.2 Constrained Systems and Gauge freedom

Singular Systems

In this section, we provide an introduction to the concept of Singular Systems where
the standard procedure of computing the time evolution fails. We will elaborate on this
issue and we will expose that gauge field theories are a special class of such Singular
Systems. The first one to investigate the properties of such system was Paul Dirac in his
famous Lectures on Quantum Mechanics [Dir64]. The discussion of Singular Systems
in point mechanics and Field Theory follows mostly the book of Sundermeyer [Sun82],
the Bachelor Thesis [Frä11] and [Thi07], chapter 24.
A physical system is usually described on some n-dimensional configuration space M
and a Lagrange function TM → C on its tangent bundle. For the following discus-
sion we need to assume that the Lagrange function is not explicitly time dependent.
Assuming TM has local coordinates (qi, vi) we can write:

L = L(qi(t), vi(t)) (2.1)

where we identified with vi the velocity of qi.
As it is well known the principle of least action leads to Euler-Lagrange equations that
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2 Preliminaries

govern the time evolution:

∂L
∂qi −

d
dt

∂L
∂vi =

∂L
∂qi −

∂2L
∂qi∂vj vj − ∂2L

∂vi∂vj v̇j !
= 0 (2.2)

In this form it is obvious that the accelerations v̇i can only be uniquely expressed in
terms of qj and vj if the Hessian matrix

Gij =
∂2L

∂vi∂vj (2.3)

is invertible. In other words if it has non-vanishing determinant.

Definition 2.1. A system is called singular if the Hessian matrix of the Lagrange function
L with respect to the velocities

Gij =
∂2L

∂vi∂vj (2.4)

has vanishing determinant.

The issues arising for a singular system become more obvious if one tries to deal
with the system in the frame of Hamilton mechanics. It is well known that Hamilton
mechanics offer an equivalent way of describing physical systems. The Hamilton
function is usually a function H : T∗M → C on the cotangent bundle. The transition
from the Lagrange to the Hamilton function is obtained via the Legendre transformation

Definition 2.2. The map
ρL :TM → T∗M

(qi, vi) 7→ (qi, pi =
∂L
∂vi )

(2.5)

is called Legendre transformation.

Remark 2.3. We note that the Jacobi matrix of the Legendre-transformation with respect to
the velocities J(ρL) coincides with the Hessian matrix G. Hence, we can give an equivalent
definition of a singular system in terms of the Legendre transformation.

Definition 2.4. (i) A physical system is called singular if the Legendre transformation
ρL is not a local isomorphism.

(ii) The Hamilton function H for a non-singular system is a function:

H :T∗M → C

(qi, pi) 7→ vi pi − L(qi, vi)
(2.6)

where the velocities vi(qj, pj) are expressed in terms of positions and its canonical
momenta.
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2.2 Constrained Systems and Gauge freedom

For singular Lagrangians it is not possible to solve all velocities in terms of the
canonical momenta and positions. In this case it is not clear how the Hamilton function
is defined. We will now pretend that the Hamilton function is a function on a larger
space than T∗M by formally following the definition.
As it turns out the Hamilton function will be a function on T∗M for some smaller
configuration space M. T∗M will be interpreted as the physical phase space. The
derivation of these results will be discussed in the following.

Let us assume that the rank of G is constant and rk(G) = n − r where n is the
dimension of the configuration space M and r ∈N is some number. Then we can (at
least locally due to the inverse function theorem) express n− r velocities in terms of
momenta and position:

va = ua(qi, pa, vj) (2.7)

with i ∈ {1, . . . , n}, a ∈ {1, . . . , n− r}, j ∈ {n− r, . . . , n}.
Furthermore, inserting this in the remaining equations pj =

∂L
∂vj cannot depend on vj

since then the rank of G would exceed n− r. Hence, we get

pj =

(
∂L
∂q̇j

)
q̇a=ua(qi ,pa,vj)

:= πj(qi, pi) (2.8)

which shows that the pa are not independent.

Definition 2.5. The Hamilton function

H′ : T∗M⊕ TM→ C (2.9)

H′(qi, pi, vj) =
(

pivi − L(qi, q̇i)
)

q̇a=ua(qi ,pi ,vj)
(2.10)

is called primary Hamiltonian.

Proposition 2.6. H′ is linear in vj with coefficients φj = pj − πj(qi, pi)

Proof. Differentiating H′ with respect to vj gives the result, see [Thi07].

Remark 2.7. We decompose H′ as

H′(qi, pi, vj) = H̃(qi, pi) + vjφj(qi, pi), (2.11)

where H̃ is independent of the velocities vj.

Definition 2.8. The functions:

φj = pj − πj(qi, pi) (2.12)

are called primary constraints.
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2 Preliminaries

The reason that φj are called constraints is a consequence of the equations of motion

Theorem 2.9. The Hamilton equations are

q̇i =
∂H̃
∂pi

+ vj ∂φj

∂pi
, ṗi = −

∂H̃
∂qi − vj ∂φj

∂qi , φj = 0. (2.13)

They are are equivalent to the Euler-Lagrange equations.

This theorem can be proved by carefully following the definitions and hence we will
omit the technical details.

Remark 2.10. The equations of motion show that the vj’s do not follow any dynamical trajectory
and thus are arbitrary c-number functions which may be interpreted as Lagrange multipliers
that constrain the system to the submanifold defined via {φj = 0}.
Hence, the constrained phase space is coordinatized by the positions qa and the canonical
momenta pa which we equip with the standard symplectic structure:

{qa, pb} = δa
b (2.14)

{qa, qb} = {pa, pb} = {qa, vj} = {pa, vj} = 0 (2.15)

such that we can express the e.o.m in the well known compact form:

ṗi = {pi, H′} (2.16)

q̇i = {qi, H′} (2.17)

For a general observable F ∈ C∞(M) the equation of motion reads:

Ḟ = {F, H′} = {F, H̃}+ vj{F, φj} (2.18)

Remark 2.11. The configuration space for the physical system is not M since there are additional
constraints that restrict the system to some submanifold.
Recalling (2.7) and the fact that φj ≈ 0 show that the Hamilton function restricted to the
physical phase space is independent of the velocities vi. Hence, the physical Hamilton function
H is a function on T∗M̄ for some configuration space M̄. We will see that the φj are not
necessarily the only constraints defining M̄.

Notation. The symbol ≈ indicates weak equalities. These are equalities that hold in the virtue
of the constraints, i.e. on the constraint submanifold. Hence, we should also write φj ≈ 0.

Dirac-Bergmann Algorithm and Secondary Constraints

The result that the primary constraints vanish on the physical submanifold is consistent
with the time evolution if and only if:

φ̇k = {φk, H′} = {φk, H̃}+ vj{φk, φj} ≈ 0 (2.19)
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2.2 Constrained Systems and Gauge freedom

Otherwise the system would leave the submanifold {φj = 0} after some time and
violate the constraints.
In order to fulfil this equation we can distinguish between three cases. With the
definition Mrs = {φr, φs} we have:

(i) {φj, H̃} 6= 0, det(M) 6= 0
All Lagrange multipliers are (weakly) fixed vr = −Mrs{φs, H̃} and the equations
of motion become Ḟ = {F, H̃}−{F, φr}Mrs{φs, H}, where Mrs denotes the inverse
matrix of Mrs.

(ii) {φj, H̃} 6= 0, det(M) = 0
To be discussed further.

(iii) {φj, H̃} = 0
Some Lagrange multipliers are fixed, depending on the rank of M.

In the following we will discuss the second case further. Let rk(M) = r− t, then there
are t nulleigenvectors es of M such that:

φ̇kek
s = {φk, H̃}ek

s + vj{φk, φj}ek
s (2.20)

= {φkek
s , H̃} !≈ 0 (2.21)

For each es this could yield conditions φs that are linearly independent of the primary
constraints. Such conditions are called secondary constraints.
After finding the secondary constraints we need to repeat the whole procedure and
eventually we find further linear independent consistency constraints that assure φ̇s ≈ 0.
Those constraints are called tertiary constraints.
This method breaks down after having at most 2n linear independent constraints in total
because then the phase space is constraint to a discrete set of points. This procedure is
called Dirac-Bergmann algorithm.

First and Second class constraints

Definition 2.12. A function F on the phase space is called first class if

{F, φj} ≈ 0 (2.22)

for all constraints φj. Otherwise it is called second class.
Analogously, we call a constraint first class or second class respectively if its constraint
function φj is first respectively second class.

Remark 2.13. We will see that the distinction between primary and secondary constraints is
not substantial. The distinction between first and second class constraints, however, will play
an essential role in the discussion of gauge freedom.

7



2 Preliminaries

We note that linear combinations of constraints again are constraints. Hence, one
may think of constraints as a vector space.
Assume that we have k constraints in total and thus M is a k× k-matrix. If det(M) 6= 0
then every constraint is of second class.
However, if det(M) = 0 we assume that the matrix M has rank k− l for some l ∈ N

and we can find a basis such that M has l zero rows and columns. That means that we
can construct l first class constraints. It is not possible to find a basis such that we have
more than l first class constraints since then the rank of M would be smaller that k− l.
We say that we have constructed a maximal set of first class constraints.
In the following we assume that we are always working with constraints such that we
have a maximal set of first class constraints. We rename all such first class constraints
as γm and second class constraints as ξµ. Here and in the rest of this section, the indices
m and µ do not indicate spatial or 4-vector components. They run over the number of
the respective constraints.

Remark 2.14. Working with a maximal set of first class constraints we always have an even
number of second class constraints. Assume the matrix Ms of Poisson brackets of the second
class constraints. This has to have non vanishing determinant. Otherwise we could construct a
first class constraint from linear combinations of second the second class constraints which is a
contradiction to the maximality of the first class constraints.
Since the Poisson bracket is anti-symmetric, so is Ms. As anti-symmetric matrix with non
zero determinant Ms has to have an even number of rows which means there has to be an even
number second class constraints.

Second class constraints

Let us have a closer look at the second class constraints and assume for this purpose
that only such constraints are present.
Since det(M) 6= 0 the Lagrange multipliers are fixed. Inserting the fixed Lagrange
multipliers to the time evolution gives:

{F, H′} = {F, H̃} − {F, ξµ}Mµν{ξν, H̃} (2.23)

It is obvious that the Poisson bracket structure is not compatible with the constraints
since in general {F, φk} 6≈ 0. However, we have φk ≈ 0 which is not captured by the
Poisson bracket. Hence, we need to introduce a new modified symplectic structure that
respects the constraints. (2.23) motivates the definition of a new bracket:

Definition 2.15. The Dirac bracket is a modified Poisson bracket and defined between
two phase space functions f , g ∈ C∞(M) via:

{ f , g}D = { f , g} − { f , ξµ}Mµν{ξν, g} (2.24)

8



2.2 Constrained Systems and Gauge freedom

Proposition 2.16 (Properties of the Dirac bracket). The Dirac bracket has the same algebraic
properties as the Poisson bracket (antisymmetry, linearity, Jacobi and product rule). Moreover,
{ f , ξµ}D = 0 holds strongly for every f ∈ C∞(M).
The difference to the Poisson bracket is that the canonical relation {qi, pj} = δi

j is no longer
satisfied for the Dirac bracket.

Remark 2.17. Up to now we are dealing with the whole phase space M having the dynamics
restricted to a submanifold. Actually, we want to work with the reduced phase space M̄
containing only the physical degrees of freedom. Unfortunately, in the most cases M̄ is very
difficult to construct. However, Maskawa and Nakajima [MN76] were able to show that the
Dirac bracket acts on the constrained phase space as the Poisson bracket on the reduced phase
space.

First class constraints

Assume that we do not only have second class constraints but also some first class
constraints γm. The time evolution then reads:

{F, H′} = {F, H̃}+ vk{F, γ′k} − {F, ξµ}M̃µν{ξν, H̃} (2.25)

where M̃ is the matrix consisting of Poisson brackets of the second class constraints.
Since we can deal with second class constraints in this case in the same way as we
already discussed and the presence of second class constraints does not influence the
way of dealing with first class constraints, we will assume for the further discussion
that only first class constraints are present.
We note that in (2.25) only primary first class constraints γ′k appear. It is first conjectured
by Dirac [Dir64] and shown in numerous examples that in many situations it is
physically correct to consider the secondary first class constraints as well by adding them
to the primary Hamiltoninan H′ using additional Lagrange multipliers λa although it
does not follow strictly from the formalism:

Definition 2.18. The extended Hamiltonian He is

He = H̃ + λmγm (2.26)

and is assumed to govern the time evolution:

{F, He} = {F, H̃}+ λm{F, γm} (2.27)

Since λm are Lagrange multipliers, the time evolution is not unique. For an infinites-
imal time evolution, we have F(t) = F + ({F, H̃}+ λm{F, γm})t +O(t2). Since, the
λm are arbitrary, for infinitesimal time evolution the difference between two functions
arising from F is:

δεF = εm{F, γm} (2.28)

Hence, two functions differing in terms of {F, γm} describe the same observable. This
motivates

9



2 Preliminaries

Definition 2.19. (i) First class constraints are generators of gauge transformations.

(ii) A function F ∈ C∞(M) is called observable if {F, γm} ≈ 0 ∀m.

Remark 2.20. Notice that every second class constraint classically eliminates one degree of
freedom while every first class constraint removes two. The reason for this is that they do not
only delete degrees of freedom but also compute gauge orbits. However, since the number of
second class constraints is always even, the reduced phase space has always again an even
number of physical degrees of freedom.

2.3 The Idea of Canonical Quantization

After having discussed the main properties of classical Singular Systems, our goal is to
perform the transition from Classical to Quantum Theory. So far a working hypothesis
is to define a Quantum Theory by fixing a quantization map that describes the transition
from the Classical to the Quantum Theory.
In this thesis, we will work with the so called Canonical Quantization. In a posterior
chapter, we will describe the procedure of Canonical Quantization in a different
formalism on a more rigorous level. The purpose of this chapter is to give a first
impression of the chosen quantization and the problems one faces in the presence of
constraints.
Historically, this procedure was first introduced by Dirac in his famous book on QM
[Dir30]. The basic idea may be summarized as

{·, ·} → − i
h̄
[·, ·] (2.29)

which is to be read as: map each classical observable to an operator on a suitable Hilbert
space in such a manner that the Poisson bracket is mapped to − i

h̄ times the commutator
of the corresponding operators. The idea (2.29) is formulated for an arbitrary choice of
units. In the units that are used in this thesis the pre-factor in front of the commutator
is just −i.
There are many attempts to embed the formal idea (2.29) in a rigorous mathematical
context. In a very popular approach, one assumes that the operators corresponding
to classical observables are at least symmetric. That means, we need to fix a suitable
Hilbert space H and find a linear map Q : C∞(M) → SYM(H) that intertwines the
Poisson bracket on C∞(M) with the commutator on SYM(H). Due to the Stone-von
Neumann theorem one can additionally demand that the position and momentum are
mapped to the standard form of the position and momentum operators.
For this approach, Groenewold proved the famous No Go theorem [Gro46] which states
that there are only certain Lie-subalgebras of C∞(M), for that (2.29) can be satisfied.
We refer to [Giu03] for a modern perspective on the canonical quantization procedure
in the this formalism. The author works mathematically rigorous and amongst others
proves the No Go theorem.
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2.3 The Idea of Canonical Quantization

2.3.1 The Idea of Canonical Quantization of Singular Systems

As we have discussed in the previous section a singular system is constrained. The
procedure of Canonical Quantization is not consistent with those constraints. This
comes from the fact that the Poisson bracket does not respect the constraints in the
sense that the Poisson bracket of a constraint function with some other function does in
general not vanish (not even weakly). Hence, the quantization of such a bracket does
not vanish weakly as well.
The commutator of the corresponding operators on the other hand does vanish weakly
by construction. Hence, the quantization procedure for singular systems needs to be
modified.

Systems with only Second class constraints

If only second class constraints are present we have seen in the previous section that one
can construct the Dirac bracket on the constrained phase space such that the constraints
are strongly implemented. It turned out that the Poisson brackets calculated on the
reduced phase space equal the Dirac brackets on the original phase space. But the
reduced phase space is nothing but the physical space of independent variables.
Hence, it is reasonable to modify the formal requirement (2.29) to:

{·, ·}D → −
i
h̄
[·, ·] (2.30)

This modification does however not remove the problems of ordering ambiguities after
quantization. The results of the Groenewold theorem remain valid.

Systems with First class constraints

The quantization of systems with first class constraints is more subtle. We have seen that
first class constraints generate gauge transformation that do not change the physical
state. Hence, there is more that just one set of canonical variables that describes a
physical state. This ambiguity is not fixed by the transition from Poisson to Dirac
bracket since this only respects second class constraints. For this reason it is not possible
to transfer the previously discussed procedure for only second class constraints to the
case where first class constraint are present as well.
In order to define Canonical Quantization we need to eliminate this ambiguity. This is
done by imposing external restrictions on the canonical coordinates, so called gauge
conditions. These gauge conditions have to be chosen such that there is a one-to-
one correspondence between physical states and canonical coordinates that are left
independent after imposing the additional restrictions. It is admissible to bring in such
external restrictions since they merely remove the ambiguity of the observables by
fixing the the Lagrange multipliers and do not affect the gauge-independent quantities.
In the following, we will again denote by ξµ the second class and by γm the first class
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2 Preliminaries

constraints of the system under consideration. In order to fix the gauge completely, the
conditions have to fulfil two requirements:

(i) Invertibility:
Let Ωm denote the gauge conditions. The requirement of invertibility then reads:

det({Ωn, γm}) 6= 0 (2.31)

(ii) Attainability:
There must exist a transformation from the arbitrary values of the gauge variables
to those satisfying Ωn.

The gauge conditions also have to satisfy the consistency relations, which are now
formulated with the Dirac brackets:

{Ωn, He}D = {Ωn, H̃}D + λn{Ωn, γm} ≈ 0 (2.32)

This fixes the Lagrange arbitrary multipliers λn

λm = −G′nm{Ωn, H̃}D (2.33)

with G′nm = {Ωn, γm} such that the time evolution becomes

{F, He}D = {F, H̃}D − {F, γm}G′mn{Ωn, H̃}D

= {F, H̃∗} − {F, γm}G′mn{Ωn, H̃∗} (2.34)

with H̃∗ = H̃ − ξµ Mµν{ξν, H̃} the so called first class conjugate.

Corollary 2.21. The time evolution of observables does not change by fixing the gauge.

Proof. Recall that an observable F is defined via {F, γm} ≈ 0. Hence, the latter part that
fixes the Lagrange multipliers vanish in the time evolution of an observable.

Proposition 2.22. Let the first class constraints and the gauge conditions be collected in a
vector φν := (γm, Ωn) (the index ν again does not indicate 4-vector components) and call the
corresponding constraint matrix Gvw = {φv, φw}. Then G has the form

G =

(
0 −G′T

G′ ∗

)
, (2.35)

where ∗ is some block matrix that will not play a role. Hence, G is invertible due to the
invertibility of G′. Let further {·, ·}D∗ denote the Dirac bracket corresponding to G. Then the
time evolution (2.34) can be rewritten:

{F, He}D ≈ {F, H̃∗}D∗ (2.36)

12



2.3 The Idea of Canonical Quantization

Proof. The inverse of G has the form:

G−1 =

(
C G′−1

−(G′T)−1 0

)
, (2.37)

where C is some block matrix.

{F, He}D ≈ {F, H̃∗} − {F, γm}G′mn{Ωn, H̃∗} − {F, γm}Cnm{γm, H∗} (2.38)

+ {F, Ωm}G′nm{γn, H∗} (2.39)

= {F, H̃∗} − {F, φν}Gµν{φµ, H∗} (2.40)

= {F, H̃∗}D∗ (2.41)

Note that we have inserted a zero in the first line since {F, γm} ≈ 0 and γm is first class
which means {γm, H̃∗} ≈ {γm, H̃} and the Dirac-Bergmann procedure ensures that this
vanishes.

By introducing the gauge conditions Ωn we have turned the first class constraints to
second class ones. Hence, there are no more generators of gauge transformations and
the time evolution becomes unique. The time evolution of physical quantities however
is not affected.

Proposition 2.23. Collecting all constraints and gauge condition in a vector σk = (γm, Ωn, ξµ)

and defining the corresponding constraint matrix Mij = {σi, σj} whose Dirac bracket will be
denoted by {·, ·}Dg f allows us to write the time evolution from Proposition 2.22 in the compact
form:

d
dt

F = {F, H̃}Dg f (2.42)

Proof. The proof is quite long and does not give any new insights. It can for instance
be found in [RR10].

That means that fixing the gauge removes all first class constraints and leaves us with
a system with only second class constraints without changing physical information.
The Canonical Quantization for Systems with only second class constraints can now be
applied.

Remark 2.24. One needs to be careful by fixing the gauge in the above described manner.
Gribov [Gri78] showed that it is in general not possible to find global gauge fixing such that
every gauge orbit is intersected exactly once. This is called Gribov ambiguity.
However, this ambiguity is only present in non-abelian gauge theories. Since we will only be
dealing with QED which turns out to feature an abelian gauge symmetry, we will not have to
worry about this.
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2 Preliminaries

2.4 Formal Transition to Field Theory

In the last sections, we have discussed the treatment of singular mechanical systems. In
this chapter, we will discuss the relation to Field Theories on a non-rigorous level and
how the results from the previous sections about the treatment of Singular Systems can
be generalized to Field Theories.

2.4.1 From Point Mechanics to Field Theories

To define a Field Theory first we need to define what a field is. Unfortunately, there is
no generic definition that works in every situation. One may think of a field as some
kind of "function" on the spacetime. In practice, the space of fields F is defined for
every theory individually. We will discuss one rigorous approach that is suitable for
the purposes of this thesis in the next section.
The main object of classical Field Theory is the Lagrangian which is a functional of the
fields and their time derivatives

L(t) = L(φi(x, t), φ̇i(x, t)) (2.43)

The indices indicate the number of the fields. Since we restrict ourselves to local Field
Theories it is possible to rewrite the Lagrangian as volume integral over the Lagrange
density

L =

∫
d3x L(φi(x),∇φi(x), φ̇i(x)) (2.44)

where the Lagrange density is now a function of the fields and their spatial and time
derivatives.
To pass to the Hamiltonian formulation we need to define the canonical momenta. To
do so we introduce the notion of the functional derivative:

δ

δφi =
∂

∂φi − ∂j
∂

∂(∂jφi)
(2.45)

The canonical momentum πi conjugate to φi then is the functional derivative of the
Lagrangian with respect to the time derivative φ̇i:

πi :=
δL
δφ̇i (2.46)

The Hamiltonian then is a functional of the fields and their canonical momenta

H = H(φi(x), πi(x) (2.47)

and is defined via the Legendre transformation

H =

∫
d3x πiφ̇

i − L =

∫
d3x H(φi, πi,∇φi,∇πi) (2.48)
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2.4 Formal Transition to Field Theory

where the function H is called the Hamilton density. We can read off that it is defined
via H = πiφ̇

i −L.
The equations of motion are governed by the principle of least action. Where the action
is:

A =

∫
d4xL =

∫
d4x

(
πiφ̇

i −H
)

(2.49)

The standard procedure of variational calculus yields:

φ̇i =
∂H
∂πi
− ∂j

∂H
∂(∂jπi)

=
δH
δπi

(2.50)

π̇i = −
∂H
∂φi + ∂j

∂H
∂(∂jφi)

= − δH
δφi (2.51)

To simplify the notion of the equations of motion we introduce the Poisson bracket of
two functionals F(φi, πi) and G(φi, πi):

{F, G} :=
∫

d3z
(

δF
δφi(z)

δG
δπi(z)

− δF
δπi(z)

δG
δφi(z)

)
(2.52)

It is understood that the Poisson bracket and later the Dirac bracket are always evaluated
at same time.
The fundamental functional derivatives are:

δφi(x)
δπj(y)

=
δπi(x)
δφj(y)

= 0 (2.53)

δφi(x)
δφj(y)

=
δπj(x)
δπi(y)

= δi
jδ
(3)(x− y) (2.54)

Hence, the equations of motion can be written as:

Ḟ =

∫
d3x

(
δF
δφi φ̇i +

δF
δπi

π̇i

)
= {F, H} (2.55)

2.4.2 Constrained Field Theories

From now on constraints are taken into account. Again, we have to face the fact that the
constraint functions become densities depending on the fields, their canonical momenta
and spatial derivatives. They are coupled to the Hamiltonian via Lagrange multiplier
fields:

H = H̃ +

∫
d3x λr(x)χr(x) (2.56)
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2 Preliminaries

where λr are the Lagrange multiplier fields and χr the constraint densities.
Respecting the constraints in the action one immediately sees that we get the equations
of motion:

Ḟ = {F, H̃}+
∫

d3x λr(x){F, χr} (2.57)

The Dirac-Bergmann algorithm to identify secondary constraints and the classification
into first and second class constraints is the same in Field Theory as before. Thus, we
will not write down every result in detail.
The above discussion can be generalized to the following rules for the transition to field
theory:

1. The phase space variables and Lagrange multipliers are replaced by coordinate
depending fields

2. A phase space function becomes a functional of the canonical fields

3. Whenever there is a summation of the canonical fields or Lagrange multipliers
there has to be a volume integral over the sum

From these rules we can immediately read off the expression for the Dirac bracket for a
field theory:

{F, G}D = {F, G} −
∫

d3zd3z′ {F, γm(z)}(M−1)mn(z, z′){γn(z′), G} (2.58)

where the γk denote the second class constraints and Mmn(x, y) = {γm(x), γn(y)} is
the constraint matrix. The inverse M−1 is meant via the integral relation:∫

d3zMmn(x, z)(M−1)nj(z, y) = δ
j
mδ(3)(x− y) (2.59)

In the same way one sees that the gauge transformations generated by the first class
constraints take the infinitesimal form:

δεF =

∫
d3y ε(y){F, χ(y)} (2.60)

2.5 Canonical Quantization of Weyl Systems

The purpose of this section is define a rigorous approach to Field theory and to fix a
quantization map.
In the first subsection, we discuss a rigorous treatment of Classical Systems. In this
course, one comes across the Weyl element as observables. In the second subsection,
we will discuss the algebra that is generated by the Weyl elements. We will explain,
that specifying a regular representation of the Weyl algebra amounts to describing a
physical system.
In the last subsection, we will discuss a way of defining Canonical Quantization
rigorously.
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2.5 Canonical Quantization of Weyl Systems

2.5.1 Weyl Elements in Classical Field Theory

The results of this subsection are taken from [HR15]. For the most part, they can be
found in chapter 8.
In the last sections, we have discussed the usual approach to Field Theory by replacing
discrete quantities in the point-particle mechanics by densities.
In this chapter, we will discuss a different approach. The advantage is that naturally
a classical version of the Weyl algebra arises which allows us to define the Canonical
Quantization procedure on a more rigorous level.
Unfortunately, this extended formalism does not allow for the usual Hamilton and
Lagrangian formulation.

We will see later that for finding finite energy solutions of the Maxwell equations, it
is necessary to work with the real direct sum Hilbert space:

R := L2(R3, R3)⊕ L2(R3, R3) (2.61)

in which we combine the electric and magnetic fields as 6-tuple:

Ψ := (~E,~B) (2.62)

Moreover, we will discuss that the electric and magnetic field are related via the
Maxwell equations. Since those equations are differential equations, we need to assume
certain differentiability and regularity properties.
In order to make sense of differentiation of fields, one extends the phase space from R
using so-called Gelfand triples. This formalism has the advantage that it also covers
the discussion of discrete distributions.

Definition 2.25. A Gelfand triple

E ⊂ R ⊂ E′ (2.63)

consists of ‖·‖-dense locally convex subspace E of a Hilbert space R, such that the
topology on E is finer the ‖·‖-topology, and its topological dual E′. Note that the
second implication is weak∗-dense.

We will subsequently refer to E as the space of test functions. This space needs to
be chosen individually for each problem and represents the degrees of freedom of the
physical problem. In our case of the electromagnetic field, it will be chosen such that it
satisfies the above mentioned differentiation and regularity conditions.
The extended phase space is now taken to be the topological dual space E′ of the test
function space E. The field Hilbert space R is injectively embedded in the extended
field space via

i :R → E′ (2.64)

ξ 7→ (ξ, ·) (2.65)

17



2 Preliminaries

where (·, ·) denotes the scalar product on R. Since E ⊂ R is dense, the mapping is
injective.
As we have discussed earlier the time evolution is governed by the Poisson bracket in
the usual framework. To allow for such a formulation on the extended Phase space as
well, we need to assume that the test function space is equipped with an additional
structure.

Definition 2.26. Let E be a real vector space. A map

σ :E× E→ R (2.66)

is called pre-symplectic structure if it is anti-symmetric:

σ( f , g) = −σ(g, f ) ∀ f , g ∈ E (2.67)

The two-tuple (E, σ) then is called pre-symplectic space.
A pre-symplectic structure σ′ is called symplectic strucutre if it is non-degenerate:

σ′( f , g) = 0 ∀g ∈ E⇒ f = 0 (2.68)

Then (E, σ′) is denoted a symplectic space.

The phase space E′ is equipped with the weak-∗-topology, by which we have E′′ = E.

Definition 2.27. By assigning to each field configuration its expectation value, the space
of observables is the topological dual of the phase space.
The most relevant observables are the smeared fields. For each f ∈ E, we define:

φ0( f ) :E′ → R (2.69)

F 7→ F( f ) (2.70)

In general the smeared fields are unbounded on the phase space E′ and hence, it is
useful to work with the classical Weyl elements:

Definition 2.28. Let f ∈ E and φ0 as above, then the corresponding classical Weyl
element is defined as map:

W0( f ) :E′ → C1 (2.71)

F 7→ eiφ0( f )[F] = eiF( f ) (2.72)

We are now able to define the fundamental (Poisson) bracket relations:

{φ0( f ), φ0(g)} = σ( f , g)1 (2.73)

{W0( f ), W0(g)} = σ( f , g)W0( f + g) (2.74)
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2.5 Canonical Quantization of Weyl Systems

where 1 is the unit function with F[1] = 1 for all F ∈ E′.
Call

W̃(E, 0) := LH{W0( f ), f ∈ E}, (2.75)

where LH indicates the linear hull. In the next chapter, we will discuss an additional
structure on W̃(E, σ), which we will make use of for the definition of the quantization
procedure.

Remark 2.29. In this formalism, the replacement of the Poisson bracket by the Dirac bracket
results in a modification of the (pre-)symplectic form.

For many applications, including (Q)ED, a complex test function space is essential.

Definition 2.30. Let (E, σ) be a pre-symplectic space. A real linear operator J : E→ E
is called complex structure if it satisfies:

J2 = −1 (2.76)

σ(J·, J·) = σ(·, ·) (2.77)

σ( f , J f ) ≥ 0 ∀ f ∈ E (2.78)

Assume that (E, σ) is a pre-symplectic space with complex structure j, then we can
define a multiplication with z ∈ C on E via:

z · f = Re(z) f + Im(z)J f ∀ f ∈ E (2.79)

In particular, we have

J f = i f ∀ f ∈ E (2.80)

which turns E to a complex vector space, which we denote by EJ . The pre-symplectic
structure allows for defining a complex semi-inner product

σJ( f , g) = σ( f , Jg) + iσ( f , g) (2.81)

which becomes an inner product if and only if σ is symplectic. In this case, the
complexified test function space (EJ , σJ) becomes a pre-Hilbert space. The previous
discussion can be generalized to a complexified test function space straightforwardly.

Remark 2.31. Let (E, σ) be a pre-symplectic space with complex structure J, then there is a
homeomorphism

E′ → E′J (2.82)

F(·) 7→ LF(·) :=
1√
2
(F(·)− iF(J·)) (2.83)

with the inverse

F(·) = 1√
2

(
LF(·) + LF(·)

)
=
√

2 (Re(LF(·))) (2.84)

In the following, we will drop the index J when working with a complexified test function space.
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Definition 2.32. Let φ0 denote the classical fields as before. Then we introduce the
classical creation and annihilation fields via:

a0( f ) :=
1√
2

(
φ0( f ) + iφ0(J f )

)
(2.85)

a0†( f ) :=
1√
2

(
φ0( f )− iφ0(J f )

)
(2.86)

for each f ∈ E.
By construction, they satisfy:

a0( f )[F] = LF( f ), a0†( f )[F] = LF( f ) (2.87)

Remark 2.33. The latter property shows that the smeared classical creation and operation fields
are the complex conjugate of each other for each f ∈ E.
Furthermore, using the fundamental Poisson bracket, one can show:

{a0( f ), a0†(g)} = −iσJ( f , g)1 (2.88)

{a0( f ), a0(g)} = 0 = {a0†( f ), a0†(g)} (2.89)

for all test functions f , g ∈ E.

2.5.2 Weyl C∗-algebra, Weyl systems and Representations

The results of this subsection can be found in [HR15], mostly in chapter 16 - 18. Hence,
we will omit the proofs. The interested reader can find them in the abovementioned
literature.
In this section, we will treat h̄ as a real variable. We will need this later to discuss the
relation between classical and quantum physics in the limit h̄→ 0. In the subsequent
chapters, we will return to the units, that we defined earlier with h̄ = 1.
In the last section, we have introduced the commutative algebra W̃(E, 0) for a pre-
symplectic space (E, σ). In Quantum Theories, the observables do not commute in
general. For applications in Quantum Theories, we define a non-commutative version
of W̃(E, 0).
Equip the linear hull of W( f ), f ∈ E with a ∗-operation and a twisted product

W( f )∗ = W(− f ) (2.90)

W( f )W(g) = e−
i
2 h̄σ( f ,g)W( f + g) (2.91)

for some h̄ ∈ R. These relations are called Weyl relations. Then call the linear hull
{W( f ), f ∈ E} = W̃(E, h̄σ).
Due to the Weyl relations, every polynomial of W( f )’s reduces to a linear combination
making W̃(E, h̄σ) a ∗-algebra. To pursue one the construction of a C∗-algebra related
to W̃(E, 0), we need the notion of a representation
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Definition 2.34. A representation (Π,H) of a ∗-algebra A is a ∗−homomorphism Π :
A→ B(H) for some Hilbert space H,i. e. for W, W1 ∈ A

1. linearity: Π(aW + bW1) = aΠ(W) + bΠ(W1)

2. multiplicativity: Π(WW1) = Π(W)Π(W1)

3. symmetry: Π(W∗) = Π(W)∗

Moreover, if Π(1) = 1, the representation is called unital.

Proposition 2.35. There is a unique C∗-norm ‖·‖ on W̃(E, h̄σ) such that every representation
and state is ‖·‖-continuous. It is given by:

‖A‖ = sup{‖Π(A)‖ , Π is a representation} ∀A ∈ W̃(E, h̄σ) (2.92)

Definition 2.36. Let (E, σ) be a pre-symplectic space. Then the completion of W̃(E, h̄σ)

in the unique C∗-norm

W(E, h̄σ) := W̃(E, h̄σ)
‖·‖

(2.93)

is called the Weyl C∗-algebra over the pre-symplectic space (E, h̄σ).

The Weyl C∗-algebra is assumed to be the abstract version of the algebra of observ-
ables. We note that the C∗-algebra of classical observables arises from the case h̄ = 0.
In practice, we are interested in concrete realizations of the Weyl C∗-algebra:

Definition 2.37. Let (E, σ) be a pre-symplectic space and h̄ ∈ R. Suppose E 3 f 7→
W h̄

κ ( f ) to be mapping from E to the unitary operators over some non-trivial Hilbert
space Hκ satisfying the Weyl relations.
Then the 2-tuple (W h̄

κ ,Hκ) is called a Weyl system over (E, h̄σ).
A Weyl system (Wκ,Hκ) over (E, h̄σ) is called regular, if for each f ∈ E the mapping
R 3 t→Wκ(t f ) is strongly continuous.

Definition 2.38. A representation of a C∗-algebra A is called irreducible if the only
invariant closed subspaces of H under the action of Π(A) are the trivial ones {0} and
H.

Lemma 2.39. Irreducibility of a representation (Π,H) is equivalent to one of the following
conditions:

1. Every non-zero vector Ψ ∈ H is cyclic, i.e.

Π(A)Ψ = H (2.94)

2. The commutant of Π(A): Π(A)′ = C1 is trivial.
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Proof. See e.g. [Dyb17].

Definition 2.40. Two representations (Π1,H1) and (Π2,H2) are called unitary equivalent
if there is a unitary U : H1 → H2 such that:

Π2(·) = UΠ1(·)U−1 (2.95)

We will state a general theorem of irreducible representations that will prove to be
useful at a later point of this thesis.

Theorem 2.41. Let Π : A→ B(H) be a irreducible representation of some C∗-algebra A and
x1, . . . , xj be an linearly independent set in H and y1, . . . , yj ∈ H, then there is an element
W ∈ A such that Π(A)xi = yi for all i ∈ {1, . . . , n}.
If yi = Vxi for some unitary operators V, then A can be chosen to be unitary as well.

Proof. See [KR86], Thm. 10.2.1.

Definition 2.42. If for each f ∈ E the one-parameter group {Π(W(t f )); t ∈ R} is
strongly continuous, then the representation Π is called a regular representation of
W(E, h̄σ).

In the language of the representations, we have a nice connection between regular
representations ofW(E, σ) over a pre-symplectic space (E, σ) and Weyl systems.

Proposition 2.43. The Weyl systems (WΠ,Hπ) over a pre-symplectic space (E, σ) are in
one-to-one correspondence to the regular representations of the Weyl C∗-algebraW(E, σ).

Moreover, we can rephrase this proposition to find another property that characterizes
the Weyl C∗-algebra over a pre-symplectic space (E, σ) uniquely.

Proposition 2.44. Let (E, σ) be a pre-symplectic space and h̄ ∈ R. Then W(E, h̄σ) is the
unique C∗-algebra (up to *-isomorphisms) generated by non-zero elements W( f ), f ∈ E,
satisfying the following two uniqueness assumptions:

1. The elements W( f ), f ∈ E, fulfil the Weyl relations

2. Every Weyl system (Wκ,Hκ) over (E, h̄σ) arises from a representation (Πκ,Hκ) of
W(E, h̄σ) via

Wκ( f ) := Πκ(W( f )) ∀ f ∈ E (2.96)

Theorem 2.45 (Stone’s Theorem). Let (Ut)t∈R be a strongly continuous one-parameter
unitary group. Then there exists a unique operator A : DA → H, that is self-adjoint on DA
and such that

∀t ∈ R : Ut = eitA (2.97)

Conversely, every self-adjoint operator generates a strongly continuous one-parameter unitary
group in the above mentioned way.
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Remark 2.46. The infinitesimal generator A of a strongly continuous unitary group(Ut)t∈R

may be computed as:

Aψ = −i lim
t→0

U(t)ψ− ψ

h
(2.98)

We will write A = −i dU(t)
dt

∣∣∣
t=0

. The domain of the so-called generator A is

dom(A) := {ψ ∈ H| lim
t→0

1
t
(U(t)− 1)Ψ exists in norm} (2.99)

Definition 2.47. Let (HΠ, WΠ) be a regular representation of W(E, h̄σ). Then we
associate it with the quantum field system (Φh̄

Π,HΠ) via Stone’s Theorem:

Φh̄
Π( f ) = −i

dWΠ(t f )
dt

∣∣∣∣
t=0

, f ∈ E (2.100)

Proposition 2.48. Let f , g ∈ E, then

[Φh̄
Π( f ), Φh̄

Π(g)] = ih̄σ(g, f )1 (2.101)

on dom(Φh̄
Π( f )) ∩ dom(Φh̄

Π(g)).

Definition 2.49. If E carries a complex structure, then we can repeat the procedure
of the complexified phase space as described in the classical case. If Π is a regular
representation ofW(E, h̄σ) for a pre-symplectic space, then we define the creation and
annihilation operators

ah̄
Π( f ) =

1√
2
(ΦΠ( f ) + iΦΠ(J f )) (2.102)

ah̄†
Π ( f ) =

1√
2
(ΦΠ( f )− iΦΠ(J f )) (2.103)

for all f ∈ E.

Proposition 2.50. ah̄
Π( f ) and ah̄†

Π ( f ) are closed and mutually adjoint to each other for each
f ∈ E. Moreover, on the common domain they satisfy:

[ah̄
Π( f ), ah̄†

Π ( f )] = h̄σJ( f , g)1Π (2.104)

[ah̄
Π( f ), ah̄

Π( f )] = 0 = [ah̄†
Π ( f ), ah̄†

Π ( f )] (2.105)

2.5.3 Canonical Weyl Quantization

In the formalism that we have chosen, the procedure of canonical quantization can be
described rigorously. The results are taken from [HR15], chapter 16 and 19.
Recall from section 2.3 that the idea of canonical quantization is to assign to each

23



2 Preliminaries

classical observable a quantum observable. Hence, we will throughout this thesis
understand QED as quantized electrodynamics.
In general, a quantum observable is a self-adjoint operator on a fixed Hilbert space.
The correspondence between classical and quantum observables is such that most of
the algebraic properties are preserved. The main difference from an algebraic point of
view is that the quantum algebra of observable is no longer commutative.

Definition 2.51. The R-linear mapping φ0 : f → φ0( f ) from E into the R-valued
functions on E′ , as specified in the preceding subsection, constitutes the classical field
system over the pre-symplectic test function space (E, σ).

The fact that the field system specified by φ0 is called the classical one comes from
the fact that the fields φ0( f ), φ0(g) and the Weyl operators are commutative.
The quantum field system then arises in the same manner with the slight modification
that the fields are no longer commuting

Definition 2.52. Let (E, σ) be a pre-symplectic space, with σ 6= and 0 6= h̄ ∈ R. Suppose
E 3 f → φh̄

κ( f ) to be an R-linear mapping from E into the self-adjoint operators on some
nontrivial complex Hilbert space Hκ such that the canonical commutation relations

[φh̄
κ( f ), φh̄

κ(g)] = ih̄σ( f , g)1 (2.106)

on dom(φh̄
κ( f )) ∩ dom(φh̄

κ(g)) are fulfilled. Then the tuple (φh̄
κ ,Hκ) is called a canonical

quantum field system or a representation of the CCR over (E, h̄σ).

Remark 2.53. We discuss the properties of an explicit example of a field operator φ in greater
detail in the next subsection.

Definition 2.54. Suppose a classical field system φ0 over a pre-symplectic space (E, σ),
with σ 6= 0.
Then a canonical field quantization of φ0 is its replacement by a canonical quantum
field system of the form (φh̄

κ ,Hκ) over (E, h̄σ) with h̄ 6= 0.

Unfortunately, the quantization of fields is only the first step of a complete quan-
tization procedure because it does not cover, how to quantize arbitrary non-linear
functions of the fields. As we seen, this issue does not occur for the Weyl algebra
since polynomials of Weyl elements break down to linear combinations due the Weyl
relations. Hence, it is customary, to work with a quantization of the Weyl algebra and
define the fields in the respective representation as generators of strongly continuous
one-parameter subgroups.

Definition 2.55. Let (E, σ) be a pre-symplectic space and associated with it the com-
mutative classical Weyl C∗-algebraW(E, 0). Under the canonical Weyl quantization we
understand a mapping

W(E, 0)→W(E, h̄σ) (2.107)
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with h̄ 6= 0 such that: ∑
i

ciW0( fi) 7→
∑

i

ciW h̄( fi) (2.108)

The transition from the classical to the quantum Weyl algebra is then followed by
specifying a regular representation Π which depends on the physical situation.
The quantization of the fields is then given by:

φ0( f ) 7→ φh̄
Π( f ), f ∈ E (2.109)

Remark 2.56. Provided E carries a complex structure, then the classical annihilation and
creation operators are mapped to the quantum creation and annihilation operators:

a0(†)( f ) 7→ ah̄(†)
Π ( f ), f ∈ E (2.110)

Remark 2.57. We have not yet clarified in which sense the canonical Weyl quantization is
related the symbolic replacement

{·, ·} → − i
h̄
[·, ·] (2.111)

that we introduced earlier.

In the literature the problem of different quantization procedures is an extensively
discussed issue. A popular approach, that addresses the issue of canonical quantization
on a rigorous level, is Deformation Quantization. The following discussion is taken
from [BR10].
In classical theories, the algebra observables is usually equipped with two operations.
On one side, one has the usual commutative product and on the other side the Poisson
bracket, under which the algebra becomes a Lie algebra. Such an algebra is called
Poisson algebra.
In the formalism, that we chose, the Poisson algebra of the classical system is W̃(E, 0)
whose norm closure is the widely discussed Weyl C∗-algebra.

Definition 2.58 (Strict Deformation Quantization). A Strict Deformation Quantization
(Ah̄, Qh̄)h̄∈I of a Poisson algebra (P , {·, ·}) consists for each h̄ ∈ I ⊂ R of a C∗-algebra
Ah̄ with norm ‖·‖h̄ and of a linear, ∗-preserving map (the quantization map)

Qh̄ : P → Ah̄ (2.112)

such that Q0 : P ↪→ A0 is the identical embedding and such that the following
conditions are satisfied:

1. Dirac’s condition:

lim
h̄→0

∥∥∥∥ [Qh̄(A), Qh̄(B)]
ih̄

−Qh̄({A, B})
∥∥∥∥

h̄
= 0, ∀A, B ∈ P (2.113)
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2. von Neumann’s condition:

lim
h̄→0
‖Qh̄(A)Qh̄(B)−Qh̄(AB)‖h̄ = 0, ∀A, B ∈ P (2.114)

3. h̄→ ‖Qh̄(A)‖h̄ is continuous for each A ∈ P

4. Deformation condition: The map Qh̄ : P → Ah̄ is injective and its image is a
sub-∗-algebra of Ah̄.

Dirac’s condition for a strict deformation quantization is a weakened form of the
idea of replacing the Poisson bracket by the commutator.
The canonical Weyl quantization satisfies all of the foregoing conditions and hence is
an admissible quantization procedure in the sense of deformation quantization.
We note that the canonical Weyl quantization is far from being a unique quantization
procedure. It is, for instance, possible to modify the quantization map by an appropriate
quantization factor: Qω

h̄ : f → ω( f , h̄)W h̄( f ). The particular choice of the quantization
factor determines the operator ordering of the fields. For example the factors ω( f , h̄) =
e−

1±2
4 h̄‖ f ‖2

lead to Wick normal and anti-normal ordering respectively.

2.6 Fock Space and Fock Representation

In contrast to the last section, where we chose a systematic approach to a quantized
Field Theory, we take in this section the more popular point of view and start with
the definition of (quantum) annihilation and creation operators and a certain Hilbert
space which is called Fock Space. In this section, we will return to Heaviside units, in
particular h̄ = 1.

In the following section, we will understand under h a complex Hilbert space which
we will refer to as one-particle space. The idea of the Fock Space is to construct n-
particle Hilbert space from h as the tensor product of the one-particle spaces. Anyway,
one needs to respect the behaviour of the states under the parity operation, i.e. we need
to make sure if we are dealing with Bosons or Fermions.
Depending on whether our particle is a Boson or Fermion the state space of a pair of
these particles is either Es,2(h⊗ h) or Ea,2(h⊗ h), where Es,2 is the projection onto the
vectors invariant under permutation on h⊗ h and E2,a is the projection onto the vectors
that change sign under the permutation.
For Bosons the n-particle state space is the symmetric subspace of the n-fold tensor
product of the one-particle space hn = Es,n(h ⊗ · · · ⊗ h), where the operator Es,n

sometimes is called symmetrization operator on hn and is defined by [Dyb17]

Es,n =
1
n!

∑
σ∈Pn

σ (2.115)
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2.6 Fock Space and Fock Representation

where Pn is the symmetric group of degree n. We call hn
s = Es,n(h ⊗ · · · ⊗ h) the

n-particle state.

Definition 2.59. The symmetric Fock Space Γs(h) over the h is defined as the infinite
direct sum of Hilbert spaces

Γs(h) =
⊕
n≥0

hn
s =

⊕
n≥0

Es,n(
n⊗

h) (2.116)

with h0 = CΩ where Ω is called the vacuum vector.

The basic operators on the Fock Space are the creation and annihilation operators.
They are defined via

Definition 2.60. For any f ∈ h, we define the bosonic creation

a†( f ) :hn
s → hn+1

s (2.117)

En
s (

n⊗
i=1

fi) 7→ En+1
s ( f ⊗

n⊗
i=1

fi) (2.118)

and annihilation operator:

a( f ) :hn
s → hn−1

s (2.119)

En
s (

n⊗
i=1

fi) 7→
n∑

i=1

〈 f , fi〉 En−1
s ( f1 ⊗ . . . f̂i ⊗ · · · ⊗ fn) (2.120)

Note that a†( f ) depends linearly on f while a( f ) depends antilinearly on f .

Definition 2.61. We call Γs(h) ⊃ Γ f in
s (h) := {Ψ ∈ Γs(h); Ψ(n) = 0 except for finitely many n}

the finite symmetric Fock Space.
Note that Γ f in

s (h) ⊂ Γs(h) is dense [Att].

Definition 2.62. Using Definition 2.60 we can extend the definition of a†( f ) and a( f )
to Γ f in

s (h) where they are unbounded operators.
Let u, v ∈ h and f , g ∈ Γ(h). Then the following relations hold [Att]:

〈a†(u) f , g〉 = 〈 f , a(u)g〉 (2.121)

[a(u), a†(v)] = 0 (2.122)

[a(u), a†(v)] = 〈u, v〉 1 (2.123)

which implies that a(u) and a†(u) are mutually adjoint on Γ f in
s (h).
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Lemma 2.63. For u ∈ h note that the operators a(u) and a†(u) are closable since they have a
densely defined adjoint.
The operator a†(u) is the adjoint operator of a(u) where by a†(u), a(u) we mean the closures.

Proof. See [Att].

Definition 2.64. Let u : a→ b be a unitary operator between two Hilbert spaces, then u

extends to an untiary operator Γ(u) : Γ(s)(a)→ Γ(b)(s) defined via:

Γ(u)|Γ(n) = u⊗ · · · ⊗ u (2.124)

Γ(u)Ω1 = Ω2 (2.125)

The unitary operator Γ(u) is called the second quantization of u.
We have the useful relations:

Γ(u)a( f )Γ(u)† = a(u f ) (2.126)

Γ(u)a†( f )Γ(u)† = a†(u f ) (2.127)

Theorem 2.65. 1. For each f ∈ h

1√
2
(a( f ) + a†( f )) := ΦS( f ) (2.128)

is essentially self adjoint on Γ f in and called the Segal quantization.

2. Let Ψ ∈ Γ f in and f , g ∈ h. Then:

ΦS( f )ΦS(g)Ψ−ΦS( f )ΦS(g)Ψ = iIm 〈 f , g〉Ψ (2.129)

Further if WF( f ) denotes the unitary Fock-Weyl operator eiΦS( f ), then:

WF( f + g) = WF( f )WF(g)e−
i
2 Im〈 f ,g〉 (2.130)

3. If fn → f in h, then:

WF( fn)Ψ→WF( f )Ψ ∀Ψ ∈ Γs(h) (2.131)

ΦS( fn)Ψ→ ΦS( f )Ψ ∀Ψ ∈ Γ f in (2.132)

Proof. See [RS75], Thm X.41.

Definition 2.66. A conjugation C on a complex Hilbert space H is an antilinear isometry
C : H → H such that C2 = 1.

Definition 2.67. Assume that there is a conjugation C on h and define hC := { f ∈
h; C f = f }. For each f ∈ hC, we define φ( f ) := ΦS( f ) and π( f ) := ΦS(i f ). The map
f 7→ Φ( f ) is called canonical field over (h, C) and the map f 7→ π( f ) is called canonical
momentum over (h, C).
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2.6 Fock Space and Fock Representation

Theorem 2.68. Let h be a complex Hilbert space with a conjugation C and φ(·) and π(·) be
the canonical fields. Then:

1. a) For each f ∈ hC, φ( f ) is essentially self-adjoint on Γ f in

b) {φ( f ), f ∈ hC} is a commuting family of self-adjoint operators

c) Ω is a cyclic vector for {φ( f ), f ∈ hC}
d) If fn → f , then:

φ( fn)Ψ→ φ( f )Ψ ∀Ψ ∈ Γ f in (2.133)

and

WF( fn)Ψ→WF( f )Ψ ∀Ψ ∈ Γs (2.134)

2. The above properties hold with φ(·) replaced by π(·).

3. If f , g ∈ hC, then:

[φ( f ), π( f )]Ψ = i 〈 f , g〉Ψ ∀Ψ ∈ Γ f in (2.135)

WF( f )WF(Cg) = e−i〈 f ,g〉WF(Cg)WF( f ) (2.136)

Proof. See [RS75], Thm. X.43.

Proposition 2.69. 1. Let f , g ∈ H, then:

W( f )dom(ΦS(g)) = dom(ΦS(g)) (2.137)

W( f )ΦS( f )W†( f ) = ΦS(g)− Im(〈 f , g〉)1 (2.138)

2. The expectation value in the vacuum state is:

〈Ω, W( f )Ω〉 = e−
1
4 ‖ f ‖2

(2.139)

Proof. See [HR15], Proposition 18.5-6.

2.6.1 Fock Representation

In this section, we will specify a certain representation ofW(E, σ) for a pre-symplectic
space (E, σ) which is called Fock representation. The results are taken from and the
respective proofs can be found in [HR15], chapter 18.5.
We will subsequently assume that there is a complex structure on E given by the
complex unit i. We will use this complex structure to deduce a complex Hilbert space
from (E, σ) which we will build the previously discussed Fock Space on.
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Lemma 2.70. The null-space kerσ := { f ∈ E; σ( f , g) = 0, ∀g ∈ E} is a complex subspace of
the complexified phase space.

That allows us to take the quotient Eσ := Ei mod kerσ. Together with the scalar
product 〈 f , g〉 = σ( f , ig) + iσ( f , g) the quotient Eσ is a complex pre-Hilbert space. Note
that σ( f , g) = Im(〈 f , g〉). The norm-completion H := E‖·‖σ then is a complex Hilbert
space.

Remark 2.71. If (E, σ) is a symplectic space, then kerσ = 0 and hence Eσ = Ei.

Definition 2.72. For each h̄ > 0 there exists a unique representation (ΠF, Γs(H)) of the
Weyl C∗-algebraW(E, h̄σ) such that:

ΠF(W h̄( f )) = WF(
√

h̄[ f ]), ∀ f ∈ E (2.140)

Proposition 2.73. The following assertion for the Fock representation (ΠF, Γs(H)) ofW(E, h̄σ)

is valid

Φh̄
ΠF

= h̄ΦS (2.141)

and the same is true for the annihilation and creation operators.

Lemma 2.74. Let h be a separable Hilbert space with conjugation J, then the set

{eiΦS( f ); f ∈ h} (2.142)

is irreducible in Γs(h).

Proof. [RS75], Appendix 7, Lemma 1.

Theorem 2.75. Let (E, σ) be symplectic space satisfying the assumptions of the above construc-
tion. Then the Fock representation as defined in Definition 2.72 is irreducible.

Proof. First of all, we notice that {eiΦs( f ); f ∈ H} is irreducible due to Lemma 2.74.
Moreover E ⊂ H is dense and we have {eiΦs( f ); f ∈ H}′ ⊂ {eiΦs( f ); f ∈ E}′.
Assume that there is A ∈ B(Γs(H)) such that A ∈ {eiΦs( f ); f ∈ E}′. For every g ∈
H, there is a sequence (gn)n ⊂ E such that gn → g. The continuity of the fields
Theorem 2.65, 1.d) tells us that:

[A, ΠF(W h̄(g))]Ψ = [A, lim
n→∞

ΠF(
h̄W(gn))]Ψ (2.143)

= lim
n→∞

[A, ΠF(
h̄W(gn))]Ψ (2.144)

= 0 (2.145)

That means {eiΦs( f ); f ∈ H}′ ⊃ {eiΦs( f ); f ∈ E}′ and hence {eiΦs( f ); f ∈ H}′ =

{eiΦs( f ); f ∈ E}′ = C1.
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2.6 Fock Space and Fock Representation

2.6.2 Fock Space over L2(Rd)

In physics one often works with h = L2(Rd) for some d ∈ N. We will briefly discuss
the exact definition of the creation and annihilation operator on that specific Fock Space.
The reference for this subsection is [Dyb17].
We will only discuss the bosonic Fock Space.

Lemma 2.76.
n⊗

L2(Rd) ∼= L2(Rnd) (2.146)

Proof. See e.g. [Ara18].

Hence, we have hn
s
∼= L2

s (R
nd). Next, define a domain D ⊂ Γ f in

s (L2(Rd)):

D := {Ψ ∈ Γ f in
s (L2(Rd)); Ψ(n) ∈ S(Rnd) ∀n ∈N} (2.147)

Now, for each p ∈ Rd we define an operator a(p) : D → Γ(L2(Rd)) by

(a(p)Ψ)(n)(k1, . . . , kn) =
√

n + 1Ψ(n+1)(p, k1, . . . , kn) (2.148)

Note that the adjoint of a(p) is not densely defined since formally:

(a†(p)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
l=1

δ(p− kl)Ψ(n−1)(k1, . . . , kl−1, kl+1, . . . , kn) (2.149)

Anyway, the creation and annihilation operators are well defined as quadratic forms on
D× D. Let g ∈ S(Rd):

a(g) =
∫

dd p a(p)g(p) (2.150)

a†(p) =
∫

dd p a†(p)g(p) (2.151)

These expressions give well-defined operators on D which can be extended to Γ f in(L2(Rd)).
Let g ∈ S(Rd) and Ψ ∈ Γ f in(L2(Rd)). Then they act as follows:

(a(g)Ψ)(n)(k1, . . . , kn) =
√

n + 1
∫

dd p a(p)g(p)Ψ(n+1)(p, k1, . . . , kn) (2.152)

(a†(g)Ψ)n(k1, . . . , kn) =
1√
n

n∑
l=1

g(kl)Ψ(n−1)(k1, . . . , kl−1, kl+1, . . . , kn) (2.153)

These expressions can be used to define a(g) and a†(g) for g ∈ L2(R2). Since these
operators leave Γ f in(L2(Rd)) invariant, we can compute the commutator on this domain
for f , g ∈ L2(Rd):

[a( f ), a†(g)] = 〈 f , g〉 1 (2.154)
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2.6.3 Fock Space of the photon

In this thesis we are particularly interested in the description of photons. In the
literature, the Fock Space of a photon is usually assumed to be the product of L2-spaces.
Hence, we need to extend last subsection’s results to define the Fock Space of the
photon.

Definition 2.77. Let H0 := {x ∈ Mink4, x · x = 0, x0 > 0} ⊂ Mink4 be called the mass-
0-hyperboloid. We note that H0 is Lorentz-invariant. Define further the homeomorphism
ζ : H0 → R3 − {0}, (x0,~x) 7→ ~x. Then the (upto multiples) unique Lorentz-invariant
measure on H0 is given by

Ω0(E) =
∫

ζ(E)

d3x
ω(x)

(2.155)

for any measurable E ⊂ Mink4 and with ω(x) = |~x|, see [RS75], IX.8 and Thm. IX.37.

For the Photon, we take h̃ := L2(H0, dΩ0)⊗C3 as one-particle space. It is, however,
helpful to make use of the specific form of the Lorentz invariant measure to carry the
fields to L2(R3)⊗C3.
We can identify any f ∈ L2(H0, dΩ0) with f (ω(x), x) ∈ L2(R3). Moreover, the map

Ũ :L2(H0, dΩ0)→ L2(R3) (2.156)

f 7→ f (ω(x), x)√
ω(x)

(2.157)

is unitary onto L2(R3). Hence, U =
⊕
i≤3

Ũ is a unitary map from h̃ onto h := L2(R3)⊗C3,

see [RS75], X.7.
From Definition 2.64, we know that Γ(U) : Γs(H̃)→ Γs(H) is a unitary mapping:

Γ(U)ã(†)( f )Γ(U)† = a(†)
(

f (ω(x), x)√
ω(x)

)
(2.158)

where ã(†) are the creation and annihilation operators on Γ(H̃) respectively. For further
discussion, by f (x) we mean f (ω(x), x).

Definition 2.78. For convenience, we will be ignoring the Maxwell equations, that
constrain the one particle and Fock Space, at this point and work with the extended
one particle space h [BJ87].
For subsequent discussions the transversal one-particle space hT ⊂ L2(R3)⊗C3 will play
an essential role

hT := { f ∈ L2(R3)⊗C3; k · f̂ (k) = 0 a.e.} ∼= L2(R3)⊗C2, (2.159)

where a.e. is short notation for almost everywhere.
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Lemma 2.79.

L2(R3)⊗C C2 ∼= L2(R3)⊕ L2(R3) (2.160)

Proof. As C2 ∼= C⊕C, we can make us of the distributivity of tensor product over the
direct sum [Rot09] to find an isomorphism L2(R3)⊗C C2 ∼= (L2(R3)⊗C)⊕ (L2(R3)⊗
C). Using L2(R3)⊗ C ∼= L2(R3) we find the isomorphism.

Lemma 2.80.

Γ(L2(R3)⊕ L2(R3)) ∼= Γ(L2(R3))⊗ Γ(L2(R3)) (2.161)

Proof. See [Att], Thm. 8.7.

2.6.4 The Transversal Test function space

In the later discussion, we will need to fix a test function space for describing QED. It
will turn out that L, that we will define in this subsection, will serve as test function
space for the transversal observables.

Definition 2.81. Let h = L2(R3)⊗C3 with C defined as C f (·) = f (−·). Then define
the transversal one-particle space hT := { f ∈ h; k · f̂ = 0 a.e.} and hT,C in the obvious
way.
Then, we call Φ(PT(·)) and π(PT(·)) transversal fields or equivalently f 7→ Φ( f ) and
f 7→ π( f ) for f ∈ hT the transversal canonical field and transversal canonical momentum.

To define the algebra of transversal observables, we need to fix a test function space
that reflects all degrees of freedom of the theory. We proceed analogue to [BJ87]:

LΦ = ω−
1
2 ̂curl(SR(R3)⊗C3) ⊂ hT (2.162)

Lπ = ω
1
2 ̂PT(S(R3)⊗ C3) ⊂ hT (2.163)

Then consider the subspace of hT:

L =(1 + C)LΦ + (1− C)Lπ (2.164)

Lemma 2.82. Let f ∈ S(Rn). The following are equivalent:

1. f (x) = f (−x) for almost all x ∈ Rn

2. f̂ (ξ) ∈ Rn for almost all ξ ∈ Rn
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Proof. The proof is immediate from:

f̂ (ξ) =
∫

Rn

dnx
(2π)

n
2

f (x)eix·ξ (2.165)

=

∫
Rn

dnx
(2π)

n
2

f (−x)e−ix·ξ (2.166)

This means that the conjugation is defined such that the inverse Fourier transforma-
tion of g ∈ (1 + C)Lφ ∈ SR(R

3, R3) and f ∈ (1− C)Lπ ∈ iSR(R
3, R3).

It is evident that σ(·, ·) = Im(〈·, ·〉hT
) defines a symplectic structure turning L into a

symplectic space. That means, we can decompose each ĥ ∈ L via: ĥ = ω
1
2 R̂e(h) +

iω−
1
2 Îm( f ) with ω

1
2 Re(h) ∈ (1 + C)Lφ and iω−

1
2 Îm( f ) ∈ (1− C)Lπ.

Lemma 2.83. L is dense in hT and hence defines a test function space in the aforementioned
sense.

Proof. We notice that ω±
1
2S(R3) is dense in L2(R3) ([Ara18], Thm. 10.5) and hence L is

dense in hT.

Since L is dense in hT and admits the complex structure i, we can apply the results
of the last section to find

Corollary 2.84. Let W(L, σ) be the Weyl algebra of the symplectic space L as defined in (2.164).
Then the Fock representation (Π, Γs(hT)) (with h̄ = 1) defined via

Π(W( f )) = eiΦS( f ), f ∈ L (2.167)

is an irreducible representation of W(L, Im(〈·, ·〉hT
)).
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3 Different gauges in External Current
QED

In this chapter, we will apply the results about the quantization of Singular Systems
to External Current Electrodynamics, that we introduce in the first section. We will
deduce in the second section that our model has a gauge freedom which allows for
different choices of gauge fixing.
In the third section, we will elaborate on the famous Coulomb gauge condition. We
will also discuss the well-definiteness of the Dirac bracket in this gauge. Thus, we can
specify a representation and quantization of the observables in this gauge.
In the fourth section, we repeat the procedure for the so-called Axial gauge. However,
the Dirac bracket turns out to be very singular hence not well-defined. Hence, the
discussion in this section is on a formal level. These singularities will also appear in
the representation of the observable algebra.

3.1 Introduction to External Current ED

For explicit computations, we will apply the approach from Chapter 1. However, we
have also stated that we are able to gain mathematical rigour in the description of the
fields at the expense of lacking a Langranigan and Hamiltonian formulation.
Nevertheless, the standard approach to discuss (Q)ED is by stating a Lagrange density.
Hence, we will derive the results from the usual textbook formulation of (Q)ED, for
which we will mostly follow [DEF+99], and afterwards embed those results in the
aforementioned rigorous formalism.
Note that R3 as manifold inherits a star operator mapping:

∗ : Ω1(R3)→ Ω2(R3) (3.1)

Additionally, Ω1 and Ω2 can be identified with vector fields on R3 via:

a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
↔ adx + bdy + cdz↔ ady ∧ dz− bdx ∧ dz + cdx ∧ dy (3.2)

For a fixed time, the electric and the magnetic fields are described as vector field on R3.
Using the above result, we can identify the electric field as time-varying 1-form and the
magnetic field as time-varying 2-form on R3.
To take the time dependence of the fields into account, we will think of the fields as
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being defined on the Minkowski space Mink4.
To give the Lagrangian formulation of Maxwell theory we define a new 2-form in
Mink4 that respects the transformation behaviour:

F = B + E ∧ dx0 (3.3)

The Maxwell equations in terms of F then read

dF = 0 (3.4)

d ∗ F = 0 (3.5)

for the free electromagnetic field. In reality the Maxwell equations allow to couple
to a current j ∈ Ω3(Mink4) which is constrained to be conserved dj = 0 and have
compact spatial support. To construct a Lagrangian formulation we introduce a 1-form
A ∈ Ω1(Mink4) such that:

F = dA (3.6)

Note that the first Maxwell equation is automatically satisfied due to d2 = 0. If we
introduce the Lagrangian

L = −1
2

F ∧ ∗F− A ∧ ∗j (3.7)

the second Maxwell equation follows from an action principle. At this point we notice
that neither the Lagrangian nor the Maxwell field change under A → A + d f for
f ∈ Ω0(Mink4). We will discuss this feature more extensively in the next section.
Furthermore, we notice that this ambiguity in the choice of A leads to the fact that such
a theory is described using principal bundles. We will not elaborate on this any further.

3.2 External Current ED as Singular System

It is helpful to clarify, how the physical and mathematical notations are related in order
to make sense of the computations.

Remark 3.1. Suppose, we have a Gelfand triple E ⊂ R ⊂ E′, then the smeared fields are
elements of E′. The idea of physicists’ notation is to represent the fields by a "quadratic" form.
Thus, if we use the physics notation, it is related to the formalism from the previous chapter by
the scalar product (2.65) for some test function meaning φ( f )” = ” 〈φ(x), f (x)〉R.

We start with the Lagrange density of Classical Electrodynamics in components

L = −1
4

FµνFµν − j · A (3.8)

where Fµν = ∂µ Aν − ∂ν Aµ is the electromagnetic field tensor expressed in components
and we assume that the current j is Schwartz class.
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3.2 External Current ED as Singular System

Observation 3.2. The field strength tensor Fµν = ∂µ Aν − ∂ν Aµ is the component notion of
(3.6).

Computation. In local coordinates, we can write the differential form A = Aµdxµ where
Aµ are the components of A and 0-forms and dxµ denote the coordinate differentials of
the local coordinate system of (x0, . . . , x3). This gives

dA = d(Aµdxµ) (3.9)

= ∂ν Aµdxν ∧ dxµ. (3.10)

The components then give (dA)σλ = Fσλ = ∂σ Aλ − ∂λAσ.
For the spatial components, we have: Fij = ∂i Aj − ∂j Ai. Recall from physics textbooks
that B = curl(A) = ∇ × A and we see that the spatial components of F are the
components of B.
Also recall from physics textbooks Ei = ∂0Ai − ∂i A0. Thus:

E ∧ dt = (∂0Ai − ∂i A0)dxi ∧ dt (3.11)

= F0idxi ∧ dt. (3.12)

On Mink4 the field strength tensor can also1 be displayed as matrix:

Fµν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 (3.13)

The Euler-Lagrange equations for the dynamical variables Aµ are:

∂νFνµ = jµ (3.14)

Due to the anti-symmetry of F, it is evident that (3.14) contracted with ∂µ gives the
conservation of j:

∂µ jµ = 0 (3.15)

Statement 3.3. The total charge carried by the external current Q :=
∫

R3 d3x j0(x) is con-
served.

Computation. Since we assumed that j vanishes at infinity, we can use the Gauss theorem
to find:

∂0Q = ∂0

∫
R3

d3x j0(x) =
∫

R3
d3x ∂i ji(x) = 0 (3.16)
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3 Different gauges in External Current QED

In quantum theories it is more convenient to work with the Hamilton formalism. As
discussed the transition from the Lagrangian to the Hamiltonian is performed via the
Legendre transformation

πAi =: πi =
δL

δ (∂0Ai)
= Fi0 = Ei (3.17)

π0 = 0 (3.18)

Computation.

δL
δ (∂0Aσ)

= −1
2

Fµν
∂Fµν

∂ (∂0Aσ)
(3.19)

= −1
2

Fµν
∂ (∂µ Aν − ∂ν Aµ)

∂ (∂0Aσ)
(3.20)

= −1
2

Fµν

(
δ

µ
0 δν

σ − δν
0 δ

µ
σ

)
(3.21)

= −1
2
(F0σ − Fσ0) = Fσ0 (3.22)

This is true for σ ∈ {0, . . . , 3}. For σ = 0, this in particular gives π0 = F00 = 0 due to
the anti-symmetry of F.

which gives the (primary) Hamilton density:

H = −1
2

πiπi +
1
4

FijFij + ji Ai + A0(−∂iπ
i + j0) + v0π0 (3.23)

Note that the magnetic field in terms of the vector potential is given by:

Bi =
1
2

ε
jk
i Fkj (3.24)

Statement 3.4. (3.23) yields a local U(1) gauge symmetry.

For the proof, we need to apply the procedure described in section 2.2 to the
Lagrangian (3.8).

Observation 3.5. The Lagrangian (3.8) is singular.

Computation. We need to prove det( δ2L
∂(∂0 Aµ)∂(∂0 Aν)

) = 0. Since π0 = δL
δ(∂0 A0)

= 0, the

first row and column in δ2L
δ(∂0 Aµ)δ(∂0 Aν)

are zero which implies that its determinant is
vanishing.

That means that the Hamiltonian (3.23) is constrained. We will compute the set of
constraints using the Dirac-Bergmann procedure.
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3.2 External Current ED as Singular System

Observation 3.6. The set of constraints on (3.23) is:

π0 ≈ 0 (3.25)

∂iπ
i − j0 ≈ 0 (3.26)

Computation. We already have seen that π0 ≈ 0 is the only primary constraint. We need
to find the secondary constraints that are implied by that constraint:

{π0(y), H} =
∫

d3x{π0(y),H(x)}

=

∫
d3x (∂iπ

i − j0(x))δ(3)(x− y)

= (∂iπ
i − j0)(y) (3.27)

This secondary constraint implies:

{(∂iπ
i − j0)(y), H} =

∫
d3x ∂i{πi(y),H(x)} − ∂0 j0(y)

=

∫
d3x∂i{πi(y), (

1
4

FnmFnm + jn An)(x)} − ∂0 j0(y)

=

∫
d3x ∂i

(
1
2

(
∂mδni − ∂nδmi

)
Fnm(x)− ji(x)

)
δ(3)(x− y)− ∂0 j0(y)

=

∫
d3x ∂i

(
1
2

(
∂mF i

m − ∂nFi
n)(x)

)
− ji(x)

)
δ(3)(x− y)− ∂0 j0(y)

=

∫
d3x∂i

(
∂mF i

m(x)− ji(x)
)

δ(3)(x− y)− ∂0 j0(y)

= −
∫

d3x ∂i ji(x)δ(3)(x− y)− ∂0 j0(y)

= 0 (3.28)

We used that fact that Fij is anti-symmetric.

Observation 3.7. The set of constraints from Observation 3.6 is of first class.

Computation. The constraints obviously Poisson commute since both only depend on
the canonical momenta:

{π0(x), (∂iπ
i − j0)(y)} = 0 (3.29)

As we have already discussed first class constraints generate gauge transformations.
For explicit computations, we need to fix the gauge. In order to choose a consistent
gauge fixing, we need to compute the gauge transformations.
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3 Different gauges in External Current QED

Statement 3.8. The first class constraints (3.25) and (3.26) give rise to the following gauge
transformation:

Ai → Ai + ∂iφ (3.30)

A0 → A0 + φ′ (3.31)

for some φ, φ′ ∈ C∞(Mink4).

Computation of Statement 3.8 and Statement 3.4. First, we note that Observation 3.7 im-
plies that the gauge group is abelian.
The infinitesimal gauge transformations generated by (3.25) read:

δε1 Aµ(x) =
∫

d3y ε1(y){Aµ(x), π0(y)} = ε1(x)δµ0 (3.32)

δε1 πµ(x) =
∫

d3y ε1(y){πµ(x), π0(y)} = 0 (3.33)

and correspondingly for (3.26) we obtain:

δε2 Aµ(x) =
∫

d3y ε2(y){Aµ(x), (∂iπ
i − j0)(y)} = δµi ∂iε2(x) (3.34)

δε2 πµ(x) =
∫

d3y ε1(y){πµ(x), (∂iπ
i − j0)(y)} = 0 (3.35)

One often additionally assumes that the field strength tensor to be invariant under the
gauge transformations and hence identifies φ′ = ∂0φ.
Assume that the gauge group is called G and its corresponding Lie algebra L(G) ∼=
Te(G).
Since φ : Mink4 → R, then iφ must map into the complex line iR. Topologically,
U(1) may be identified with the circle U(1). The tangent space at the identity is
obtained by differentiating curves t 7→ eitθ at t = 0 for all real numbers θ(x). This gives
L(U(1)) = iR the complex line as Lie algebra.
Exponentiating of the Lie algebra element iφ leads to:

g(x) = eiφ(x) ∈ U(1) (3.36)

This allows us to write the gauge transformation as

Aµ → Aµ + ig∂µg−1 (3.37)

with g∂µg−1 ∈ L(U(1)).

Remark 3.9. From this formalism there is no reason that we identified the gauge as U(1) and
not for example R. This, however, becomes clear if one works in a different setting including for
example Dirac fields. We will identify the gauge group in this thesis as U(1) to be consistent
with the literature.
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3.3 Coulomb gauge

Statement 3.10. The Hamilton density in terms of the electric and magnetic field weakly is:

H = −1
2

(
πi(x)πi(x) + Bi(x)Bi(x)

)
+ ji Ai (3.38)

Computation. Note:

4 · BiBi = (εijkFkj)(εi
nmFmn) (3.39)

= −(δjnδkm − δjmδkn)FkjFmn (3.40)

= −Fmn(Fmn − Fnm) = −2FmnFmn (3.41)

Inserting this to (3.23) and respecting the constraint (3.25) and (3.26) gives the result

Definition 3.11. In physical situations it is natural to assume the energy to be bounded,
i.e. a bounded Hamiltonian, meaning

∫
R3 H < ∞ [Spo04]. In particular, this implies:

−
∫

R3
πiπ

i < ∞ (3.42)

−
∫

R3
BiBi < ∞ (3.43)

In other words, assuming the energy of the system being finite implies: π, B ∈
L2(R3, R3).

3.3 Coulomb gauge

For explicit computations, we need to remove the gauge freedom. A very prominent
choice of gauge fixing in textbooks is the so-called Coulomb gauge ∂i Ai = 0 which we
will discuss in this section.
In the last section, we discussed that it is natural to assume π, B ∈ L2(R3, R3). In the for-
malism that we are working with, this means that the smeared fields π( f ) ∈ L2(R3, R3).
The fundamental object in the discussion of gauge freedom in Electrodynamics, how-
ever, is the vector potential A. Hence, we will start the discussion with the extended test
function space to be Ẽext = SR(R

3, Mink4) + iSR(R
3, Mink4). The naive pre-symplectic

structure is Im(〈·, ·〉). With the help of this test function space, we will compute the
Dirac bracket which will serve as a modified pre-symplectic structure on the modified
test function space Eext = SR(R

3, R3) + iSR(R
3, R3).

We will later see, why it is more convenient to work with L from (2.164) as test function
space.

As we saw in Observation 3.6, there are two first class constraints. Consequently,
we need a second gauge condition. For reasons of simplicity of the formulas, we
choose: ∆A0 + j0 ≈ 0. Anyway, we will show that the Dirac bracket of the spatial
components does not depend on the second gauge condition. This reflects the fact that
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3 Different gauges in External Current QED

A0 is completely arbitrary as it has arbitrary time evolution. Summarizing, we have the
constraints and gauge conditions:

π0 ≈ 0 ∂i Ai ≈ 0
∂iπi − j0 ≈ 0 ∆A0 + j0 ≈ 0

Statement 3.12. The corresponding Dirac brackets are:

{Ai(x), πj(y)}D =

(
δij −

∂i∂j

∆

)
δ(3)(x− y) (3.44)

with all the other Dirac brackets of the canonical fields vanishing.

Remark 3.13. As explained in Appendix B, the operator ∂i∂j
∆ = RiRj : L2(Rn)→ L2(Rn),where

Ri is a so-called Riesz-operator, is well defined.
Hence, the smeared Dirac bracket for f , g ∈ SR(R

3)

{Ai( f ), πj(g)} = δij 〈 f , g〉L2 − 〈 f , RiRjg〉L2 = δij 〈 f , g〉L2 − 〈RiRj f , g〉L2 (3.45)

makes sense. (
δij −

∂i∂j

∆

)
δ(3)(x− y) := δ(3)⊥(x− y) (3.46)

is called transverse Delta in the literature.

Computation. We need to compute the constraint matrix. The fundamental Poisson
brackets are

{Aµ( f ), πν(g)} = δµν 〈 f , g〉 (3.47)

for test functions f , g ∈ SR(R
3). We represent this fact by formally writing

{Aµ(x), πν(y)} = δµνδ(3)(x− y) (3.48)

because:

〈 f , δ ? g〉 = 〈 f , g〉 (3.49)

Using this formal expressions, we find:

M(x, y) =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

∆δ(3)(x− y) (3.50)
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3.3 Coulomb gauge

The inverse obviously reads:

M−1(x, y) =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 1
∆

δ(3)(x− y) (3.51)

which gives the Dirac brackets:

{Ai(x), πj(y)} = δijδ
(3)(x− y)−

∫∫
dzdz′ {Ai(x), ∂n An(z)} 1

∆
δ(3)(z− z′){∂m Am(z′), πj(y)}

= δijδ
(3)(x− y)−

∫∫
dzdz′ ∂iδ

(3)(x− z)
1
∆

δ(3)(z− z′)∂jδ
(3)(y− z′)

=

(
δij −

∂i∂j

∆

)
δ(3)(x− y) (3.52)

The vanishing of the other Dirac brackets is straightforward to verify with the same
methods.

Observation 3.14. The Dirac bracket {Ai, πj}D is independent from the choice of the second
gauge condition.

Computation. Let f (A, π) be some function of A and π and assume that it is an admis-
sible second gauge condition. The constraint matrix M with f (A, π) as second gauge
condition then is

M(x, y) =


0 0 0 α

0 0 ∆ β

0 −∆ 0 γ

−α −β −γ 0

 δ(3)(x− y) (3.53)

with some entries α, β, γ. This constraint matrix has the inverse:

M−1(x, y) =


0 − γ

∆α
β

∆α − 1
α

γ
∆α 0 − 1

∆ 0
− β

∆α
1
∆ 0 0

1
α 0 0 0

 δ(3)(x− y) (3.54)

It is evident that the Dirac bracket of Ai and πj only depends on the (3, 2), (3, 4) and
(4, 2) components of M−1. Since (3.51) and (3.54) coincide in these components, the
Dirac bracket does not change under a change of the second gauge condition.
One should note that due to the assumption of f (A, π) being an admissible gauge
condition implies that α 6= 0. Hence, the inverse is well defined.
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3 Different gauges in External Current QED

Statement 3.15. Observe that the complex structure on the naive test function space E =

SR(R
3, R3) + iSR(R

3, R3) is given by the complex unit i. Hence, according to the proceedings
in subsection 2.5.1, there are classical creation and annihilation operators on the phase space.
A representation of the fields in terms of the classical creation and annihilation operator is given
by

A0( f ) = − 〈 j0(x)
∆

, f 〉 (3.55)

A( f ) =
1√
2

(
a(PT(ω

− 1
2 C f̂ )) + a†(PT(ω

− 1
2 f̂ ))

)
= φ0(ω−

1
2 PT( f̂ )) (3.56)

π(g) =
1√
2

(
a(PT(iω

1
2 Cĝ)) + a†(PT(iω

1
2 ĝ))

)
− 〈∇

∆
j0, g〉

L2(R3,R3)
(3.57)

= φ0(iω
1
2 PT(ĝ))− i 〈 1

|k|2 ĵ0, k · ĝ〉
L2(R3,R)

(3.58)

for f , g ∈ SR(R
3, R3). Here and in the following computations, a c-number is obviously meant

to be a multiple of the identity.
In the physics literature this result is often symbolically displayed as

Ai(x) =
∫

d3k

(2π)
3
2

√
1

2ω(k)
εn

i (k)
[
an(k)eik·x + a†

n(k)e
−ik·x

]
(3.59)

πi(x) = −i
∫

d3k

(2π)
3
2

√
ω(k)

2
εn

i (k)
[
an(k)eik·x − a†

n(k)e
−ik·x

]
− ∂i j0(x)

∆
(3.60)

with the polarization vectors~εn that together with ~k
|k| build an orthogonal basis for R3.

Observation 3.16. The polarization vectors ~εn(k) satisfy the completeness relation:

2∑
n=1

εn
i (k)ε

n
j (k) = δij −

kik j

k2 (3.61)

Computation. One can check this statement by acting with the basis vectors (ε1(k), ε2(k), ~k
|k| )

on both sides of the equation. Since one gets the result that both sides of the equation
coincide for this particular basis one can verify the result for an arbitrary vector acting
on either sides of the equation by taking superpositions of the basis elements.

Computation of Statement 3.15. First of all, we note that the symplectic structure in E is
given by σ = Im(〈·, ·〉) as discussed in Definition 2.72. Then, we use the results from
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3.3 Coulomb gauge

subsection 2.5.1 and compute for f , g as above:

{A( f ), π(g)} = {φ0(ω−
1
2 PT( f̂ )), φ0(iω

1
2 PT(ĝ))− i 〈 1

|k|2 ĵ0, k · ĝ〉} (3.62)

= 〈ω− 1
2 PT( f̂ ), ω

1
2 PT(ĝ)〉 (3.63)

= 〈PT( f̂ ), PT(ĝ)〉 (3.64)

= 〈 f̂ − k · f̂
|k|2 k, ĝ− k · ĝ

|k|2 k〉 (3.65)

= 〈 f̂ , ĝ〉 − 〈k · f̂
|k| ,

k · ĝ
|k| 〉 (3.66)

which is the smeared version of the transversal Delta in momentum space.

We can also reproduce the result in the physics formalism. In this formalism the classi-
cal creation and annihilation operator satisfy the formal Dirac bracket {an(k), a†

m(k′)} =
iδnmδ(3)(k− k′). Then

{Ai(x), πj(y)} = −i
∫∫

d3kd3k′

(2π)3
1
2

√
ω(k′)
ω(k)

εn
i (k)ε

m
j (k
′)(

−{an(k), a†
m(k

′)}ei(k·x−k′·y) + {a†
n(k), am(k′)}e−i(k·x−k′·y)

)
=

∫
d3k

(2π)3

(
δij −

kik j

k2

)
eik·(x−y)

=

(
δij −

∂i∂j

∆

)
δ(3)(x− y) (3.67)

where the derivatives are meant in the distributional sense and the inverse Laplacian as
in Appendix B.

Remark 3.17. The additional term in (3.58) is well defined. As explained in Appendix B the
Riesz potential operator ∆−

1
2 : S(R3)→ L2(R3) and Riesz operators Rj : L2(R3)→ L2(R3)

are well defined. Hence their composition is an operator: Rj∆−
1
2 : S(R3)→ L2(R3).

Remark 3.18. In this and the following two chapters, we will be working with the classical fields.
As discussed in section 2.5, we are interested in the Weyl elements for the quantization procedure.
However, we know that the fields and the Weyl elements are related via the exponential ei· which
means the Weyl element corresponding to π( f ) is eiπ( f ).

Notation. We call:

π f (g) = φ0(iω
1
2 PT(ĝ)) (3.68)

for g ∈ SR(R
3, R3) the (representation of the) free canonical momenta.
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3 Different gauges in External Current QED

Observation 3.19. The magnetic field in the above representation is:

B( f ) = curl(A( f )) (3.69)

= φ0(ω−
1
2 ( ̂curl( f ))) (3.70)

= φ0(iω−
1
2 (k× f̂ )) (3.71)

In the physics literature, the magnetic field is often displayed as:

Bi(x) = i
∫

d3k

(2π)
3
2

√
1

2ω(k)
εijkk jε

n
k (k)

[
an(k)eik·x − a†

n(k)e
−ik·x

]
(3.72)

Observation 3.20. We call:

H f =

∫
d3xH f (x) =

1
2

∫
d3x

(
(π f ,iπ

f
i )(x) + (BiBi)(x)

)
(3.73)

=

∫
d3k ω(k)

2∑
n=1

a†
n(k)an(k) (3.74)

the (representation of the) free Hamiltonian.

Computation.

∫
d3x

(
π f ,iπ

f
i

)
(x) = −

∫∫∫
d3xd3kd3k′

(2π)3
1
2

√
ω(k)ω(k′)εn

i (k)ε
m,i(k′)[

an(k)eik·x − a†
n(k)e

−ik·x
] [

am(k′)eik′·x − a†
m(k

′)e−ik′·x
]

= −
∫

d3k
ω(k)

2

(
εn

i (k)ε
i,m(k)

(
− an(k)a†

m(k)− a†
n(k)am(k)

)
+ εn

i (k)ε
m,i(−k)

(
an(k)am(−k) + a†

n(k)a†
m(−k)

))
= −

∫
d3 ω(k)

( 2∑
n=1

a†
n(k)an(k) +

εn
i (k)ε

m,i(−k)
2(

an(k)am(−k) + a†
n(k)a†

m(−k)
))

(3.75)
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3.3 Coulomb gauge

∫
d3x

(
Bi(x)Bi(x)

)
= −

∫∫
d3xd3kd3k′

(2π)3
1
2

√
1

ω(k)ω(k′)

(
kik′iε

n,j(k)εm
j (k
′)− k′iε

n,i(k)k jε
m,j(k′))

)
[
an(k)eik·x − a†

n(k)e
−ik·x

] [
am(k′)eik′·x − a†

m(k
′)e−ik′·x

]
=

∫
d3k

ω(k)
2

(
εn,i(k)εm

i (k)
(
− an(k)a†

m(k)− a†
n(k)am(k)

)
+ εn,i(k)εm

i (−k)
(

an(k)am(−k) + a†
n(k)a†

m(−k)
))

=

∫
d3k ω(k)

(
(−

2∑
n=1

a†
n(k)an(k) +

εn,i(k)εm
i (−k)

2(
an(k)am(−k) + a†

n(k)a†
m(−k)

))
(3.76)

One sees that both contributions coincide up to a sign in front of the second addend in
the integral which leads to the cancelling of these terms.

Observation 3.21. The (representation of the) total Hamiltonian is given by:

HC = H f + H I (3.77)

where H f is the free Hamiltonian and H I may be interpreted as an interaction Hamiltonian
taking the form:

H I =

∫
d3x

(
1
2

j0(x)
j0(x)

∆
+ ji(x)Ai(x)

)
(3.78)

Computation. We easily see:

πi(x) = π
f
i (x)− ∂i j0(x)

∆
(3.79)

and hence:(
πiπi

)
(x) =

(
π f ,iπ

f
i

)
(x)− 2π

f
i (x)

∂i j0(x)
∆

+

(
∂i j0(x)

∆

)(
∂i j0(x)

∆

)
(3.80)

Integrating this gives us:∫
d3x

(
πiπi

)
(x) =

∫
d3x

(
π f ,iπ

f
i

)
(x) + j0(x)

j0(x)
∆

(3.81)

where we integrated by parts once in the second and third addend respectively. Addi-
tionally, we used the fact: ∂i · π f

i = 0 which comes from the fact that~k ⊥ ~εn(k).
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3 Different gauges in External Current QED

Using Observation 3.20, we find the Hamiltonian to be:

H =
1
2

∫
d3x

((
π f ,iπ

f
i

)
(x) + ~B(x)2 + j0

j0(x)
∆

+ 2 ji(x)Ai(x)
)

(3.82)

=

∫
d3k ω(k)

2∑
n=1

a†
n(k)an(k) +

∫
d3x

(
1
2

j0(x)
j0(x)

∆
+ ji(x) · Ai(x)

)
(3.83)

= H f + A(j) +
1
2
〈j0,

j0
∆
〉 (3.84)

= H f + φ0(ω−
1
2 PT(j)) +

1
2
〈j0,

j0
∆
〉 (3.85)

Statement 3.22. In the representation of Statement 3.15 the Maxwell equations are satisfied.

Comp. Since the Bianchi identity follows from the antisymmetry of F, it is satisfied by
definition. What is left to show is:

∂µFµν = jν (3.86)

First we check this identity for ν 6= 0. Then we find:

∂µFµi(x) = ∂kFki(x)− {πi(x), H}

= ∂kFki(x)−
∫

d3y
1
2
{πi(x), Fnm(y)}Fnm(y) + ji(y)δ(3)(x− y)

= ∂kFki(x)−
∫

d3y
1
2

(
(−∂nδi

m + ∂mδi
n)δ

(3)(x− y)
)

Fnm(y) + ji(x)

= ∂kFki(x)− ∂nFni(x) + ji(x)

= ji(x) (3.87)

We used that the Hamiltonian is first class (see Definition 2.12) and hence the Poisson
bracket and the Dirac bracket coincide.
For ν = 0, we only need to verify the Gauss law

∂µFµ0 = ∂iπ
i

= j0 (3.88)

what one easily reads from Statement 3.15 since the polarization vectors are orthogonal
to~k.

Notation. With · between two vector valued quantities, we will indicate the standard scalar
product on Rn.
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3.4 Axial gauge

Statement 3.23 (Quantized Fields). Let the notation be as in section 2.6 with H = Γs(h),
h̄ = 1 and f , g ∈ SR(R

3, R3). Then the quantized fields in the Coulomb gauge are:

AC( f ) = ΦS(ω
− 1

2 PT( f̂ )) (3.89)

πC(g) = ΦS(iω
1
2 PT(ĝ))− i 〈 1

|k|2 ĵ0, k · ĝ〉
L2(R3,R)

(3.90)

B( f ) = ΦS(ω
− 1

2 ( ̂curl( f ))) (3.91)

Computation. We will only prove [A( f ), π(g)] =
∫

d3x fT(x)gT(x) := 〈 fT, gT〉L2 for
f , g ∈ SR(R

3, R3). The verification for the other commutators is analogously.

[A( f ), π(g)] =[a
(
(2ω)−

1
2 PT( f̂ )

)
, a†
(

i(
ω

2
)

1
2 PT(ĝ)

)
] (3.92)

+ [a†
(
(2ω)−

1
2 PT( f̂ )

)
, a
(

i(
ω

2
)

1
2 PT(ĝ)

)
] (3.93)

=
1
2
〈PT( f̂ ), iPT(ĝ)〉 − 1

2
〈iPT(ĝ), PT( f̂ )〉 (3.94)

=
i
2

(
〈PT( f̂ ), PT(ĝ)〉+ 〈PT(ĝ), PT( f̂ )〉

)
(3.95)

=i 〈PT( f̂ ), PT(ĝ)〉 (3.96)

=i 〈 fT, gT〉L2(R3,R) (3.97)

3.4 Axial gauge

In the literature, the condition A3 ≈ 0 ([Wei95], [HLL94]) is often called Axial gauge.
We understand a more general class of gauge fixing as Axial gauge. In particular, for
fixed e ∈ R3, the two external conditions on the right are what we will call Axial gauge.
In this setting, we have a total of four constraints:

π0 ≈ 0 ei Ai ≈ 0
∂iπi − j0 ≈ 0 −eiπ

i + ei∂
i A0 ≈ 0

Observation 3.24. The constraints are of second class and the Dirac brackets are

{Ai(x), πj(y)}D =

(
δij −

ej∂i

ek∂k

)
δ(3)(x− y) (3.98)

{A0(x), Ai(y)}D =

(
ekek∂i

(ej∂j)2 −
ei

(ej∂j)

)
δ(3)(x− y) (3.99)

with the residual Dirac brackets vanishing.
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3 Different gauges in External Current QED

Remark 3.25. Already at this point, we notice that (3.98) is not even well-defined for the
smeared fields due to the singularities in 1

e·k for k 6= 0.
Hence, the following computations need to be interpreted on a formal level. After changing to
the momentum space with the Fourier transformation, we will apply the formal transformation
rule 1

ei∂i → −i
e·k which is justified by Proposition B.12 on some open region G that does not

contain the orthogonal space of e.
Hence, the Dirac bracket and, as it will turn out, the observables are well defined for test
functions that are supported in such a region G. Unfortunately, such functions are not dense in
L2(R3) and hence, do not qualify for a test function space in the sense of Definition 2.25.

Computation. We will simply compute the constraint matrix and its inverse to show
that every constraint is second class.
The constraint matrix then becomes:

M(x, y) =


0 0 0 −(ei∂

i)

0 0 −(ei∂
i) 0

0 (ei∂
i) 0 −eiei

(ei∂
i) 0 eiei 0

 δ(3)(x− y) (3.100)

It is easy to check that the inverse is:

M−1(x, y) =


0 ejej

(ek∂k)
0 1

− ejej

(ek∂k)
0 1 0

0 −1 0 0
−1 0 0 0

 1
(ei∂i)

δ(3)(x− y) (3.101)

Now, we are able to compute the Dirac brackets:

{Ai(x), πj(y)}D = δijδ
(3)(x− y)−

∫∫
d3zd3z′{Ai(x), (∂nπn − j0)(z)}M−1

23 (z, z′){em Am(z′), πj(y)}

= δijδ
(3)(x− y)−

∫∫
d3zd3z′∂iδ

(3)(x− z)

(
−δ(3)(z− z′)

ek∂k

)
ejδ

(3)(y− z′)

= δijδ
(3)(x− y)−

∫
d3z
(

ej∂i

ek∂k δ(3)(x− z)
)

δ(3)(z− y)

=

(
δij −

ej∂i

ek∂k

)
δ(3)(x− y) (3.102)

and:

{A0(x), Ai(y)}D = −
(∫∫

d3zd3z′ {A0(x), π0(z)}
(

M−1
12 (z, z′){∂jπ

j(z′), Ai(y)}

+ M−1
14 (z, z′)ej{(−π j + ∂j A0)(z′), Ai(y)}

)

50



3.4 Axial gauge

= −
(∫∫

d3zd3z′ δ(3)(x− z)
(

ekek

(ej∂j)2 δ(3)(z− z′)(−∂i)δ
(3)(z′ − y)

+
1

(ej∂j)
δ(3)(z− z′)eiδ

(3)(z′ − y)
))

= −
(∫

d3z′
(

ekek

(ej∂j)2 δ(3)(x− z′)(−∂i)δ
(3)(z′ − y)

)

+
ei

(ej∂j)
δ(3)(x− y)

)

=

(
ekek∂i

(ej∂j)2 −
ei

(ej∂j)

)
δ(3)(x− y) (3.103)

Observation 3.26. The Dirac bracket of the canonical fields Ai, πj in the spatial axial gauge is
independent of the second gauge condition.

Computation. Assume that we removed of degree of gauge freedom with the axial
gauge condition. Then, we need one more external constraint to remove the residual
gauge freedom. Let this external constraint be denoted by f (A, π).
The constraint matrix then reads:

M(x, y) =


0 0 0 α

0 0 −(ei∂
i) β

0 (ei∂
i) 0 γ

−α −β −γ 0

 δ(3)(x− y) (3.104)

having the inverse:

M−1(x, y) =


0 −γ

α (ei∂
i)−1 β

x (ei∂
i)−1 − 1

α
γ
α (ei∂

i)−1 0 −(ei∂
i)−1 0

− β
α (ei∂

i)−1 (ei∂
i)−1 0 0

1
α 0 0 0

 δ(3)(x− y) (3.105)

As before, the Dirac bracket of Ai and πj only depends on the (2, 3), (3, 4) and (4, 2)
components of M−1. Since (3.101) and (3.105) are identical in these components, so is
the Dirac bracket {Ai, πj} in both cases.

Statement 3.27. A representation of the Dirac bracket relations in terms of the classical fields
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3 Different gauges in External Current QED

or annihilation and creation operators respectively is:

A0(h) = −φ0(iω
1
2 PT(e)

ĥ
e · ∂ ) + 〈

j0
(e · ∂)2 , h〉 (3.106)

A( f ) = φ0(ω−
1
2 PT( f̂ ))− φ0(ω−

1
2 PT(e

k · f̂
e · k )) (3.107)

π(g) = φ0(iω
1
2 PT(ĝ))− i 〈 1

e · k ĵ0, e · ĝ〉
L2(R3,R)

(3.108)

for f , g ∈ SR(R
3, R3) and h ∈ SR(R

3, R). In the physics notation, this is:

A0(x) = −
∫

d3k

(2π)
3
2

√
ω(k)

2
eiεn

i (k)
ejkj

[
an(k)eik·x + a†

n(k)e
−ik·x

]
+

j0(x)
(ei∂i)2 (3.109)

Ai(x) =
∫

d3k

(2π)
3
2

√
1

2ω(k)

(
εn

i (k)−
ki

ejkj eiεn
i (k)

)[
an(k)eik·x + a†

n(k)e
−ik·x

]
(3.110)

πi(x) = −i
∫

d3k

(2π)
3
2

√
ω(k)

2
εn

i (k)
[
an(k)eik·x − a†

n(k)e
−k·x

]
+

ei

ej∂j
j0(x) (3.111)

Computation. The proof is analogous to the proof of Statement 3.15.

{A( f ), π(g)} = {φ0(ω−
1
2 PT( f̂ ))− φ0(ω−

1
2 PT(e

k · f̂
e · k )), φ0(iω

1
2 PT(ĝ))} (3.112)

= 〈ω− 1
2

(
PT( f̂ )− PT(e

k · f̂
e · k )

)
, ω

1
2 PT(ĝ)〉 (3.113)

= 〈PT( f̂ )− PT(e
k · f̂
e · k ), PT(ĝ)〉 (3.114)

= 〈 f̂ − k · f̂
|k|2 k− e

k · f̂
e · k +

k · f̂
|k|2 k, ĝ− k · ĝ

|k|2 k〉 (3.115)

= 〈 f̂ , ĝ〉 − 〈k · f̂
|k| ,

k · ĝ
|k| 〉 (3.116)

= 〈 f̂ , ĝ〉 − 〈k · f̂
e · k , e · ĝ〉 (3.117)

which is the smeared version of the Dirac bracket in Observation 3.24 in momentum
space.
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3.4 Axial gauge

The verification of (3.103) is analogous:

{A0(h), A( f )} = {−φ0(iω
1
2 PT(e)

ĥ
e · ∂ ), φ0(ω−

1
2 PT( f̂ ))− φ0(ω−

1
2 PT(e

k · f̂
e · k ))} (3.118)

= 〈PT(e)
ĥ

e · ∂ , PT( f̂ − e
k · f̂
e · k )〉 (3.119)

= 〈 ĥ
e · ∂ , e · f̂ − k · f̂

e · k 〉 − 〈
k
|k| ·

ĥ
e · ∂ ,

k · f̂
|k| −

k · f̂
|k| 〉 (3.120)

= 〈 ĥ
e · ∂ , e · f̂ − k · f̂

e · k 〉 (3.121)

= i 〈ĥ,
e · f̂
e · k −

k · f̂
(e · k)2 〉 (3.122)

Observation 3.28. The magnetic field in the above representation is:

B( f ) = curl(A( f )) (3.123)

= φ0(ω−
1
2 ( ̂curl( f ))) (3.124)

= φ0(iω−
1
2 (k× f̂ )) (3.125)

for f ∈ SR(R
3).

In the physics literature, the magnetic field is often displayed as:

Bi(x) = i
∫

d3k

(2π)
3
2

√
1

2ω(k)
εijkk jε

n
k (k)

[
an(k)eik·x − a†

n(k)e
−ik·x

]
(3.126)

Observation 3.29. The Hamiltonian Statement 3.10 then is:

H = H f + H I (3.127)

where again H f is the free Hamiltonian and H I can be interpreted as interaction Hamiltonian
and has the form:

H I =

∫
d3x

eiπ
f
i (x)

ek∂k
j0(x) +

1
2

j0(x)
1

(ej∂j)2 j0(x) + ji(x)Ai(x) (3.128)

Computation. Using the notation from the beginning of the chapter, we can rewrite πi
in the following way:

πi(x) = π
f
i (x) +

ei

ej∂j j0(x) (3.129)
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3 Different gauges in External Current QED

Hence, we find:

H =
1
2

πiπ
i +

1
4

FijFij + ji Ai

=
1
2
(π

f
i +

ei

ej∂j
j0)(π f ,i +

ei

ek∂k
j0) + F f ,ijF f

ij + ji Ai

= H f +
eiπ

f
i

ej∂j
j0 +

1
2

ei

ej∂j
j0

ei

ek∂k
j0 + ji Ai

= H f +
eiπ

f
i

ej∂j
j0 +

1
2

j0
1

(ej∂j)2 j0 + ji Ai (3.130)

Statement 3.30. In the representation in Statement 3.27 the Maxwell equations are satisfied.

Computation. Since the Bianchi identity follows from the antisymmetry of F, it is
satisfied by definition. What is left to show is:

∂µFµν = jν (3.131)

First we check this identity for ν 6= 0. Then we find:

∂µFµi(x) = ∂kFki(x)− {πi(x), H}

= ∂kFki(x)−
∫

d3y
1
2
{πi(x), Fnm(y)}Fnm(y) + ji(y)δ(3)(x− y)

= ∂kFki −
∫

d3y
1
2

(
(−∂nδi

m + ∂mδi
n)δ

(3)(x− y)
)

Fnm(y) + ji(x)

= ∂kFki(x)− ∂nFni(x) + ji(x)

= ji(x) (3.132)

We used that the Hamiltonian is first class (see Definition 2.12) and hence the Poisson
bracket and the Dirac bracket coincide.
For ν = 0 we only need to prove that the Gauss law is satisfied

∂µFµ0 = ∂iπ
i

= j0 (3.133)

what one easily reads from Statement 3.27 since the polarization vectors are orthogonal
to~k.
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3.4 Axial gauge

Statement 3.31 (Quantized Fields). Let the notation be as in section 2.6 with H = Γs(h),
h̄ = 1 and f , g ∈ SR(R

3, R3). Then the quantized fields in the Axial gauge are:

Ae( f ) = ΦS(ω
− 1

2 PT( f̂ ))−ΦS(ω
− 1

2 PT(e
k · f̂
e · k )) (3.134)

πe(g) = ΦS(iω
1
2 PT(ĝ))− i 〈 1

e · k ĵ0, e · ĝ〉
L2(R3,R)

(3.135)

B( f ) = ΦS(ω
− 1

2 ( ̂curl( f ))) (3.136)

Computation. This directly follows from the definition of the canonical Weyl quantiza-
tion subsection 2.5.3 and Statement 3.27 and Observation 3.28.
To check that they indeed satisfy the correct commutation relation, on proceeds analo-
gously to the Computation of Equation 3.3.
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4 Discretely smeared Axial gauge

In the last chapter, we have discussed the representation of the magnetic and the electric
field in two different gauges. While the representation and the involved quantities for
the Coulomb gauge were well defined, the discussion of the Axial gauge was on a
formal level since the inverse operator 1

e·k is not well defined on S(R3).
To get rid of these singularities, we adapt a strategy of smoothing the Axial gauge
that was originally introduced in [MSY05]. The authors in this paper however used a
different formalism.
In this chapter, we will discuss the discretely smeared Axial gauge. We will need the
results of this chapter to define the continuously smeared Axial gauge in the next
chapter. In the first section, we will double the degrees of freedom and in the course of
that the gauge group. This allows for imposing the Axial gauge condition twice.
In the second section, we will generalize this procedure the case that we add arbitrary
many countable degrees of freedom.

4.1 Twofold discretely smeared Axial gauge

The idea of the smearing out the Axial gauge is to enlarge the naive degrees of freedom
by allowing for two different vector potentials with the same field strength tensor. Since
the physical information of the vector potential A is fully encoded in its differential
dA = F, the field strength tensor, we assume that we can decompose the vector potential
into a sum A = A1 + A2 of two vector potentials having the same differential or field
strength tensor respectively. This gives us the possibility to impose independent gauge
conditions on A1 and A2 respectively.
This idea of extending the degrees of freedom will be generalized to arbitrary many
vector potentials in the next step. Finally, we will justify that we can replace the
quantities with the singularities by some Riemann-similar sum which converges to an
integral expression which removes the singularities.
The goal of this section is to show that if we extend the naive phase space in the
aforementioned way and impose the Axial gauge condition on each vector potential
with different gauge vectors e1, e2 ∈ R3 respectively, then we have:

Statement 4.1. The representation of the canonical fields in the above decomposition with gauge
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4 Discretely smeared Axial gauge

conditions ei
1A1

i = 0 and ei
2A2

i = 0 is

A =
1
2
(Ae1 + Ae2) (4.1)

π =
1
2
(πe1 + πe2) (4.2)

where ·ei is the respective representation with the condition ek
i Aei

k = 0 we developed in section 3.4.

In order to prove this theorem we will need several computational steps which we
will elaborate on separately:

Observation 4.2. Expressing A = A1 + A2 as the sum of two independent vector fields we
have a six dimensional gauge freedom.

Computation. We choose new coordinates:

A+ := A1 + A2 (4.3)

A− := A1 − A2 (4.4)

In the new coordinates the Lagrange density is:

L = −1
4

F+
µνF+,µν − jµ A+

µ (4.5)

It is obvious that the Legendre transformation for A−µ is not bijective because (4.5) is
independent of A−. In particular, we have:

π−ν =
∂L

∂(∂0A−,ν)
= 0 (4.6)

The computations for the canonical momentum of π+ are identical to those in section 3.2.
Hence, we have

π+
µ ≈ F+

0µ (4.7)

which implies the primary constraint π+
0 ≈ 0. The extended Hamilton density is:

H =− 1
2

π+
i π+,i +

1
4

F+
ij F+,ij − A+

0 (∂
iπ+

i − j0) + ji A+
i + v−,µπ−µ + v+,0π+

0 (4.8)

The fundamental Poisson brackets are:

{A±µ (x), π±ν (y)} = δµνδ(3)(x− y) (4.9)

{A±µ (x), π∓ν (y)} = 0 (4.10)
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Analogously to the computations in section 3.2, π+
0 ≈ implies the Gauss law ∂iπ+

i − j0 ≈
0.
In conclusion, we have six constraints

π+
0 ≈ 0→ ∂iπ+

i − j0 ≈ 0 (4.11)

π−µ ≈ 0 (4.12)

which obviously are first class.

In the course of extending the phase space, we assumed that the field strength tensors
F1 and F2 corresponding to A1 and A2 respectively are identical. In the new coordinates
this reads F1 − F2 = F− ≈ 0. We start by implementing the vanishing of the spatial
components F−ij ≈ 0. We will call them consistency conditions and treat them like
gauge fixing functions.

Observation 4.3. Implementing the consistency constraints F−ij ≈ 0 gives a U(1)×U(1)
gauge symmetry of the form:

A+
µ → A+

µ + ∂µφ (4.13)

A−µ → A−µ + ∂µφ′ (4.14)

Computation. First of all we note that the constraints (4.11) generate a U(1) gauge
symmetry for A+ of the form (4.13) as we have discussed in section 3.2.
Furthermore, we note:

∂1F−23 = ∂2∂1A−3 − ∂3∂1A−2 (4.15)

= ∂2F−13 − ∂3F−12 (4.16)

This means that for every g ∈ SR(R
3), we have F−23(∂1g) = 0 in the sense that

F−23(∂1g)[G] = 0 every field configuration G. We know that E′′ = E and hence
F−23(∂1g)[G] = G(h) for all G ∈ E′ for some h ∈ SR(R

3). This implies h = 0.
Now, for F−23(g)[G] = G( f ) for all G ∈ E′ and some f ∈ SR(R

3) such that ∂1 f = 0. The
only solution to this is f = 0 and hence we write F−23 = 0.
It is obvious that π+

0 , ∂iπ+
0 − j0 and π−0 are Poisson commuting with F−ij and hence

they remain first class after imposing the consistency constraints.
π−k on the other does not Poisson commute with F−ij . The constraint matrix for the
constraint functions {π−1 , π−2 , π−3 , F−12, F−13} has the form:

m(x, y) =


0 0 0 ∂2 ∂3

0 0 0 −∂1 0
0 0 0 0 −∂1

−∂2 ∂1 0 0 0
−∂3 0 ∂1 0 0

 δ(3)(x− y) (4.17)
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4 Discretely smeared Axial gauge

It is straightforward to check that rk(m) = 4 and that the kernel is spanned by


∂1

∂2

∂3

0
0


which means that the constraint ∂iπ−i is first class while the others are second class.
That means that the residual gauge freedom for A− is generated by π−0 and ∂iπ−i which
results in a gauge freedom of the form (see section 3.2):

A−µ → A−µ + ∂µφ (4.18)

Up to now, we have imposed the consistency conditions F−ij ≈ 0 which removed two
degrees of gauge freedom. Anyway, there are still first class constraints and hence there
is still gauge freedom. We call the gauge freedom that is left after already removing
some first class constraints residual gauge (freedom).

Observation 4.4. The Axial gauge fixing e1 · A1 ≈ 0 and e2 · A2 ≈ 0 together with the
consistency conditions F−0i ≈ 0 fixes the residual gauge completely having the constraints:

1) π+
0 ≈ 0→ 2) ∂iπ+

i − j0 ≈ 0 (4.19)

3) ei
1(A+

i + A−i ) ≈ 0→ 4) ei
1(−π+

i + ∂i(A+
0 + A−0 )) ≈ 0 (4.20)

5)− 8) π−µ ≈ 0 (4.21)

9)− 10) F−1j ≈ 0 (4.22)

11) ei
2(A+

i − A−i ) ≈ 0→ 12) ei
2(−π+

i + ∂i(A+
0 − A−0 )) ≈ 0 (4.23)

Computation. First, we rewrite the gauge fixing functions in the new coordinates ei
1A1

i =
1
2 ei

1(
~A+

i + ~A−i ) and e2 · A2 = 1
2 ei

2(A+
i − A−i ).

Recalling the definition of F−, we have F−0i = ∂0A−i − ∂i A−0 . To compute the Dirac
bracket, we need to express F−0i in the canonical coordinates. Note from (4.6) that we
can not express ∂0A−i can not be expressed in terms of the canonical coordinates. Recall
from section 2.2 that ∂0A−i := v−i then acts as Lagrange multiplier in the Hamiltonian
and hence F−0i = v−i − ∂i A−0 .
Now, we see that the consistency conditions F−0i ≈ 0 is not a condition on the canonical
coordinates but rather on the coordinates and the Lagrange multipliers v−i . Hence, can
not imply this constraint in the usual form using Dirac brackets.
First of all, we note that all constraints 1)− 12) are second class (see Observation 4.6 for
the computation). Thus, the gauge freedom is removed and the Lagrange multipliers
v−i are fixed.
Recall from section 2.2 that the v−i are fixed such that the time derivative of the
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4.1 Twofold discretely smeared Axial gauge

constraints vanish. One computes:

{ei
1(A+

i + A−i ), H} = ei
1
(
−π+

i + ∂i A+
0 + v−i

)
(4.24)

{ei
2(A+

i − A−i ), H} = ei
2
(
−π+

i + ∂i A+
0 − v−i

)
(4.25)

Inserting the constraint F−0i = v−i − ∂i A−0 ≈ 0 in (4.24) and (4.25) respectively gives the
constraints 4) and 12). Hence, with the gauge conditions 4) + 12), we make sure that
the consistency conditions F−0i ≈ are satisfied.
To check that these conditions remove the whole gauge freedom is subject to the next
computation. It is implied by the fact that the constraint matrix is invertible.

Remark 4.5. In the following, we will apply many concepts of the study of matrices over R to
the constraint matrix. We justify this by recalling the property of the Fourier transformation
that derivatives of the delta distribution are mapped to the corresponding polynomials in the
Fourier-variables kα ∈ R.
Hence, the entries of the constraint matrix can equivalently be viewed as real polynomials, for
which the used results apply.

Observation 4.6. The constraint matrix has the form:
M(x, y) =

0 0 0 −ei
1∂i 0 0 0 0 0 0 0 −ei

2∂i
0 0 −ei

1∂i 0 0 0 0 0 0 0 −ei
2∂i 0

0 ei
1∂i 0 −ei

1e1,i 0 e11 e12 e13 0 0 0 −ei
1e2,i

ei
1∂i 0 −1 0 ei

1∂i 0 0 0 0 0 ei
1e2,i 0

0 0 0 −ei
1∂i 0 0 0 0 0 0 0 ei

2∂i
0 0 −e11 0 0 0 0 0 ∂2 ∂3 e21 0
0 0 −e12 0 0 0 0 0 −∂1 0 e22 0
0 0 −e13 0 0 0 0 0 0 −∂1 e23 0
0 0 0 0 0 −∂2 ∂1 0 0 0 0 0
0 0 0 0 0 −∂3 0 ∂1 0 0 0 0
0 ei

2∂i 0 −ei
1e2,i 0 −e21−e22−e23 0 0 0 −ei

2e2,i
ei

2∂i 0 ei
1e2,i 0 −ei

2∂i 0 0 0 0 0 ei
2e2,i 0



δ(3)(x− y) (4.26)

For the further computations, we need to note that we are only interested in the
Dirac brackets of the fields A+

µ and the corresponding momenta since by construction
they are fields carring physical information while A−µ are auxiliary fields to impose the
gauge conditions.
Thus, we do not need to know the whole inverse constraint matrix to compute the
physical relevant brackets but only some particular components. We will make use of a
basic theorem from linear algebra.

Theorem 4.7. Let A ∈ Cn×n an invertible matrix. Then the inverse of A is

A−1 =
1

det A
adj(A) (4.27)
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4 Discretely smeared Axial gauge

where adj(A) is the adjugate matrix of A given by

adj(A)ij = (−1)i+j Ãij (4.28)

where Ãij is the determinant of the (i, j)-minor of A.

Proof. The statement can be found in most textbooks in linear algebra, e.g.[HJKM03],
chapter 5.

To apply this theorem to our particular problem, we first need to compute the
determinant of the constraint matrix and the components we are interested in. For
simplicity, we will ignore the δ(3)(x− y) in the computations.

Statement 4.8.

det(M) = 16 ∂2
1(e

i
1∂i)

4(ei
2∂i)

4 (4.29)

Computation. The proof is consecutive application of Laplace’s formula. One succes-
sively removes the first two rows and the first two columns by deleting ei

1∂i and ei
2∂i

respectively. We end up with a sum of 16 terms having the form:

− (ek
1∂k)

4(ek
2∂k)

4

(ek
i ∂k)(ek

j ∂k)
det



0 0 0 ∂2 ∂3 ei1
0 0 0 −∂1 0 ei2
0 0 0 0 −∂1 ei3
−∂2 ∂1 0 0 0 0
−∂3 0 ∂1 0 0 0
−ej1 −ej2 −ej3 0 0 0


i, j ∈ {1, 2} (4.30)

To arrive at this form for every addend one eventually needs to swap some rows and
columns.
Now, the matrix is a block matrix with two vanishing blocks. Hence, the addends
simplify to:

− (ek
1∂k)

4(ek
2∂k)

4

(ek
i ∂k)(ek

j ∂k)
det

 ∂2 ∂3 ei1
−∂1 0 ei2

0 −∂1 ei3

det

−∂2 ∂1 0
−∂3 0 ∂1

−ej1 −ej2 −ej3

 (4.31)

= − (ek
1∂k)

4(ek
2∂k)

4

(ek
i ∂k)(ek

j ∂k)
(∂1(~ei · ∇))(−∂1(~ej · ∇)) (4.32)

= ∂2
1(e

k
1∂k)

4(ek
2∂k)

4 (4.33)

Thus, every addend contributes the same amount and we find:

det(M) = 16 ∂2
1(e

k
1∂k)

4(ek
2∂k)

4 (4.34)
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4.1 Twofold discretely smeared Axial gauge

We need to specify which components of M−1 contribute to the Dirac brackets of
A+

µ and π+
ν . In other words, we need to determine the constraints that do not Poisson

commute with the respective fields.

Observation 4.9. The components of M−1 contributing to the Dirac brackets of A+
µ and π+

ν

are combinations of 1, 2, 3, 4, 11 and 12.

Computation. The fundamental Poisson bracket relations tell us that the only constraint
functions that do not Poisson commute with the relevant fields are:

A+
0 : π+

0 (4.35)

A+
i : ∂iπi − j0, ei

1(−π+
i + ∂i · (A+

0 + A−0 )), ei
2(−π+

i + ∂i · (A+
0 − A−0 )) (4.36)

π+
i : ei

1(A+
i + A−i ), ei

2(A+
i − A−i ) (4.37)

Observation 4.10. The only non-zero components contributing to the Dirac brackets are M−1
1,2 ,

M−1
1,4 , M−1

1,12, M−1
2,3 and M−1

2,11.

Proof. The idea of this proof is to show that the other components vanish. With help of
Theorem 4.7, it is sufficient that the respective minors of M vanish. That is equivalent
to showing that the respective minors have linear dependent rows and hence vanishing
determinant.

• M−1
4,2 = M−1

4,3 = M−1
4,11 = M−1

4,12 = 0:
If one deletes the fourth row, then the first and the fifth column in Equation 4.26
are linearly dependent. Hence, M−1

4,k = 0 for all k 6= 1, 5.
Hence, from Observation 4.9 we see that M−1

4,1 (or equivalently M−1
1,4 due to the

anti-symmetry of M−1) is the only 4-component that can contribute to the Dirac
bracket.

• M−1
12,2 = M−1

12,3 = M−1
12,11 = 0:

If one deletes the twelfth row, then the first and the fifth column in Equation 4.26
are linearly dependent. Hence, M−1

12,k = 0 for all k 6= 1, 5.
Hence, from Observation 4.9 we see that M−1

12,1 (or equivalently M−1
1,12) is the only

12-component that can contribute to the Dirac bracket.

• M−1
11,3 = M−1

11,1 = 0:
If one deletes the eleventh row, then the second, sixth, seventh and eighth columns
have non-zero entries only in the third, ninth and tenth entry.
Hence, these four column vectors can not be linearly independent. That means
that M−1

11,k = 0 for k 6= 2, 6, 7, 8.

Since the constraint matrix (4.26) is anti-symmetric the inverse is anti-symmetric as
well. Hence, we know the residual relevant non-zero components of M−1 due to the
anti-symmetry.
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4 Discretely smeared Axial gauge

Observation 4.11. The Dirac bracket of the zero component A+
0 and the canonical momenta

π+ is vanishing:

{A+
0 , π+

i }D = 0. (4.38)

Computation. We already know

{A+
µ (x), π+

ν (y)} = −δµνδ(3)(x− y) (4.39)

and hence A+
0 and π+

i Poisson commute. Hence, the only components contributing
to the Dirac bracket arise from M−1. Anyway, in Observation 4.10 we proved that the
components corresponding to the constraints that do not Poisson commute with A+

0 or
π+

i (compare Observation 4.9) vanish.

In order to determine the Dirac brackets, we need to compute the value of the relevant
components.

Proposition 4.12. The non-zero components from Observation 4.10 have the following values:

M−1
1,2 =

1
4

(
ei

2e2,i

(ej
1∂j)2

+
ei

1e1,i

(ei
2∂i)2

+
2 ei

1e2,i

(ei
1∂i)(ei

2∂i)

)
(4.40)

M−1
1,4 =

1
2

1
ei

1∂i
(4.41)

M−1
1,12 =

1
2

1
ei

2∂i
(4.42)

M−1
2,3 =

1
2

1
ei

1∂i
(4.43)

M−1
2,11 =

1
2

1
ei

2∂i
(4.44)

Proof. Using Theorem 4.7 it is sufficient to compute the determinant of the respective
minors since we computed the determinant det(M).
We will start by discussing the latter four components. To do this we need to recall
the proof of Statement 4.8. Each minor multiplied with the value of the respective
component of M appeared as addend of the determinant .
As discussed, every addend contributed the same amount to the determinant. Hence,
we know:

M̃1,4 = M̃2,3 =
1
2

det(M)

ei
1∂i

(4.45)

M̃1,12 = M̃2,11 =
1
2

det(M)

ei
2∂i

(4.46)

The minor M̃1, 2 was computed with Mathematica. One can equivalently, compute the
determinant with consecutive application of the Laplace’s formula. The computation
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4.1 Twofold discretely smeared Axial gauge

does not give any new insights. Hence, we will not discuss the technical details any
further.

Now, we have all ingredients to determine the residual Dirac brackets:

Statement 4.13.

{A+
i (x), π+

j (y)}D =

[
δij −

1
2

(
e1,j

ek
1∂k

+
e2,j

ek
2∂k

)
∂i

]
δ(3)(x− y) (4.47)

{A+
0 (x), A+

i (y)}D =

[
1
4

(
ei

2e2,i

(ek
1∂k)2

+
ei

1e1,i

(ek
2∂k)2

+
2 el

1e2,l

(ek
1∂k)(ek

2∂k)

)
∂i

− 1
2

(
e1,i

ek
1∂k

+
e2,i

ek
2∂k

)]
δ(3)(x− y) (4.48)

Computation. Recalling the definition of the Dirac bracket and Proposition 4.12 we only
need to compute the Poisson brackets mentioned in the proof of Observation 4.9.
It is straight forward to verify that the following holds:

{A+
0 (x), π+

0 (y)} =δ(3)(x− y) (4.49)

{A+
i (x), ∂kπ+

k (y)− j0(y)} =∂iδ
(3)(x− y) (4.50)

{A+
i (x), ek

j (−π+
k + ∂k(A+

0 ± A−0 ))(y)} =− ej,iδ
(3)(x− y) (4.51)

{π+
i (x), ek

j (A+
k ± A−k )(y)} =− ej,iδ

(3)(x− y) (4.52)

Inserting the results from Proposition 4.12 and those we just stated to the definition of
the Dirac bracket gives the result.

Computation of Statement 4.1. We need to prove that the representation in Statement 4.1
satisfies Statement 4.13.
In particular, with help of the results of the last section, we have for f , g ∈ SR(R

3, R3)

{A+( f ), π+(g)} = 1
4
{Ae1( f ) + Ae2( f ), πe1(g) + πe2(g)} (4.53)

=
1
4

(
4 〈 f̂ , ĝ〉 − 2 〈 k · f̂

e1 · k
, e1 · ĝ〉 − 2 〈 k · f̂

e2 · k
, e2 · ĝ〉

)
(4.54)

= 〈 f̂ , ĝ〉 − 1
2

(
〈 k · f̂

e1 · k
, e1 · ĝ〉 − 〈

k · f̂
e2 · k

, e2 · ĝ〉
)

(4.55)

which is the smeared version of (4.47) in momentum space.
In the same way, one verifies that the correct bracket relation (4.48) using the same
techniques as in Equation 3.4.
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4 Discretely smeared Axial gauge

Remark 4.14. In the physics notation, the representation of the conjugate momentum to the
expansion of A+

µ is:

π+
j (x) = −i

∫
d3k

(2π)
3
2

√
ω(k)

2
εn

j (k)
[
an(k)eik·x + a†

n(k)e
−ik·x

]
+

(
e1,j

ek
1∂k

+
e2,j

ek
2∂k

)
j0(x)

2

(4.56)

4.2 n-fold discretely smeared Axial gauge

The next step of smearing out the Axial gauge is to generalize the results of the last
section for arbitrary many copies of the vector potential, on which the Axial gauge
condition is implemented respectively.

That means, we decompose the vector potential A+ =
n∑

i=1
Ai as sum of n vector

potentials with the same field strength tensor Fi = dAi.
This system has gauge freedom which allows for imposing the Axial gauge fixing
ei · Ai ≈ 0 for each addend. The proof of the statements for arbitrary n ∈ N will be
made using induction and using the results of the last section as induction beginning.

Statement 4.15. A representation of the canonical fields in the above decomposition with the
Axial gauge conditions is:

A+ =
1
n

n∑
k=1

Aek (4.57)

A+
0 =

1
n

n∑
k=1

Aek , f
0 − 1

n2

 n∑
j,k=1

ei
jek,i

(ej∂)(ek∂)

 j0 (4.58)

π+ =
1
n

n∑
k=1

πek
i = π f +

1
n

(
n∑

k=1

ek

ek∂

)
j0 (4.59)

Observation 4.16. Assume, the vector potential A+ =
n∑

i=1
Ai is decomposed as the sum of

n vector potentials. Then we have a U(1)× · · · ×U(1)︸ ︷︷ ︸
n−times

gauge symmetry after imposing the

consistency conditions F̃k
ij ≈ 0, k ∈ {2, . . . , n}. We explain in the proof how F̃k is defined.

Computation. The induction beginning for n = 2 is Observation 4.3.
To simplify the computations we again introduce new coordinates:

A+ =
n∑

i=1

Ai (4.60)

Ãk = A1 − Ak, k ∈ {2, . . . , n} (4.61)
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4.2 n-fold discretely smeared Axial gauge

These new coordinates have the advantage that only A+ is a dynamical field while
the Ãk are auxiliary fields to impose the gauge condition. In order to express the
Lagrangian in the new coordinates we need to express the old coordinates in terms of
the new ones. One easily checks:

A1 =
1
n

(
A+ +

n∑
i=2

Ãi

)
(4.62)

Ak =
1
n

A+ +
n∑

i 6=k

Ãi − (n− 1)Ãk

 (4.63)

Thus, we have the Lagrangian:

L = −1
4

F+
µνF+,µν − jµ A+

µ (4.64)

We immediately see that (4.64) is independent of Ãk, 2 ≤ k ≤ n and hence π̃k
µ = 0 are

four primary constraints which generate complete gauge freedom of Ãk.
F̃k = dÃk is defined as the field strength tensor of corresponding to Ãk. Analogously to
the explanation in the last section, the decomposition is only admissible if Fl ≈ Fm for
l, m ∈ {1, . . . , n}. In the new coordinates, these assumptions are equivalent to saying
F̃k ≈ 0, k ∈ {2, . . . , n}.
Hence, we start by imposing F̃k

ij ≈ 0. We can repeat the computation from Observa-
tion 4.3. Since F̃k

ij only depends on Ãk, it is obvious that it Poisson commutes with
π̃i, i 6= k.
Thus, the constraint matrix M̃ for the constraints π̃k

µ ≈ 0 and F̃k
ij ≈ 0, consists of block

matrices:

M̃ =



02×2 06×2 . . . . . . . . . . . 06×2

06×2 κ 06×6 . . . . 06×6
...

. . . . . . . . .
...

...
. . . . . .

...
06×2 06×6 . . . . 06×6 κ

 (4.65)

with:

κ =


04×4

0 0
∂2 ∂3

−∂1 0
0 −∂1

0 −∂2 ∂1 0
0 −∂3 0 ∂1

02×2


(4.66)
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4 Discretely smeared Axial gauge

To determine the residual first class constraints, we need to find the kernel of M̃. Since
the first two rows are zero rows, vectors with entries in the first two columns are in
the kernel and hence π+

0 ≈ 0 and ∂iπ+
i ≈ 0 are still first class. As we know, these

constraints generate the well-known U(1) gauge freedom for A+
µ .

We can make use of the block structure of M̃ and reproduce the residual basis element
of the kernel ker(M̃) from the kernel of κ. Since the first row and column respectively
are zero, vectors with entries in the first component vanish. Hence, π̃k ≈ 0, 2 ≤ k ≤ n is
still a first class constraint. Recalling the computation of the kernel of m as defined in
(4.17), we assert that the only remaining first class constraint is ∂iπ̃k

i for each 2 ≤ k ≤ n.
In conclusion, for each k we have two first class constraints π̃k

0 ≈ 0 and ∂iπ̃k
i ≈ 0. It is

evident that these constraints Poisson commute with Ãi, i 6= k and with A+. Thus, they
generate the known U(1) gauge symmetry for Ãn.

Observation 4.17. Imposing the Axial gauge for every vector potential Aj and the consistency
conditions F̃k

ij ≈ 0 fixes the gauge completely.
The set of constraints is given recursively. For n = 2, the set of constraints is stated in
Observation 4.4. For each auxiliary vector potential Ak, k ∈ {2, . . . , n}, there are eight
additional constraints

k1)− k4) π̃k
µ ≈ 0 (4.67)

k5)− k6) F̃k
1j ≈ 0 (4.68)

k7) n · ei
k Ak

i ≈ 0 (4.69)

k8)ei
k

(
−π+

i + n · ∂i Ak
0

)
≈ 0 (4.70)

with:

A+ =
n∑

i=1

Ai (4.71)

Ãk = A1 − Ak, k ∈ {2, . . . , n} (4.72)

One has to note that the old constraints need to be expressed in the new coordinates as well.

Computation. First, we note that replacing the condition ei
k Ak

i ≈ 0 by n · ei
k Ak

i ≈ 0 does
not change the physical situation. We choose the factor n to simplify the computations.
The induction beginning for n = 2 is given by Observation 4.4.
Hence, we only need to make the induction step n− 1 → n. As already stated the
Lagrangian in the new coordinates is:

L = −1
4

F+
µνF+,µν − jµ A+

µ (4.73)

In analogy to the computations of the last section, the Hamiltonian can be expressed re-
cursively. Obviously A+ are the only fields having a dynamical share in the Lagrangian
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4.2 n-fold discretely smeared Axial gauge

and π̃n ≈ 0 are primary constraints.

Hn = Hn−1 + ṽn,µπ̃n
µ (4.74)

where Hn is the extended Hamiltonian for n smearing vectors. H2 is given by (4.8).
The Axial gauge conditions in the new coordinates are of the form:

ei
k Ak,i =

1
n

ei
k

A+
i +

n∑
j 6=k

Ãj
i − (n− 1)Ãk

i

 (4.75)

ei
1A1,i =

1
n

ei
1

A+
i +

n∑
j

Ãj
i

 (4.76)

These conditions fix the spatial gauge freedom of An. This also means that the Lagrange
multipliers are fixed such that the time derivative vanishes. One computes:

{n · ei
k Ak

i , H} = ei
k

−π+
i + ∂i A+

0 +
n∑

j 6=k

ṽj
i − (n− 1)ṽk

i

 ≈ 0 (4.77)

{n · ei
1A1

i , H} = ei
1

−π+
i + ∂i A+

0 +
n∑

j=2

ṽj
i

 ≈ 0 (4.78)

Imposing F̃k
0i = ṽk

i − ∂i Ãk
0 ≈ 0 we get:

ei
k

−π+
i + ∂i(A+

0 +
n∑

j 6=k

Ãj
0 − (n− 1)Ãk

0)

 = ei
k

(
−π+

i + n∂i Ak
0

)
≈ 0 (4.79)

ei
1

−π+
i + ∂i(A+

0 +
n∑
j

Ãj
0)

 = ei
k

(
−π+

i + n∂i A1
0

)
≈ 0 (4.80)

Hence, the gauge conditions k8) make sure that the consistency conditions F̃k
0i ≈ 0 are

satisfied.

69



4 Discretely smeared Axial gauge

Observation 4.18. The constraint matrix has the form:

Mn =



A B2 . . . . . . . . . . . . . . . . . . . . . . . . Bn

−BT
2 Kn

1 C2,3 . . . . . . . . . . . . . . . . . C2,n

−BT
3 C3,2 Kn

2 C3,4 . . . . . . C3,n
...

...
. . . . . . . . .

...
−BT

n−1 Cn−1,2 . . . . Cn−1,n−2 Kn
n−1 Cn−1,n

−BT
n Cn,2 . . . . . . . . . . . . . . . Cn,n−1 Kn

n


(4.81)

=


M∗

n−1

Bn

C2,n
...

Cn−1,n

−BT
n Cn,2 . . . Cn,n−1 Kn

n

 (4.82)

with

A =


0 0 0 −ei

1∂i
0 0 −ei

1∂i 0
0 ei

1∂i 0 −ei
1e1,i

ei
1∂i 0 ei

1e1,i 0

 (4.83)

Bk =


0 . . . . . . . . . . . . . . . . . . . . . 0 −ei

k∂i
0 . . . . . . . . . . . . . . . . . . 0 −ei

k∂i 0
0 e1,1 e1,2 e1,3 0 0 0 −ei

1ek,i
ei

1∂i 0 . . . . . . . . . . . . 0 ei
1ek,i 0

 (4.84)

Ck,m =



06×6

0 −ei
m∂i

−em,1 0

−em,2
...

−em,3

0 0
0 0

0 ek,1 ek,2 ek,3 0 0
ei

k∂i 0 . . . . . . . . . . . . 0
0 −ei

kem,i
ei

kem,i 0


(4.85)

Km
j =



04×4 Um
j =


0 0 0 (m− 1)ei

j∂i

∂2 ∂3 (m− 1)ej,1 0
−∂1 0 (m− 1)ej,2 0

0 −∂1 (m− 1)ej,3 0



−(Um
j )

T

0 0 0 0
0 0 0 0
0 0 0 −ei

jej,i

0 0 ei
jej,i 0


(4.86)
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4.2 n-fold discretely smeared Axial gauge

In M∗n−1 we changed Kn−1
j → Kn

j to respect that the coordinates are defined differently.
We used the notation ei

j∂i := ej∂. We will adapt this notation in the subsequent steps for sake of
clarity.

Computation. We will use induction to prove this statement. We only need to do the
induction step since we already proved the induction beginning in Observation 4.6.
For the induction step we need to compute the Poisson brackets of the constraints
involving those from Observation 4.17. These brackets are the components that occur
if one adds a vector potential in the decomposition in Observation 4.16. Using the
fundamental Poisson bracket, it is straightforward to verify the form of the constraint
matrix. The computations of A, B2 and K2

1 can be found in Observation 4.6. The
computations for Bk and Kn

k are analogously. For Kn
i , we will exemplary show the

computation for (Kn
k )1,8:

{π̃k
0(x), ei

k(−π+
i + n · ∂i Ak

0)(y)} = n(ei
k∂i){π̃k

0(x), Ak
0(y)} (4.87)

= ei
k∂i{π̃k

0(x),

A+
0 +

n∑
i 6=k

Ãi
0 − (n− 1)Ãk

0

 (y)}

(4.88)

= (n− 1)ei
k∂iδ

(3)(x− y). (4.89)

For Ck,m we will exemplary compute (Ck,m)2,7:

{π̃k
1(x), n · ei

m Am
i (y)} = {π̃k

1(x), ei
m

A+
i +

n∑
j 6=m

Ãj
i − (n− 1)Ãm

i

 (y)} (4.90)

= {π̃k
1(x), ei

m Ãk
i (y)} (4.91)

= −em,1δ(3)(x− y) (4.92)

Lemma 4.19. Let H ∈ Rn×n be some quadratic matrix. Let H further be divided in block form

H =

( A B
C D

)
(4.93)

such that D−1 exists. Then:

det(H) = det(D)det(A− BD−1C) (4.94)

Proof. See e.g. [Mey01], Chapter 6.2.

Observation 4.20.

det Mn = (n2∂1)
2(n−1)

n∏
i=1

(
ej

i∂j

)4
(4.95)
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4 Discretely smeared Axial gauge

Proof. We will again use induction to prove this statement. The induction beginning is
Statement 4.8.
For the induction step we will use Lemma 4.19 with D = Kn

n . Thus, the first step is to
show that Kn

n is invertible. Since the determinant is invariant under changes of columns
we can change the first four columns with the last four ones without changing the
determinant. Using Lemma 4.19 we find:

det(Kn
n) = (det(Un

n ))
2 (4.96)

Now, it is straightforward to check:

det(Un
n ) = (n− 1)2∂1(ei

n∂i)
2 (4.97)

Hence:

det(Kn
n) = (n− 1)4∂2

1(e
i
n∂i)

4 (4.98)

Lemma 4.19 tells us:

det(Mn) = det(Kn
n)det(M∗n−1 −


Bn

C2,n
...

Cn−1,n

 (Kn
n)
−1


−BT

n
−C2,n

...
−Cn−1,n


T

) (4.99)

One checks:

(Kn
n)
−1 = (4.100)

0 ∂1
(n−1)2(en∂)

∂2
(n−1)2(en∂)

∂3
(n−1)2(en∂)

0 0 0 − 1
n−1

− ∂1
(n−1)2(en∂)

0 0 0 en,2 en,3
∂1

n−1 0

− ∂2
(n−1)2(en∂)

0 0 0 en,2∂2+en∂
∂1

en,3∂2
∂1

∂2
∂1

0

− ∂3
(n−1)2(en∂)

0 0 0 ∂3en,2
∂1

∂3en,3+en∂
∂1

∂3
n−1 0

0 −en,2 − en,2∂2+en∂
∂1

− ∂3en,2
∂1

0 0 0 0
0 −en,3 − en,3∂2

∂1
− ∂3en,3+en∂

∂1
0 0 0 0

0 − ∂1
n−1 − ∂2

n−1 − ∂3
n−1 0 0 0 0

1
n−1 0 0 0 0 0 0 0



1
en∂

(4.101)

We need to compute three different types of products of matrices, namely those
appearing in (4.99).
One checks

Bn·(Kn
n)
−1 · BT

n =


0 0 0 − e1∂

n−1
0 0 − e1∂

n−1 0
0 e1∂

n−1 0 ∗1
e1∂

n−1 0 −∗1 0

 (4.102)
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4.2 n-fold discretely smeared Axial gauge

with ∗1 =
(ei

nen,i)(e1∂)2+2(n−1)(ei
1en,i)(e1∂)(en∂)

(n−1)2(en∂)2 and

Bn · (Kn
n)
−1·(−Cm,n)

T = (4.103)
0 0 0 0 0 0 0 em∂

n−1
0 0 0 0 0 0 em∂

n−1 0
0 − en,1(e1∂)

(n−1)en∂
− en,2(e1∂)

(n−1)en∂
− en,3(e1∂)

(n−1)en∂
0 0 0 ∗2

− e1∂
n−1 0 0 0 0 0 −∗2 0

 (4.104)

with ∗2 =
(e1∂)(em∂)(ei

nen,i)+(n−1)en∂((ei
1en,i)em∂+(ei

men,i)e1∂)
(n−1)2(en∂)2 and

Cj,n · (Kn
n)
−1 · (−Cm,n)

T = (4.105)

0 0 0 0 0 0 0 em∂
n−1

0 0 0 0 0 0 (em∂)en,1
(n−1)en∂

0

0 0 0 0 0 0 (em∂)en,2
(n−1)en∂

0

0 0 0 0 0 0 (em∂)en,3
(n−1)en∂

0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 − (ej∂)en,1

(n−1)en∂
− (ej∂)en,3

(n−1)en∂
− (ej∂)en,1

(n−1)en∂
0 0 0 ∗3

ej∂

n−1 0 0 0 0 0 −∗3 0


(4.106)

with ∗3 =
(em∂)(ej∂)(ei

nen,i)+(n−1)(en∂)
(
(ei

men,i)ej∂+(ei
jen,i)em∂

)
(n−1)2(en∂)2 . Now, we need to compute the sum

of matrices M′n := M∗n−1−


Bn

C1,n
...

Cn−1,n

 (Kn
n)
−1


−BT

n
−CT

1,n
...

−CT
n−1,n


T

. We will do this computation

again component wise and recognize that the sum is strongly related to Mn−1 which
allows us to compute the determinant of Mn using the induction hypothesis and hence
complete the proof. To make the relation to Mn−1 as clear as possible we introduce new
vectors:

ẽi
k =

(n− 1)(en∂)ei
k + (ek∂)ei

n

(n− 1)(en∂)
(4.107)

Using this definition the component have the form:

A′ =


0 0 0 −ẽ1∂

0 0 −ẽ1∂ 0
0 ẽ1∂ 0 −ẽi

1ẽ1,i
ẽ1∂ 0 ẽi

1ẽ1,i 0

 (4.108)
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4 Discretely smeared Axial gauge

B′m =


0 0 0 0 0 0 0 −ẽm∂

0 0 0 0 0 0 −ẽm∂ 0
0 ẽ1,1 ẽ1,2 ẽ1,3 0 0 0 −ẽi

1ẽm,i
ẽ1∂ 0 0 0 0 0 ẽi

1ẽm,i 0

 (4.109)

C′j,m =



06×6

0 −ẽi
m∂i

−ẽm,1 0

−ẽm,2
...

−ẽm,3

0 0
0 0

0 ẽj,1 ẽj,2 ẽj,3 0 0
ẽi

j∂i 0 . . . . . . . . . . . 0
0 −ẽi

j ẽm,i

ẽi
k ẽm,i 0


(4.110)

K′nj =

04×4 Ũn
j =


0 0 0 (n− 2)(ẽj∂)

∂2 ∂3 (n− 1)ẽj,1 −
(ẽj∂)en,1

en∂ 0

−∂1 0 (n− 1)ẽj,2 −
(ẽj∂)en,2

en∂ 0

0 −∂1 (n− 1)ẽj,3 −
(ẽj∂)en,3

en∂ 0



−(Um
j )

T

0 0 0 0
0 0 0 0
0 0 0 −ẽi

j ẽj,i

0 0 ẽi
j ẽj,i 0


(4.111)

We recognize that the primed matrices A′, B′m and C′j,m have the same form as their
unprimed counterparts and one can transform from the unprimed matrices to the
primed ones via:

ej → ẽj (4.112)

For K′nj this is not true since there are extra terms in seventh row and column. Anyway,
we will show that these components appear in the determinant only contracted with

the partial derivations such that we can replace (n− 1)ẽj −
(ẽj∂)en

en∂ → (n− 2)ẽj without
changing the determinant. Thus, we can use the induction hypothesis to compute the
determinant.

Observation 4.21. Replacing (n − 1)ẽj −
(ẽj∂)en

en∂ → (n − 2)ẽj in K′nj does not change the
determinant of M′n.

Computation. We note that if we change indices in Ãk, then the constraint matrix M′n
stays form invariant, only the indices in the block matrices Bk, Ckm and Km

k are changed.
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4.2 n-fold discretely smeared Axial gauge

This means that it is sufficient to prove this statement for one particular k since the
proof generalizes to any 2 ≤ k ≤ n− 1 due to the symmetry of M′n.
Since M′n and K′nj are antisymmetric and K′nj is a diagonal element of M′n the computa-
tions for the columns will up to possible sign differences also apply to the rows. Hence,
we will restrict ourselves to the discussion of the columns.
Since the partial derivatives in the fifth and sixth column of K′nj are the only non-zero
entries in these columns in M′n, we can easily express det(M′n) in terms of the minors
of the fifth column of K′nj . We can repeat this procedure for the sixth column of K′nj and
find:

det(M′n) = −∂1

(
∂1 det((M′n)

5,6
3,4) + ∂2 det((M′n)

5,6
2,4) + ∂3 det((M′n)

5,6
2,3)
)

(4.113)

where (M′n)
i,j
a,b indicates the matrix where in M′n the columns corresponding to the i-th

and j-th columns and the rows corresponding to the a-th and b-th row of K′nj are erased.
Expanding the determinants in the row respective row of {2, 3, 4} of K′nj that has not
been erased gives:

det(M′n) = ∂1

(
((n− 1)ẽi

j −
(ẽj∂)ei

n

en∂
)∂i det((M′n)

5,6,7
2,3,4) + . . .

)
(4.114)

where the dots indicate that there are also different minors appearing in this expansion.
Anyway, after doing this procedure for the columns and rows of K′nj respectively, those

minors are independent of (n− 1)ẽj −
(ẽj∂)en

en∂ .
Using (

(n− 1)ẽi
j −

(ẽj∂)ei
n

en∂

)
∂i = (n− 2)(ẽj∂) (4.115)

completes the proof.

With Observation 4.21 we can use K′nj with (n − 2)ẽj as entries to compute the

determinant. We will call this matrix K∗nj . One recognizes that K∗nj becomes Kn−1
j under

the transformation:

ẽj → ej (4.116)

Hence, we have the equality:

det(M′n(e1, . . . , en)) = det(Kn
n) · det(Mn−1(ẽ1, . . . , ẽn−1)) (4.117)

The induction hypothesis allows us to compute:

det(Mn−1(ẽ1, . . . , ẽn−1)) =
(
(n− 1)2∂2

1
)2(n−2)

n−1∏
i=1

(ẽi∂)
4 (4.118)
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4 Discretely smeared Axial gauge

Using

ẽj∂ =
(n− 1)(en∂)(ej∂) + (en∂)(ej∂)

(n− 1)en∂
=

n
n− 1

ej∂ (4.119)

simplifies (4.118) to:

det(M′n(e1, . . . , en)) =
n4(n−1)

(n− 1)4 ∂
4(n−2)
1

n−1∏
i=1

(ei∂)
4 (4.120)

Hence, we have

det(Mn) = det(Kn
n) · det(M′n) =

(
n2∂2

1
)2(n−1)

n∏
i=1

(ei∂)
4 (4.121)

which completes the proof.

Having determined the determinant of Mn we can use Theorem 4.7 to compute the
inverse M−1

n . Since our goal is to construct the Dirac brackets we can restrict ourselves
to only compute the components of M−1

n that contribute to the Dirac bracket of the
dynamical quantities A+

µ and π+
i .

Remark 4.22. The only constraint functions that do not Poisson commute with A+
µ or π+

i are:

A+
0 : π+

0 (4.122)

A+
i : ∂iπ+

i − j0, ei
j(−π+

i + n · ∂i A
j
0) (4.123)

π+
i : ei

j A
j
i (4.124)

Hence, it is sufficient to know the components of M−1
n corresponding to any combination of the

above mentioned constraint functions to construct the Dirac brackets.
In order to simplify the discussion further we note that the matrix Mn is form invariant under
exchange of indices i↔ j, 2 ≤ i, j ≤ n in Ãi. Thus, the knowledge of all components of M−1

n
corresponding to the constraint functions for some particular j ≥ 2 allows us to construct those
components for every i ≥ 2.
Following the same argument we see that it is sufficient to compute only one component of
M−1

n corresponding to ei
j(−π+

i + n · ∂i A
j
0) and ei

k Ak
i for 2 ≤ j 6= k ≤ n. The others can

be reconstructed due to the symmetry of M and the accompanying symmetry of M−1 under
exchange of indices.
However, we need to respect the fact that Mn is not form invariant under exchange of 1↔ j in
Ãj for j ≥ 2.
Hence, we can reconstruct every required component from knowledge of (M−1

n )1,2, (M−1
n )1,3,

(M−1
n )1,4, (M−1

n )1,11, (M−1
n )1,12, (M−1

n )2,3, (M−1
n )2,11, (M−1

n )3,4, (M−1
n )3,12, (M−1

n )4,11,
(M−1

n )11,12 and (M−1
n )11,20.
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4.2 n-fold discretely smeared Axial gauge

To compute this we will use Theorem 4.7 to use induction. The induction beginning
is given by Observation 4.10 and Proposition 4.12.

Observation 4.23. Let (mn)a,b be the (a, b)-minor matrix of Mn, 1 ≤ a, b ≤ 8n− 4. Then
we have

det((mn)a,b) = det(Kn
n)det


(

M∗n−1 −


Bn

C2,n
...

Cn−1,n

 (Kn
n)
−1


−BT

n
Cn,2

...
Cn,n−1


T )

a,b

 (4.125)

where the subscript a,b denotes that the a-th row and b-th column is deleted.

Computation. We chose n such that there is neither a row nor a column of Kn
n deleted.

Hence, we can still use Lemma 4.19 to compute the determinant since Kn
n is invertible.

We have

det((mn)a,b) = det(Kn
n)det


(

M∗n−1

)
a,b
−


Bn

C2,n
...

Cn−1,n


a

(Kn
n)
−1


−BT

n
Cn,2

...
Cn,n−1


T

b

 (4.126)

where the subscripts indicate the deletion of the respective row or column.
Without loss of generality, let Cj,n and Cm,n for some integers j, m be the matrices in
which the row or column respectively is deleted. Then due to the definition of matrix
multiplication, we have:

(Cj,n)a(Kn
n)
−1(Cm,n)b =

(
Cj,n(Kn

n)
−1Cn,m

)
a,b

(4.127)

Hence:
Bn

C2,n
...

Cn−1,n


a

(Kn
n)
−1


−BT

n
Cn,2

...
Cn,n−1


T

b

=




Bn

C2,n
...

Cn−1,n

 (Kn
n)
−1


−BT

n
Cn,2

...
Cn,n−1


T

a,b

(4.128)

Furthermore, it is obvious that the operation of deleting rows and columns is linear.

Observation 4.24.

(M̃3)11,20 = 0 (4.129)

Computation. It is straightforward to check that the first and 13-th of row M3 are equal
if one deletes the last column. Hence, (M̃3)11,20 = 0.
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4 Discretely smeared Axial gauge

Observation 4.25. The only non-zero components from the above mentioned ones are (M−1
n )1,2,

(M−1
n )1,4, (M−1

n )1,12, (M−1
n )2,3 and (M−1

n )2,11.

Proof. We need to show (M̃n)ab = 0 for every combination a, b that is required to
construct the Dirac bracket but is not mentioned in the statement. Here (M̃n)ab is the
(a, b)-minor of Mn.
We use induction to prove this statement. The induction beginning is given by Observa-
tion 4.10 and Observation 4.24 respectively.
The induction hypothesis is: (M̃n)i,j = 0 ∀n ∈ N where (i, j) is one of the respective
pairs.
For the induction step we will make use of Observation 4.23. Additionally, we note that

Observation 4.21 can also be applied to det
((

M∗n−1−


Bn

C2,n
...

Cn−1,n

 (Kn
n)
−1


−BT

n
Cn,2

...
Cn,n−1


T

)
a,b

)
for 1 ≤ a, b ≤ 8n− 4. Hence, we have:

(M̃n)a,b = det(Kn
n)det((Mn−1(ẽj))a,b) (4.130)

In this form we can use the induction hypothesis for det(Mn−1(ẽj)a,b) which completes
the proof.

Observation 4.26. The Dirac bracket of A+
0 and the canonical momenta π+

i vanishes:

{A+
0 (x), π+

i (y)}D = 0 (4.131)

Proof. Since A+
0 and π+

i are Poisson commuting and the only components of M−1
n

appearing in their Dirac bracket (see Remark 4.22) are (M−1
n )1,3 and (M−1

n )8k+3, 2 ≤
k ≤ n, which are vanishing (see Observation 4.25), the Dirac bracket of A+

0 and π+
i is

also vanishing.

Observation 4.27. The non-zero components in Observation 4.25 have the values:

(M−1
n )1,2 =

1
n2

 n∑
j,k=1

ei
jek,i

(ej∂)(ek∂)

 (4.132)

(M−1
n )1,4 =

1
n

1
e1∂

(4.133)

(M−1
n )1,12 =

1
n

1
e2∂

(4.134)

(M−1
n )2,3 =

1
n

1
e1∂

(4.135)

(M−1
n )2,11 =

1
n

1
e2∂

(4.136)
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4.2 n-fold discretely smeared Axial gauge

Computation. We prove this statement using induction. The induction beginning is
given by Proposition 4.12.
For the induction step we note that the statement of Observation 4.21 is still valid for
our computations. Hence, following the argumentation as before the induction step
breaks down to replacing ej → ẽj in (4.132)-4.136. Using additionally ẽj∂ = n

n−1 ej∂, the
statements (4.133)-(4.136) become clear.
For (4.132), we have:

(M−1
n )1,2 = (M−1

n−1(ẽj))1,2 (4.137)

=
1

(n− 1)2

 n−1∑
j,k=1

ẽi
j ẽk,i

(ẽj∂)(ẽk∂)

 (4.138)

=
1
n2

 n−1∑
j,k=1

ẽi
j ẽk,i

(ej∂)(ek∂)

 (4.139)

=
1
n2

( n−1∑
j,k=1

1
(ej∂)(ek∂)

(
ei

jek,i +
ei

jen,i(ek∂)

(n− 1)(en∂)
+

ei
ken,i(ej∂)

(n− 1)(en∂)
(4.140)

+
ei

nen,i

((n− 1)en∂)2

))
(4.141)

=
1
n2

 n∑
j,k=1

ei
jek,i

(ej∂)(ek∂)

 (4.142)

Observation 4.28. The Dirac brackets of the canonical fields are:

{A+
i (x), π+

j (y)} =
(

δij −
1
n

(
n∑

k=1

ek,j

el
k∂l

)
∂i

)
δ(3)(x− y) (4.143)

{A+
0 (x), A+

i (y)} =
(

1
n2

 n∑
j,k=1

ei
jek,i

(ej∂)(ek∂)

 ∂i −
1
n

(
n∑

k=1

ek,j

el
k∂l

))
δ(3)(x− y) (4.144)

Computation. Recalling the definition of the Dirac bracket, Remark 4.22 and Observa-
tion 4.25 we see that the only non zero components of M−1

n appearing in the Dirac
bracket of A+

i and π+
j are the components (M−1

n )2,8k+3, 1 ≤ k ≤ n.
Using Observation 4.27 and inserting the values of the non-zero components to the
Dirac bracket gives the result.

Repeating the same procedure we find that the non zero components appearing in the
Dirac bracket of A+

0 and A+
i are (M−1

n )1,2 and (M−1
n )1,8k+4, 1 ≤ k ≤ n. The values of

those components are given in Observation 4.27. Inserting them to the definition of the
Dirac bracket gives the result.
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4 Discretely smeared Axial gauge

Computation of Statement 4.15. We need to show that this representations satisfy the
Dirac bracket relations that we constructed. The computation is analogous to the one
for Statement 4.1 and hence will be omitted.

Observation 4.29. The magnetic field in the above representation for f ∈ SR(R
3, R3) is

B( f ) = curl(A( f )) (4.145)

B( f ) =
1
n

n∑
i=1

φ0(ω−
1
2 ( ̂curl( f ))) (4.146)

= φ0(iω−
1
2 (k× f̂ )) (4.147)

and hence coincides with the magnetic field in the Coulomb as well as the Axial gauge.

Statement 4.30. The Maxwell equations in this representation are satisfied.

Computation. The Hamiltonian of Statement 3.10 in this representation is:

H = H f + H I (4.148)

with

H I =
1
n

n∑
i=1

π(
ei

ei · ∂
j0)−

1
2
〈 1

n

n∑
i=1

ei

ei · k
ĵ0,

1
n

n∑
i=1

ei

ei · k
ĵ0〉+ A(j) (4.149)

The verification of the Maxwell equations is analogous to the computations for State-
ment 3.30.
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5 YSM-type smeared Axial gauge

In Chapter 3, we have seen that the representation of the Weyl algebra in the Axial
gauge is not well defined due to certain singularities. In the last chapter 4, we justified
that one can work in a more general setting of the discretely smeared Axial gauge.
However, the representation, that we introduced in this chapter, is still only defined on
a formal level.
In the first section, we will discuss the limit of the scalar product term of the discretely
smeared Axial gauge representation and show that it converges for n → ∞ to a well
defined expression under certain technical assumptions that we will specify. The the
observables in the smeared Axial gauge turn out to have a similar form as in [MSY05].
We will use these results to define a representation of the observable algebra. We will
refer to this kind of gauge as the smeared Axial gauge.
In the third section, we will discuss different possibilities of smearing out the Axial
gauge. In particular, we will show that there are ways to smear out the gauge such that
the representation of the observables are not manifestly equivalent to the representation
in the Coulomb gauge.
In the last section, we will explain that the differences in the representation only come
from the transversal shares of the fields. Hence, we will elaborate on the representation
of the transversal observables. We will see that the representation of the Weyl algebra
of the transversal fields reduces to the Fock representation.

5.1 Smeared Inverse Differential Operator

In the last chapter, we have discussed the representation of the canonical fields in the
discretely smeared Axial gauge. Since, we are interested in the relations between the
observables in the different gauges, we will concentrate on the electric field or the
canonical momentum respectively. We will not consider the magnetic field in this
chapter, because we have seen that the representations of the magnetic field in the
gauges under consideration coincide.
For a test function f , we found the representation of the canonical momentum in the
discretely smeared Axial gauge:

π( f ) = π f ( f )− 1
n

n∑
j=1

〈
ej

ek
j ∂k

j0, f 〉 (5.1)
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5 YSM-type smeared Axial gauge

= π f ( f )− i
1
n

n∑
j=1

〈
ej

ej · k
ĵ0, f̂ 〉 (5.2)

From (5.2), we see that only the scalar product share of the representation is changed
in the smearing process. The goal of this chapter is to justify the smearing out of the
Inverse Differential Operator such that it maps the Schwartz space to square integrable
functions.

Definition 5.1. For δ > 0 we define:

Uδ = {e ∈ S2, k ∈ R3; |e · k| ≥ δ|k|} ⊂ S2 ×R3 (5.3)

For fixed k ∈ R3, we call

Uδ(k) = {e ∈ S2; |e · k| ≥ δ|k|} ⊂ S2 (5.4)

and for fixed e ∈ S2:

Uδ(e) = {k ∈ R3; |e · k| ≥ δ|k|} ⊂ R3 (5.5)

Theorem 5.2. For fixed k ∈ R3\0, any g ∈ C1(S2, R) such that
∫

S2 g = 1 and g ≥ 0 and
any δ > 0, we can choose a distribution of the smearing vectors e ∈ S2 such that

n∑
j=1

1
n

ej,i

ej · k
χ(Uδ(ej))(k) −→

∫
Uδ(k)

dΩ(e)
ei

e · k g(e), (5.6)

where χ : R3 → {0, 1} denotes the characteristic function.

Proof. For fixed k ∈ R3\0, we restrict the symbol to a domain of the smearing vectors
where it is well defined. For any δ > 0 the symbol

n∑
j=1

1
n

ej,i

ej · k
χ(Uδ(ej))(k) =

n∑
j=1

1
n

ej,i

ej · k

∣∣∣∣∣∣
ej∈Uδ(k)

(5.7)

is continuous on Uδ(ej) and bounded and hence well defined.
The idea is to write (5.7) in a form that it is similar to a Riemann sum (see Appendix A)
which allows us to construct a distribution of smearing vectors such that we can
investigate the convergence behaviour.
Let Sn

j , j ∈ {1, . . . , n} be disjoint measurable subsets with non-zero measure such that
ej ∈ Sn

j and call cn
j := 1

n·µ(Sn
j )

. Note that since µ(S2) = 4π every measurable subset has

finite measure. We complete the system of sets {Sn
j , 1 ≤ j ≤ n} to a finite decomposition

In of S2. For each Sn
j′ ∈ In\{Sn

j ; j ∈ {1, . . . , n}} we pick one vector ej′ ∈ In
j′ and set
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5.1 Smeared Inverse Differential Operator

cn
j′ = 0.

Then, we formally have:
n∑

j=1

1
n

ej,i

ej · k
=

N∑
j=1

cn
j

ej,i

ej · k
µ(Sn

j ) (5.8)

where N is the number of subset of the decomposition. Note that lim
n→∞

N = ∞. Addi-

tionally, we assume that we have chosen the decomposition such that |dn| → 0 where
dn = sup

j
(diam(Sn

j )).

Furthermore, we assume that the lim
n→∞

cn
j exists for every j and set lim

n→∞
cn

j = cj. Let

g : S2 → R be a function such that

ej 7→ g(ej) = cj (5.9)

Note that for any c ∈ R, we can choose the distribution of the smearing vectors and the
decomposition of Uδ such that lim

n→∞
cn

j = c.

Since In is a decomposition of S2 it is clear that In|Uδ(k) := {Sn
j ∩Uδ; 1 ≤ j ≤ N} is a

decomposition of Uδ(k) for every n. Since diam(Sn
j

∣∣∣
Uδ(k)

) ≤ diam(Sn
j ) for all n, j, we

have | dn|Uδ(k) | → 0. In the following computations we will drop |Uδ(k) for sake of
clarity:

|
∫

Uδ(k)
d3e

ei

e · k g(e)− lim
n→∞

N∑
j=1

cn
j

ej,i

ej · k
χ(Uδ(ej))(k)µ(Sn

j

∣∣∣
Uδ(k)

)| (5.10)

≤ lim
n→∞

N∑
j=1

sup
e∈Sn

j

| g(e)ei

e · k −
cn

j ej,i

ej · k
|µ(Sn

j ) (5.11)

= lim
n→∞

N∑
j=1

sup
e∈Sn

j

|
g(e)ei(ej · k)− cn

j ej,i(e · k)
(e · k)(ej · k)

|µ(Sn
j ) (5.12)

≤ lim
n→∞

N∑
j=1

sup
e∈Sn

j

(
|g(e)

ei(ej · k)− ej,i(e · k)
(e · k)(ej · k)

|+ |
(cn

j − g(e))ej,i

ej · k
|
)

µ(Sn
j ) (5.13)

≤ lim
n→∞

N∑
j=1

sup
e∈Sn

j

|g(e)
ei(ej · k)− ej,i(e · k)

(e · k)(ej · k)
|+ sup

e∈Sn
j

|
(cn

j − g(e))ej,i

ej · k
|

 µ(Sn
j ) (5.14)

≤ lim
n→∞

N∑
j=1

sup
e∈Sn

j

|g(e)
ei(ej · k)− ej,i(e · k)

(e · k)(ej · k)
|+ sup

e∈Sn
j

|(cn
j − g(e))| sup

e∈Sn
j

|
ej,i

ej · k
|

 µ(Sn
j )

(5.15)

= lim
n→∞

N∑
j=1

sup
e∈Sn

j

|g(e)
ei(ej · k)− ej,i(e · k)

(e · k)(ej · k)
|+ |(cn

j − g(ẽn
j ))| sup

e∈Sn
j

|
ej,i

ej · k
|

 µ(Sn
j ) (5.16)
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5 YSM-type smeared Axial gauge

for some ẽn
j ∈ Sn

j . We have lim
n→∞

(g(ej)− g(ẽn
j )) = g(ej)− lim

n→∞
g(ẽn

j ). Using that g is

continuous we can swap g with the limit: g(ej)− lim
n→∞

g(ẽn
j ) = g(ej)− g( lim

n→∞
ẽn

j ) = 0.

Let |cn
j − g(ej)| < ε′′nj and g(ej) − g(ẽn

j ) < ε′n for some null series
(

ε′′nj

)
n∈N

and

(ε′n)n∈N and let εn

2 = max(sup
j
(ε′′nj ), ε′n) which obviously is a null series again.

(5.16) ≤ lim
n→∞

N∑
j=1

(
sup
e∈Sn

j

|g(e)
ei(ej · k)− ej,i(e · k)

(e · k)(ej · k)
|+
(
|(cn

j − g(ej))| (5.17)

+ |g(ej)− g(ẽn
j )|
)

sup
e∈Sn

j

|
ej,i

ej · k
|
)

µ(Sn
j ) (5.18)

≤ lim
n→∞

N∑
j=1

sup
e∈Sn

j

|g(e)
ei(ej · k)− ej,i(e · k)

(e · k)(ej · k)
|+ εn sup

e∈Sn
j

|
ej,i

ej · k
|

 µ(Sn
j ) (5.19)

= lim
n→∞

N∑
j=1

sup
e∈Sn

j

|g(e)
ei(ej · k)− ej,i(e · k)

(e · k)(ej · k)
|

 µ(Sn
j ) (5.20)

In the last step we used:

lim
n→∞

εn
N∑

j=1

sup
e∈Sn

j

|
ej,i

ej · k
|µ(Sn

j ) (5.21)

≤ lim
n→∞

εn
N∑

j=1

1
δ|k|µ(S

n
j ) (5.22)

= lim
n→∞

εn

δ|k|V = 0 (5.23)

Hence, we are left with:

lim
n→∞

N∑
j=1

sup
e∈Sn

j

|g(e)
ei(ej · k0)− ej,i(e · k)

(e · k)(ej · k)
|µ(Sn

j ) (5.24)

≤ lim
n→∞

N∑
j=1

sup
e∈Sn

j

|g(e)|

sup
e∈Sn

j

|
ei(ej − e) · k
(e · k)(ej · k)

|+ |
diam(Sn

j )

ej · k
|

 µ(Sn
j ) (5.25)

≤ 1
|k| lim

n→∞

N∑
j=1

sup
e∈Sn

j

|g(e)|
(

diam(Sn
j )

δ2 +
diam(Sn

j )

δ

)
µ(Sn

j ) (5.26)

Since g is continuous and S2 is bounded g is also bounded on S2. Let c ∈ R such that
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5.1 Smeared Inverse Differential Operator

sup
e∈Sn

j

|g(e)| ≤ c.

≤c
1
|k| lim

n→∞
dn
(

1
δ2 +

1
δ

) N∑
j=1

µ(Sn
j ) (5.27)

=
c
|k| lim

n→∞
dn
(

1
δ2 +

1
δ

)
V = 0 (5.28)

To show that the limit is well defined, we need to show that it is independent of the
choice of the decomposition. Let us assume that the distribution of smearing vectors
is fixed and that In and I′n are two families decompositions of Uδ(k) with above
mentioned properties and call their subsets Sn

j and S′nj respectively. Then, the difference
of the Riemann sums is:

N∑
j=1

cn
j

ej,i

ej · k
µ(Sn

j )−
N′∑

j=1

c′nj
ej,i

ej · k
µ(S′nj ) =

N∑
j=1

(cn
j µ(Sn

j )− c′nj µ(S′nj ))
ej,i

ej · k
(5.29)

=
N∑

j=1

(
1
n
− 1

n
)

ej,i

ej · k
= 0 (5.30)

From this result we can also conclude that for a fixed distribution of smearing vectors,
the limit is independent of the choice of δ in the sense that the smearing function g in
the integrand is independent of δ > 0.
The reason is that for δ′ > δ, we have Uδ′(k) ⊂ Uδ(k). Assume that the smearing
function on Uδ(k) and Uδ′(k) are called g and g′ respectively. Since, the limit of the
Riemann-type sum is independent of the choice of the decomposition I of Uδ, we
can choose one such that there is a decomposition I′ ⊂ I of Uδ′ . Because of this the
restriction of the integral is(∫

Uδ(k)
dΩ(e)

ei

e · k g(e)

)∣∣∣∣∣
Uδ′(k)

=

∫
Uδ′(k)

dΩ(e)
ei

e · k g′(e) (5.31)

and in particular, it is true that g|Uδ′ (k)
= g′.

Furthermore, we note:

|
∫

dΩ(e) g(e)− lim
n→∞

N∑
j=1

cn
j µ(Sn

j )| (5.32)

≤ lim
n→∞

N∑
j=1

sup
e∈Sn

j

|g(e)− cn
j |µ(Sn

j ) (5.33)

≤ lim
n→∞

n∑
j=1

ε′′nj µ(Sn
j ) (5.34)
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5 YSM-type smeared Axial gauge

≤ lim
n→∞

sup
j

ε′′nj

N∑
j=1

µ(Sn
j ) (5.35)

= lim
n→∞

sup
j

ε′′nj V (5.36)

=0 (5.37)

Anyway, we recall from the definition of cn
j

N∑
j=1

cn
j µ(Sn

j ) =
n∑

j=1

1
n
= 1 (5.38)

and hence: ∫
S2

dΩ(e) g(e) = 1 (5.39)

The next step is to define the symbol smeared over the whole sphere. This will make
it possible for us to define the smeared symbol independent of the choice of k ∈ R3. The

idea is to make use of lim
δ→0

Uδ(k) = S2 to define the limit lim
δ→0

(
lim
n→∞

n∑
j=1

1
n

ej,i
ej·k χ(Uδ(k))

)
.

First, we prove two lemmas that will help us to make sense of this expression.

Lemma 5.3. Let k ∈ R3 and Vδ(k) := {e ∈ S2; |e · k| ≤ δ} = S2\Uδ(k). Then:

µ(Vδ(k)) = 4π
δ

|k| (5.40)

for δ < |k| and

µ(Vδ(k)) = 4π (5.41)

for δ ≥ |k|.

Proof. Note: Vδ(k) = {e ∈ S2; |(Rke) · (Rk k̂)|k|| < δ} = {e ∈ S2; |(Rke)3| < δ} = {e ∈
S2; |(Rke)3| < δ

|k|} = {e ∈ S2; | cos(θk)| < δ
|k|} where Rk ∈ SO(3) is the rotation matrix

that sends k 7→ Rkk = |k|e3 and θk is the polar angle in the rotated system. Note that
cos is invertible on the interval (0, π). Assume δ < |k|, otherwise Vδ = S2 and we know
µ(S2) = 4π.
Furthermore, cos is anti-symmetric around θk = π

2 with cos(π
2 ) = 0. Hence Vδ(k) =

{e ∈ S2; cos(θk) ∈ (− δ
|k| ,

δ
|k| )}. Since cos is strictly decreasing on (0, π), we get Vδ =
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5.1 Smeared Inverse Differential Operator

{e ∈ S2; θk ∈ (arccos( δ
|k| ), arccos(− δ

|k| ))}.
This allows us to compute the measure of Vδ:

µ(Vδ(k)) =
∫

Vδ(k)
d3e 1 (5.42)

=

∫ 2π

0
dφk

∫ arccos(− δ
|k| )

arccos( δ
|k| )

dθk sin(θk) (5.43)

= 2π[− cos(θk)]
arccos(− δ

|k| )

arccos( δ
|k| )

(5.44)

= 4π
δ

|k| (5.45)

Lemma 5.4.

|(x− π

2
) tan(x)| ≤ π

2
∀ x ∈

[π

2
, π
]

(5.46)

Proof. Since cos(x) ≤ 0 on [π
2 , π] and cos(x) is concave on that interval, we have:

− cos(x) ≥ 1− 2
π

x (5.47)

Since | sin | ≤ 1 and tan(x) is neagtive on
[

π
2 , π

]
, we have

| tan(x)| = − tan(x) ≤ 1
1− 2

π x
(5.48)

and hence:

|(x− π

2
) tan(x)| ≤

π
2 − x

1− 2
π x

(5.49)

=
π

2
(5.50)

Theorem 5.5. Let k ∈ R3\{0} be fixed, then:

lim
δ→0

∫
Uδ(k)

d3e
ei

e · k g(e) = PV −
∫

S2
d3e

ei

e · k g(e) (5.51)

Proof.

|PV −
∫

S2
dΩ(e)

ei

e · k g(e)−
∫

Uδ(k)
d3e

ei

e · k g(e)| (5.52)

=|PV −
∫

Vδ(k)
dΩ(e)

ei

e · k g(e)| (5.53)
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5 YSM-type smeared Axial gauge

Lemma 5.3 tells us in particular: lim
δ→0

µ(Vδ(k)) = 0.

|PV −
∫

Vδ(k)
dΩ(e)

ei

e · k g(e)| (5.54)

=|PV −
∫

Vδ(k)
dΩ(e)

ki
e·k
|k|2 + (e · εn)εn

i

e · k g(e)| (5.55)

≤ |ki|
|k|2 |

∫
Vδ(k)

g(e)|+ |εn
i ||PV −

∫
Vδ(k)

dΩ(e)
e · εn

e · k g(e)| (5.56)

≤c
|ki|
|k|2 µ(Vδ(k)) +

|εn
i |
|k| |PV −

∫
R−1

k (Vδ)
dΩ(e)

en

e3
g(R−1

p e)| (5.57)

=4πc
|ki|
|k|3 δ +

|εn
i |
|k| |PV −

∫ arccos(− δ
|k| )

arccos( δ
|k| )

dθk tan(θk) sin(θk)

∫ 2π

0
dφk

(
cos(φk)

sin(φk)

)
g(R−1

k e)|

(5.58)

=4πc
|ki|
|k|3 δ +

|εn
i |
|k| |PV −

∫ arccos(− δ
|k| )

arccos( δ
|k| )

dθk tan(θk) sin(θk)

∫ 2π

0
dφk

(
cos(φk)

sin(φk)

)
gk(θk, φk)|

(5.59)

In the last step we express g(R−1
k e) as function of θk and φk. We furthermore assume

that g ∈ C1(S2, R) which automatically implies that g′ is bounded and hence L1 and
g is C1 in both θk and φk. In particular, this means that gk has the same properties.
The theorem of differentiability of parameter depending integrals now tells us that∫ 2π

0 dφk

(
cos(φk)

sin(φk)

)
gk(θk, φk) sin(θk) := fk(θk) is C1 in θk.

4πc
|ki|
|k|3 δ +

|εn
i |
|k| |PV −

∫ arccos(− δ
|k| )

arccos( δ
|k| )

dθk tan(θk) sin(θk)

∫ 2π

0
dφk

(
cos(φk)

sin(φk)

)
gk(θk, φk)|

(5.60)

=4πc
|ki|
|k|3 δ +

|εn
i |
|k| |PV −

∫ arccos(− δ
|k| )

arccos( δ
|k| )

dθk fk(θk) tan(θk)| (5.61)

At this point, we note that the integrand has one singularity at π
2 ∈ [arccos(δ), arccos(−δ)].

Inserting the definition of the principal value gives:

=4πc
|ki|
|k|3 δ +

|εn
i |
|k| | lim

ε→0+

∫ arccos(− δ
|k| )

π
2 +ε

dθk fk(θk) tan(θk) +

∫ π
2 −ε

arccos( δ
|k| )

dθk fk(θk) tan(θk)|

(5.62)

=4πc
|ki|
|k|3 δ +

|εn
i |
|k| | lim

ε→0+

∫ arccos(− δ
|k| )

π
2 +ε

dθk tan(θk) ( fk(θk)− fk(π − θk)) | (5.63)
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5.2 Smeared Observables

≤4πc
|ki|
|k|3 δ +

|εn
i |
|k| lim

ε→0+

∫ arccos(− δ
|k| )

π
2 +ε

dθk(− tan(θk))| fk(θk)− fk(π − θk)| (5.64)

Since fk is C1 in θk and we assumed the derivation to be bounded, we can apply the
mean value theorem which tells us | fk(θk)− fk(π − θk)| ≤ c′|2θk − π| = 2c′(π

2 − θk)

where c′ := sup
x∈S2
| f ′(x)| ∈ R+ is the bound of the derivative of fk.

≤ 4πc
|ki|
|k|3 δ +

|εn
i |
|k| lim

ε→0+

∫ arccos(− δ
|k| )

π
2 +ε

dθk(− tan(θk))2c′(
π

2
− θk) (5.65)

Applying Lemma 5.4 gives us

4πc
|ki|
|k|3 δ +

|εn
i |
|k| lim

ε→0+

∫ arccos(− δ
|k| )

π
2 +ε

dθk(− tan(θp))2c′(
π

2
− θk) (5.66)

≤4πc
|ki|
|k|3 δ +

|εn
i |
|k| lim

ε→0+

∫ arccos(− δ
|k| )

π
2 +ε

dθk 2c′
π

2
(5.67)

=4πc
|ki|
|k|3 δ + πc′

|εn
i |
|k|

[
arccos(− δ

|k| )−
π

2

]
(5.68)

In total, we have:

lim
δ→0
|PV −

∫
S2

dΩ(e)
ei

e · k g(e)−
∫

Uδ(k)
dΩ(e)

ei

e · k g(e)| (5.69)

≤ lim
δ→0

(
4πc
|ki|
|k|3 δ + πc′

|εn
i |
|k|

[
arccos(− δ

|k| )−
π

2

])
(5.70)

= 0 (5.71)

5.2 Smeared Observables

In the last section, we discussed the convergence of the "inverse" differential operator
appearing in the Axial gauge. We will use these results to elaborate on the convergence
of the observables.
As we have discussed, the symbol

1
n

n∑
j=1

ej,i

ej · k
(5.72)

is not well-defined due to the severe singularities in the denominator and thus it can
not map the Schwartz space to the space of square integrable functions.
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5 YSM-type smeared Axial gauge

Proposition 5.6. For every f ∈ S(R3) every δ > 0 there is a symbol Sδ,i depending on n ∈N

such that formally:

lim
δ→0

Sδ,i =
1
n

n∑
j=1

ej,i

e · k (5.73)

Sδ,i f ∈ L2 (5.74)

lim
n→∞

∥∥∥∥∥(Sδ,i −
∫

Uδ(k)

ei

e · k g(e)) f

∥∥∥∥∥ = 0 (5.75)

lim
δ→0

lim
n→∞
‖Sδ,i f ‖L2 =

∥∥∥∥PV −
∫

S2
dΩ(e)

ei

e · k g(e) f
∥∥∥∥

L2
(5.76)

Proof. We will construct the series of symbols Sδ,i in a way that we can use the results
of the previous section to proof Proposition 5.6.

As we already discussed, every addend of 1
n

n∑
j=1

ej,i
ej·k has severe singularities coming from

the scalar product in the denominator. Restricting every term to a domain where the
symbol is bounded and continuous removes those singularities and we can investigate
the convergence of the restricted symbol acting on a Schwartz function. Hence, we
define:

Sδ,i :=
1
n

n∑
j=1

ej,iχ(U j)(k)
ej · k

(5.77)

with Uδ(ej) := U j for any δ > 0.
The first statement of the proposition follows immediately from the fact lim

δ→0
U j(k) = S2.

Assume f ∈ S(R3):

∫
R3

d3k

∣∣∣∣∣∣ 1n
n∑

j=1

ej,iχ(U j)(k)
ej · k

f̂ (k)

∣∣∣∣∣∣
2

≤ 1
n2

∫
R3

d3k

∣∣∣∣∣∣
n∑

j=1

ej,i

δ|k| f̂ (k)

∣∣∣∣∣∣
2

(5.78)

=
n∑

j,k=1

ej · ek

δ2n2

∥∥∥∥ f

∆
1
2

∥∥∥∥2

L2
(5.79)

which is finite for δ > 0 since ∆−
1
2 : S(R3)→ L2(R3) (see Appendix B), which proves

the second statement.
To prove the third statement we use the results from the last section and in particular

90



5.2 Smeared Observables

(5.28) to get:

∫
R3

d3k

∣∣∣∣∣∣
∫

Uδ

ei

e · k g(e) f̂ (k)− 1
n

n∑
j=1

ej,iχ(U j)(p)
ej · k

f̂ (k)

∣∣∣∣∣∣
2

(5.80)

=

∫
R3

d3k

∣∣∣∣∣∣ 1n
n∑

j=1

( ∫
Uδ(k)

ei

e · k g(e)−
ej,iχ(U j)(k)

ej · k
)∣∣∣∣∣∣

2 ∣∣∣ f̂ (k)∣∣∣2 (5.81)

≤
∫

R3
d3k

∣∣∣∣ c
|k|d

n
(

1
δ2 +

1
δ

)
V
∣∣∣∣2 ∣∣∣ f̂ (k)∣∣∣2 (5.82)

=

∣∣∣∣cVdn
(

1
δ
+

1
δ2

)∣∣∣∣2 ∫
R3

d3k

∣∣∣∣∣ f̂ (k)
|k|

∣∣∣∣∣
2

(5.83)

=

∣∣∣∣cVdn
(

1
δ
+

1
δ2

)∣∣∣∣2 ∥∥∥∥ f

∆
1
2

∥∥∥∥2

L2
(5.84)

Since the decomposition is chosen such that lim
n→∞

dn = 0, this estimates gives:

lim
n→∞

∫
R3

d3k

∣∣∣∣∣∣
∫

Uδ(k)

ei

e · k g(e) f̂ (k)− 1
n

n∑
j=1

ej,iχ(U j)(k)
ej · k

f̂ (k)

∣∣∣∣∣∣
2

= 0 (5.85)

For the proof of the last statement, we use Theorem 5.5 and (5.70):∥∥∥∥∫
Uδ

d3k
ei

e · k g(e) f (k)− PV −
∫

S2
d3k

ei

e · k g(e) f (k)
∥∥∥∥

L2

(5.86)

=

∥∥∥∥∥PV −
∫

Vδ(p)
d3k

ei

e · k g(e) f (k)

∥∥∥∥∥
L2

(5.87)

≤
∥∥∥∥(4πc

|ki|
|k|2 δ + πc′

|εn
i |
|k|

[
arccos(−δ)− π

2

])
f
∥∥∥∥

L2
(5.88)

≤4πcδ

∥∥∥∥ f
|k|

∥∥∥∥
L2
+ πc′

[
arccos(−δ)− π

2

] ∥∥∥∥ f
|k|

∥∥∥∥
L2

(5.89)

and hence:

lim
δ→0

∥∥∥∥∫
Uδ

d3k
ei

e · k g(e) f (p)− PV −
∫

S2
d3k

ei

e · k g(e) f (k)
∥∥∥∥

L2

= 0 (5.90)

Lemma 5.7. The limit lim
δ→0

lim
n→∞

Sδ,i f = PV −
∫

S2 dΩ(e) ei
e·k g(e) f (k) ∈ L2(R3) for all f ∈

S(R3).
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5 YSM-type smeared Axial gauge

Proof.

PV −
∫

S2
d2e

ei

e · k g(e) f (k) =
ki

|k|2 f (k) +
εn

i (k)
|k| f (k)PV −

∫
S2

dΩ(e)
en

e3
g(R−1

k e) (5.91)

In the proof of Theorem 5.5, we showed that the latter integral is bounded measurable
function in k, since it only depends on k

|k| .

Thus, we can use the results from Appendix B and know that f
|k| ∈ L2(R3). Moreover,

the integral expression maps L2 → L2 as bounded function.

Statement 5.8. Using the continuity of the fields (Theorem 2.65), we have the representation
of the canonical fields and observables in the smeared Axial gauge for f , g ∈ SR(R

3, R3):

Aax( f ) = ΦS(ω
− 1

2 PT( f̂ ))−ΦS(ω
− 1

2

∫
S2

dΩ(e)PT(e
k · f̂
e · k )g(e)) (5.92)

πax(g) = ΦS(iω
1
2 PT(ĝ))− i 〈

∫
S2

dΩ(e)
e

e · k ĵ0g(e), ĝ〉
L2(R3,R)

(5.93)

B( f ) = ΦS(ω
− 1

2 ( ̂curl( f ))) (5.94)

Remark 5.9. The representation of the observables is similar to the one given in [MSY05], page
34. The authors, however, use a different notation. In their notation, the choice of the functions
f is the analogue to the choice of the smearing function g in our formulation.

Remark 5.10. In Statement 5.8 and subsequently, we omit the indication that the integral is a
principal value integral.

5.3 Longitudinal Fields and Examples

In this section, we will discuss properties of the representation of the observables in
the smeared Axial gauge that are valid for all possible choices of a smearing function.
In particular, we will see that the representation of the longitudinal share of the electric
field in the smeared Axial gauge manifestly coincides with the longitudinal share of
the electric field in the Coulomb gauge.
Moreover, we will compute the inverse differential operators appearing in the smeared
Axial gauge for two particular choices of smearing functions.
It turns out that it its possible and useful to expand g in terms of so called spherical
harmonics.

Theorem 5.11. Stone-Weierstraß theorem Let X be a compact metric space and and R ⊂
C(X, R) a subalgebra that separates points. Then R ⊂ C(X, R) is dense in the norm topology.

Proof. See [Rud91], Theorem 5.7 or [HS71], Anhang I,6.
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Remark 5.12. It is well known that S2 is compact under the Euclidean topology inherited from
R3 which makes it a compact metric space meaning we can apply the Weierstraß theorem to
g ∈ C(S2, R).
By the Stone-Weierstraß theorem the restriction of the set of polynomials in R3 to the unit sphere
S2 is dense in C(S2). Therefore, considering the density of C(S2) in L2(S2) the polynomials on
S2 are dense in L2(S2).
Anyway, the generating set of the polynomials on S2 is neither irreducible, nor orthogonal.

However, the set of spherical harmonics is an irreducible set of orthogonal functions
that is dense L2(S2). Before discussing the aforementioned properties, we define the
spherical harmonics.

Definition 5.13. The spherical harmonics are C∞ functions Ys,c
lm : S2 → R; l ∈ N, m ∈

[0, l]. In terms of the polar and azimuthal angle θ ∈ [0, π] and φ ∈ [0, 2π], they are
defined as:

Ys
lm(θ, φ) =

1√
2π

NlmPlm(cos(θ)) sin(mφ) (5.95)

Yc
lm(θ, φ) =

1√
2π

NlmPlm(cos(θ)) cos(mφ) (5.96)

where Nlm ∈ R is a constant and Plm are associated Legendre polynomials which are

Plm(x) = (1− x2)
|m|
2

(
∂

∂x

)|m|
Pl(x) (5.97)

Pl(x) = − 1
2l

[ l
2 ]∑

k=0

(−1)k (2l − 2k)!
k!(l − k)!(l − 2k)!

xl−2k (5.98)

=:
[ l

2 ]∑
k=0

αklxl−2k (5.99)

with [ l
2 ] meaning rounding l

2 to the next smaller integer.

Proposition 5.14. The algebra generated by the spherical harmonics is dense in C(S2).

Proof. See [AH12], Theorem 2.31 .

Due to the density of C(S2) in L2(S2), the spherical harmonics are also dense in
L2(S2). The reason that spherical harmonics are useful is

Proposition 5.15. The Hilbert space L2(S2) admits an orthogonal direct sum decomposition of
the form:

L2(S2) =
∞⊕

l=0

Yl (5.100)

where Yl denotes the space of spherical harmonics spanned by {Ys,c
lm , m ∈ [0, l]}.
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Proof. See [Tah15], Theorem 8.24 .

This tells us that
∫

S2 d3x Ylm = c δl,0δm,0. According to this we can easily satisfy the
condition

∫
S2 dΩ(e) g(e) = 1 by expanding g in terms of spherical harmonics. g has the

expansion g = 1
c Y0,0 +

∞∑
l=1

l∑
m=0

cs
lmYs

lm + cc
lmYc

lm.

Lemma 5.16. For any admissible smearing function g, i.e. g ∈ C1(S2), g ≥ 0 and g is normed,
we have: ∫

S2
dΩ(e)

ei

e · k g(e) =
ki

|k|2 + εn
i (k)

∫
S2

dΩ(e)
e · εn

e · k g(e) (5.101)

=
ki

|k|2 +
εn

i
|k|

∫
S2

dΩ(e)
en

e3
g(R−1

k e) (5.102)

where Rk is a rotation matrix Rk ∈ SO(3) that sends Rk : k 7→ e3.

Proof. We start by extending k
|k| to an orthonormal basis for R3 with the standard

polarization vectors εn(p) and decompose e ∈ S2 ⊂ R3 in this basis:

e =
e · k
|k|2 k + (e · ε1)ε1 + (e · ε2)ε2 (5.103)

Inserting this to Equation 5.101 we get∫
S2

dΩ(e)
ei

e · k g(e) =
ki

|k|2
∫

S2
g(e) + εn

i (p)
∫

S2
dΩ(e)

e · εn

e · k g(e) (5.104)

=
ki

|k|2 + εn
i (k)

∫
S2

dΩ(e)
e · εn

e · k g(e) (5.105)

where in the last term summation over n ∈ {1, 2} is understood.
Since Rk ∈ SO(3), it leaves the Euclidean scalar product on R3 invariant. Using this,
we can substitute:

ki

|k|2 + εn
i (k)

∫
S2

dΩ(e)
e · εn

e · k g(e) (5.106)

=
ki

|k|2 +
εn

i
|k|

∫
S2

dΩ(e)
en

e3
g(R−1

k e) (5.107)

Note that Rk is not uniquely determined by the assumption that Rk : k 7→ e3. Thus,
we need to fix Rk for explicit computations. It is straightforward to check that

Rk =

cos(θk) cos(φk) − sin(φk) cos(φk) sin(θk)

cos(θk) sin(φk) cos(φk) sin(θk) sin(φk)

− sin(θk) 0 cos(θk)

 (5.108)
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is such a rotation matrix if we assume that θk and φk are the polar and azimuthal angles
of k respectively.
The inverse being the transpose (since it is an orthogonal matrix) then reads

R−1
k =

cos(θk) cos(φk) cos(θk) sin(φk) − sin(θk)

− sin(θk) cos(φk) 0
cos(φk) sin(θk) sin(θk) sin(φk) cos(θk)

 (5.109)

which maps:

R−1
k :S2 → S2 (5.110)sin(θ) cos(φ)

sin(θ) sin(φ)
cos(θ)

 7→ (5.111)

cos(θ) cos(φk) sin(θk) + sin(θ) (cos(θk) cos(φk) cos(φ)− sin(φ) sin(φk))
cos(θ) sin(θk) sin(φk) + sin(θ) (cos(θk) cos(φ) sin(φk) + cos(φk) sin(φ))

cos(θ) cos(θk)− cos(φ) sin(θk) sin(θ)


(5.112)

5.3.1 Example of constant smearing

In the following, we will discuss two different examples for the smeared Axial gauge.
That, in particular, means that we will compute the smearing symbol for two different
admissible smearing functions g. The most intuitive option is choosing g to be constant.
In order for g to be normed, we have to set g(e) = 1

4π .

Proposition 5.17. Assume that the axial gauge is constantly smeared out over the sphere S2,
i.e. that the smearing function g = 1

4π , then the representation of the electric field coincide with
its representation in the Coulomb gauge.

Proof. Due to the symmetry of sin and cos, we find:

∫
S2

dΩ(e)
e · εn

e · k
1

4π
=

1
4π|k|

2π∫
0

dφ

(
sin(φ)
cos(φ)

)∫ π

0
dθ tan(θ) sin(θ) (5.113)

= 0 (5.114)

Hence, the smeared canonical momentum for a test function f ∈ SR(R
3, R3) is:

πax( f ) = π f ( f )− i 〈 k
|k|2 ĵ0, f̂ 〉 (5.115)

= πC( f ) (5.116)
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Remark 5.18. As we have discussed, the constant contribution from the expansion of the
smearing function in terms of the spherical harmonics is required for g to be normed. This
computations shows that the constant contribution reproduces the representation of the electric
field in the Coulomb gauge.
Additionally, the previous computations show that spherical harmonics of higher order only
contribute to the transversal electric field.
That means that the longitudinal shares of the observables in the Coulomb and smeared Axial
gauge are manifestly equivalent.
Hence, possible inequivalences of the representations of the observables can only arise from the
transversal share of the electric field in the respective representations. Thus, for the investigation
of the equivalence of the Coulomb and smeared Axial gauge, it is sufficient to only study the
respective representations of the transversal Weyl algebra.

5.3.2 Another important Example

We will study a second example of an admissible smearing function g to show that the
smeared Axial gauge and the Coulomb gauge do not manifestly coincide.
It is noteworthy, that we will use this example of a smearing function later to construct
a counter-example for unitary equivalence of the two gauges under consideration.

Proposition 5.19. There exist admissible smearing functions g ∈ C1(S2) such that the smeared
Axial gauge and the Coulomb gauge are not manifestly equivalent.

Proof. In order to prove this proposition, we will explicitly state an example of such a
smearing function. Choose:

g(e) =
1

4π
+

√
9

60π3 (Y2,1(e) + Y2,−1(e)) (5.117)

=
1

4π
+

3
4π

cos(θe) sin(θe) (cos(φe)− sin(φe)) (5.118)

=
1

4π
+

3
4π

e3(e2 − e1) (5.119)

From the last example, we know that the constant term in the expansion of g reproduces
the Coulomb term. Lemma 5.16 tells us that we only need to compute the longitudinal
share of the integral.
The behaviour of g und R−1

k can easily be read off Equation 5.110 and inserted to the
integral in Lemma 5.16:

εn

|k|

∫
S2

dΩ(e)
en

e3
g(R−1

k e) (5.120)

=
1
|k|

(
ε1(k) cos(2θk)(cos(φk)− sin(φk))− ε2(k) cos(θk)(cos(φk) + sin(φk))

)
(5.121)

The integral was calculated with Mathematica.
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This tells us that the resulting electric field in the smeared Axial gauge with smearing
function g from (5.117) has, opposed to the Coulomb gauge, some non-vanishing
longitudinal contribution coming from the external current j0 given by (5.121).
Consequently, the representations of the electric fields do not coincide manifestly.
However, this is a bit too much to expect since for equivalence of different gauges it is
sufficient if there exists a unitary map that intertwines between the observables in the
different gauges.

5.4 Transversal Fields

As explained in Remark 5.18, we only need to consider the transversal share of the
electric field to investigate the unitary equivalence. This has the advantage that the
representation of the electric and magnetic field is irreducible in the transversal Fock
Space Γs(hT). We will moreover adjust the test function space to the space L that we
defined and discussed in subsection 2.6.4
In this section, we will only work with the quantized fields.

Observation 5.20. The representation of the transversal share of the magnetic field in both
gauges for f ∈ SR(R

3, R3) is:

BT( f ) = ΦS(ω
− 1

2 ( ̂curl( f ))) (5.122)

The representation of the transversal share of the canonical momenta in the two gauges under
consideration for g ∈ SR(R

3, R3) is:

πC,T(g) = ΦS(iω
1
2 PT(ĝ)) (5.123)

πax,T(g) = ΦS(iω
1
2 PT(ĝ))− i 〈

∫
S2

dΩ(e)
PT(e)
e · k ĵ0g(e), ĝ〉

L2(R3,R)
(5.124)

= ΦS(iω
1
2 PT(ĝ))− 〈ω 1

2

∫
S2

dΩ(e)
PT(e)
e · k ĵ0g(e), iω

1
2 PT(ĝ)〉

hT

(5.125)

Remark 5.21. For the representation of the observables, we obviously only need the transversal
share of the test functions. Moreover, for the real valued test function, we always have a factor
of ω−

1
2 while for the complex valued, we always have a factor of ω

1
2 . That means, we can

equivalently work with the test function L for the transversal fields.
As we have explained in subsection 2.6.4 (L, Im(〈·, ·〉)) is a symplectic space and dense in hT

which means that the Fock representation of the Weyl algebraW(L, Im(〈·, ·〉)) is irreducible.

Corollary 5.22. Let ΠF be the Fock representation of the symplectic space (L, Im(〈·, ·〉)), then
we have

ΠF(W( f )) = ei(B((1+C) f )+πC((1−C) f )) (5.126)

for every f ∈ L.
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For the definition of the representation of the transversal fields in the smeared Axial
gauge, it is useful to adopt the notion of a coherent state representation from [Roe70].
A similar notation for the massless scalar field can be found in [Kun98].

Definition 5.23. Let ω0 denote the Fock vacuum state, L′ be the real, algebraic dual of
L and F ∈ L′. Then

ωF( f ) = ω0( f )eiF( f ), f ∈ L (5.127)

is called the to F associated coherent state.
The corresponding automorphism ofW(L, Im(〈·, ·〉)):

F :W(L, Im(〈·, ·〉))→W(L, Im(〈·, ·〉)) (5.128)

W( f ) 7→ eiF( f )W( f ) (5.129)

is called the to F associated coherent automorphism.
We will call the representation ΠF

coh = ΠF ◦ F the to F ∈ L′ associated coherent represen-
tation.

Note that formally a coherent automorphism amounts to shifts: a†(k) 7→ a†(k) +
g(k), a(k) 7→ a(k) + g(k) for some function g.

Observation 5.24. The exponentiated canonical momentum operators in the smeared Axial
gauge have the form for f ∈ (1− C)Lπ

eiπax( f ) = e−i〈ω
1
2
∫

S2 dΩ(e) PT (e)
e·k g(e) ĵ0, f 〉eiΦS( f ) (5.130)

= eiFax( f )ΠF( f ) (5.131)

with Fax(h) = Im(〈iω 1
2
∫

S2 dΩ(e) PT(e)
e·k g(e) ĵ0, h〉) for g ∈ L. We note

iω−
1
2

∫
S2

dΩ(e)
PT(e)

e · (−k)
g(e) ĵ0(−k) = iω−

1
2

∫
S2

dΩ(e)
PT(e)
e · k g(e) ĵ0(k) (5.132)

due to the realness of j0 and hence iω−
1
2
∫

S2 dΩ(e) PT(e)
e·(k) g(e) ĵ0(k) ∈ (1 + C)hT.

Using Plancherel’s formula, we have

〈iω− 1
2

∫
S2

dΩ(e)
PT(e)
e · k g(e) ĵ0, h〉 ∈ R h ∈ (1 + C)Lφ (5.133)

〈iω− 1
2

∫
S2

dΩ(e)
PT(e)
e · k g(e) ĵ0(k), h〉 ∈ iR h ∈ (1− C)Lπ (5.134)

That means:

ΠF
coh(W(h)) = ΠF(W(h)) h ∈ (1 + C)Lφ (5.135)

ΠF
coh(W(h)) = e−i〈ω

1
2
∫

S2 dΩ(e) PT (e)
e·k g(e) ĵ0,h〉Π f (W(h)) h ∈ (1− C)Lπ (5.136)

The question of unitary equivalence of the two gauges under consideration can be re-
formulated in terms of representations to the question whether the two representations
ΠF and ΠF

coh ofW(L, Im(〈·, ·〉)) are unitary equivalent.
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6 Unitary equivalence for vanishing total
charge

In this section, we will address the main question of this thesis of the unitary equivalence
of the Coulomb and smeared Axial gauge.
As we have discussed in the last section, the longitudinal shares of the observables in
both gauges coincide. Hence, a potential unitary inequivalence can only come from the
transversal parts.
Moreover, we have discussed the representations of the transversal Weyl algebra that
correspond to the observables in the respective gauge.
The goal of this section is to show that the representations ΠF and ΠF

coh are unitary
equivalent if the total charge carried by the external current vanishes ĵ0(0) = Q = 0
(Recall the definition of the total charge from Statement 3.3. Then it is obvious that
Q = ĵ0(0)). We will prove the equivalence by explicitly stating a unitary operator on
Γs(hT) that intertwines between the representations.

Remark 6.1. Subsequently, we will denote the transversal share of the fields simply by πC/ax

and BC/ax respectively to avoid an overload of notation.
The transversal fields are operator valued distributions on Γs(hT).

Theorem 6.2 (Taylor’s formula). Let U ⊂ Rn be open and, x ∈ U and ξ ∈ Rn such that
x + tξ ∈ U ∀t ∈ [0, 1]. Let further f ∈ Ck+1(U, Rn). Then there is a θ ∈ [0, 1] such that:

f (x + ξ) =
∑
|α|≤k

Dα f (x)
α!

ξα +
∑
|α|=k+1

Dα f (x + θξ)

α!
ξα (6.1)

Proof. [For08]

Lemma 6.3. Let f ∈ S(Rn), then we can write:

f (x) = f (0)ρ(x) +
n∑

j=1

xjΨj(x) (6.2)

with Ψj, ρ ∈ S(Rn) and ρ|B 1
2 (0)

= 1 and ρ(x) = 0 for all |x| ≥ 3
4 .

Proof. This proof is taken from [Mel97].
We start by writing f = ρ f + (1− ρ) f . We note that the first addend is supported
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6 Unitary equivalence for vanishing total charge

inside of B 3
4
(0) and the second addend outside of B 3

4
(0) due to the choice of ρ.

On B1(0) we can write, according to Taylor’s formula (Theorem 6.2):

f (x) = f (0) +
n∑

j=1

xjζ j, ζ j ∈ C∞ (6.3)

Since the product ρφ is supported in B1(0), we have

ρ(x) f (x) = f (0)ρ(x) +
n∑

j=1

xjρζ j(x) (6.4)

with ρζ j ∈ S(Rn).
Since the second addend of the above decomposition (1− ρ) f is supported outside of
B 1

2
(0) and (1− ρ) f due to the closeness of S(Rn) under multiplication and addition, we

have ζ := |x|−2(1− ρ) f ∈ S(Rn) and since S(Rn) is also closed under multiplication
with polynomials, we have

(1− ρ) f =
n∑

j=1

xj(xjζ) ∈ S(Rn) (6.5)

with xjζ ∈ S(Rn).
All this results together give:

f (x) = f (0)ρ(x) +
n∑

j=1

xj
(
ρζ j(x) + xjζ

)
(6.6)

Calling Ψj := ρζ j(x) + xjζ ∈ S(Rn) gives the desired result.

Lemma 6.4. Let g ∈ C1(S2), then:

PV −
∫

S2
dΩ(e)

PT(e)
e · k g(e) =

1
|k| c(

k
|k| ) (6.7)

with c ∈ L∞(S2).

Proof.

|k| · PV −
∫

S2
dΩ(e)

PT(e)
e · k g(e) (6.8)

= lim
ε→0

(∫ π
2 −ε

0
+

∫ π

π
2 +ε

)
dθ

∫ 2π

0
dφ tan(θ) sin(θ) sin / cos(φ)g(R−1

k e) (6.9)

= lim
ε→0

∫ π
2 −ε

0
tan(θ) sin(θ)

(
g̃(θ, k̂)− g̃(π − θ, k̂

)
(6.10)
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In the last step, we performed the substitution e→ Rke and rewrote∫ 2π

0
dφ tan(θ) sin(θ) sin / cos(φ)g(R−1

k e) := g̃(θ, k̂) (6.11)

where k̂ := k
|k| and g̃ ∈ C1 due to the differentiability of parameter dependent integrals.

Furthermore, we performed a substitution θ → π − θ in the second integral.
Since g̃ ∈ C1, we can make use of the mean value theorem and write g̃(θ, k̂)− g̃(π −
θ, k̂) ≤ 2c(k̂)

(
π
2 − θ

)
.

Using Lemma 5.4 and repeating the arguments in the Proof of Theorem 5.5 gives the
result.

Lemma 6.5. Let f̂ ∈ S(R3), then:

ω−
1
2

∫
S2

dΩ(e)
e · εn

e · k g(e)̂̄f ∈ h⇔ f̂ (0) = 0 (6.12)

Proof. Lemma 6.4 gives us:

ω−
1
2

∫
S2

dΩ(e)
e · εn

e · k g(e)̂̄f = ω−
3
2

∫
S2

dΩ(e)
en

e3
g(R−1

k e) f̂ (6.13)

= ω−
3
2 f̂ c(

k
|k| ) (6.14)

We use Lemma 6.3 to rewrite:

ω−
3
2 f̂ c(

k
|k| ) =ω−

3
2 c(k̂)

 f̂ (0)ρ(k) +
n∑

j=1

k jΨj(k)

 (6.15)

Now, we write ω−
3
2 k jΨj(k) := ω−

1
2 Ψ̃j(k). Since ω−1k j = k̃ j is a bounded function

Ψ̃j ∈ S(Rn) and hence:

ω−
3
2 f̂ c(

k
|k| ) = c(k̃)

ω−
3
2 f̂ (0)ρ(k) + ω−

1
2

n∑
j=1

Ψ̃j(k)

 (6.16)

As we have shown in Lemma B.18, the second addend is square-integrable. The first
addend, however, is not square-integrable unless f̂ (0) = 0, in which case it is evidently
square-integrable.

Corollary 6.6. Assume ĵ0(0) = 0, then the operator:

U := eiΦS(−iω−
1
2
∫

S2 dΩ(e) PT (e)
e·k g(e) ĵ0) (6.17)

is unitary on Γs(hT) and intertwines between ΠF and ΠF
coh:

UΠF(W(F))U† = ΠF
coh(W( f )) (6.18)

for all f ∈ L.
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6 Unitary equivalence for vanishing total charge

Proof. From Lemma 6.5, we know that −iω−
1
2
∫

S2 dΩ(e) PT(e)
e·k g(e) ĵ0 ∈ hT ⇔ ĵ0(0) = 0.

The unitarity of U then follows immediately from Theorem 2.65.
Since

−iω−
1
2

∫
S2

dΩ(e)
PT(e)

e · (−k)
g(e) ĵ0(−k) = −iω−

1
2

∫
S2

dΩ(e)
PT(e)
e · k g(e) ĵ0(k) (6.19)

due to the realness of j0, we know that F−1
(
−i
∫

S2 dΩ(e) PT(e)
e·k g(e) ĵ0(k)

)
∈ L2

R(R
3).

Hence, U commutes with every operator of the form eiφ(h), h ∈ (1 + C)Lφ due to
Theorem 2.68.
We need to check the commutation relation for h ∈ (1− C)Lπ. From the Weyl relations
(Theorem 2.68, 3.) follows with

α(h) := 〈−iω−
1
2

∫
S2

dΩ(e)
PT(e)
e · k g(e) ĵ0, h〉 (6.20)

the commutation relation:

UΠF(W(h))U† = e−iα(h)ΠF(h) (6.21)

Since α(h) = −Fax(h) for all h ∈ (1 + C)Lπ, we have proved the equivalence of the two
different representations.

Remark 6.7. Similar results already appeared in the works of [HLL94] and [NTO94] where
the authors treated the problem of the unitary equivalence of the Coulomb and Axial gauge
on a formal level. The authors of both papers, however, did not elaborate on the issue of
well-definiteness of U.
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7 Unitary inequivalence for non-vanishing
total charge

In the last chapter, we proved that the representations of the observables in the Coulomb
and smeared Axial gauge are unitarily equivalent if ĵ0(0) = 0.
The intention of this chapter is to discuss the case when the total external charge does
not vanish ĵ0(0) 6= 0. It will turn out that there does not exist a unitary transformation
that intertwines between the representations ΠF and ΠF

coh in this case.
The strategy of the presented proof is taken from [Kun98] where the author showed that
certain representation are inequivalent by constructing a so-called central sequence. The
sequence of the Weyl operators corresponding to the central sequence was proven to
converge to multiple of the identity. For certain representations, the author proved that
the respective limits are different, which allowed for concluding that the representations
are not unitary equivalent.
We, however, have a slightly different situation than the author in [Kun98] and hence
need to change some technical details. The idea behind of this proof remains unchanged.

Theorem 7.1. Assume ĵ0(0) 6= 0, then there does not exist a unitary operator U : Γ(hT) →
Γ(hT) such that

〈Ψ, UΠF
coh(W)U†Ψ〉 = 〈Ψ, ΠF(W)Ψ〉 (7.1)

for all Ψ ∈ Γ(hT) and W ∈ W(L, Im(〈·, ·〉)).

For sake of clarity, we will split the proof of this theorem into several lemmas.

Lemma 7.2. For every ε > 0, there is a family ( fλ)λ∈R ⊂ Lπ such that there for all g ∈ L,
there is λ′ ∈ R with

‖[W(g), W( fλ)]‖ ≤ ε (7.2)

for all λ ≥ λ′.

Proof. Let f ∈ (1− C)Lπ. Then we can write f = iω
1
2 f̂ ′, f ′ ∈ PT(S(R3, R3)). Further-

more, choose f̂ ′ and hence f to have compact support and define:

f̂ ′λ(·) := λ2 f̂ ′(λ·) (7.3)

fλ := iω
1
2 f̂ ′λ (7.4)
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7 Unitary inequivalence for non-vanishing total charge

It is obvious that we have:

fλ(·) = λ
3
2 f (λ·) (7.5)

Since f ∈ (1− C)Lπ, it is clear that:

[W(g), W( fλ)] = 0 ∀g ∈ (1− C)Lπ (7.6)

So, it is sufficient to verify Equation 7.2 for g ∈ (1 + C)Lφ. The Weyl relations give:

[W(g), W( fλ)] =
(

e−
i
2 〈ĝ′, f̂ ′λ〉 − e−

i
2 〈ĝ′, f̂ ′λ〉

)
W(g + fλ) (7.7)

= 2i sin(
〈ĝ′, f̂ ′λ〉

2
)W(g + fλ) (7.8)

with g′ ∈ PT(S(R3)⊗R3) and we have the relation g = ω
1
2 ĝ′.

The scalar product can be rewritten as:

〈ĝ′, f̂ ′λ〉 = 〈ĝ′, λ2 f̂ ′(λ·)〉 (7.9)

= λ−1 〈ĝ′( ·
λ
), f̂ ′〉 (7.10)

= λ−1 〈ĝ′( ·
λ
)1supp( f ), f̂ ′〉 (7.11)

where 1supp( f )denotes the characteristic function of the support of f . Now, it is obvious
that ĝ′( ·λ )1supp( f ) ∈ hT with∥∥∥ĝ′(

·
λ
)1supp( f )

∥∥∥
2
≤
∥∥∥ĝ′
∥∥∥

∞
(µ(supp( f )))

1
2 < ∞ (7.12)

since ĝ′ ∈ PT(S(R3)⊗C3) and µ(supp( f )) < ∞.
Hence:

| 〈ĝ′, f̂ ′λ〉 | ≤ λ−1
∥∥∥ĝ′
∥∥∥

∞
(µ(supp( f )))

1
2

∥∥∥ f̂ ′
∥∥∥

2
(7.13)

Hence, for all λ ≥ ‖ĝ‖L∞ µ(supp( f ))
1
2 ‖ f̂‖L2

ε , we have:

| 〈ĝ′, f̂ ′λ〉 | ≤ ε (7.14)

Due to the anti-symmetry of sin around 0 and the concavity on [0, π
2 ], we have for all

such λ ∈ R:

‖[W(g), W( fλ)]‖ = | sin(| 〈ĝ, ω
1
2 f̂λ′〉

2
|) (7.15)

≤ ε (7.16)
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Corollary 7.3. For every finite sum Ã =
N∑

i=1
ciW(hi) of Weyl operators W(hi), hi ∈ L, and

every δ > 0, there is λ̃ ∈ R such that:∥∥[Ã, W( fλ)]
∥∥ ≤ δ (7.17)

Proof.

∥∥[Ã, W( fλ)]
∥∥ ≤ N∑

i=1

|ci| ‖[W(hi), W( fλ)]‖ (7.18)

According to Lemma 7.2, for every ε > 0 and every hi, there is λi ∈ R such that:

‖[W(hi), W( fλ)]‖ ≤ ε (7.19)

for all λ ≥ λi.

Choose λ̃ := max
i

λi =
max

i
‖hi‖∞

ε µ(supp( f ))
∥∥∥ f̂
∥∥∥

2
, then:

∥∥[Ã, W( fλ)]
∥∥ ≤ N∑

i=1

|ci|ε := δ (7.20)

Corollary 7.4. Let A ∈W(L, σ). For every α > 0, there exists λ0 ∈ R such that:

‖[A, W( fλ)]‖ ≤ α (7.21)

for all λ ≥ λ0.

Proof. For every A ∈W(L, σ) there is a sequence (Ãn)n∈N ⊂W(L, σ) of finite sums of
Weyl operators that approximate A in norm.
That means for every α > 0 there is N ∈N such that:∥∥A− Ãm

∥∥ ≤ α

3
(7.22)

for all m ≥ N. Assume that we have chosen m sufficiently large such that (7.22) is
satisfied. According to Corollary 7.3, we can choose λ such that ‖[An, W( fλ)]‖ ≤ α

3 .
Then, we have:

‖[A, W( fλ)]‖ = ‖[A− An + An, W( fλ)]‖ (7.23)

≤ ‖[A− An, W( fλ)]‖+ ‖[An, W( fλ)]‖ (7.24)

≤ 2
α

2
+

α

3
= α (7.25)
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7 Unitary inequivalence for non-vanishing total charge

Lemma 7.5. Assume that the Fock representation ΠF and the coherent representation ΠF
coh

of W(L, σ) were unitary equivalent, i.e. there is U ∈ Aut(Γs(hT)) such that for every
f ∈ (1 + C)Lφ:

ΠF
coh(W( f )) = U−1ΠF(W( f ))U (7.26)

Then for every ε > 0 there is λ f ∈ R such that

| 〈Ω,
(

ΠF
coh(W( fλ))−ΠF(W( fλ))

)
Ω〉 | ≤ ε (7.27)

for all λ ≥ λ f .

Proof. It is well known that for every Ψ ∈ hT, ‖Ψ‖ = 1, there is a unitary V ∈
Aut(Γs(hT)) such that VΨ = Ω. According to Theorem 2.41, there is an A ∈ W(L, σ)

such that ΠF(A)Ψ = Ω since ΠF is an irreducible representation.
That means:

〈Ψ, ΠF(W( fλ))Ψ〉 = 〈Ω, ΠF(A∗)ΠF(W( f ′λ))ΠF(A)Ω〉 (7.28)

= 〈Ω, [ΠF(A∗), ΠF(W( fλ))]ΠF(A)Ω〉+ 〈Ω, ΠF(W( fλ))Ω〉 (7.29)

= cλ + 〈Ω, ΠF(W( fλ))Ω〉 (7.30)

with cλ := 〈Ω, [ΠF(A∗), ΠF(W( fλ))]ΠF(A)Ω〉.
Now, let Ψ = UΩ with U from the assumptions. Then we have:

〈Ψ, ΠF
coh(W( fλ))Ψ〉 = 〈Ω, U−1ΠF

coh(W( fλ))UΩ〉 (7.31)

= 〈Ω, ΠF
coh(W( fλ))Ω〉 (7.32)

Together, this gives:

| 〈Ω,
(

ΠF(W( fλ))−ΠF
coh(W( fλ))

)
Ω〉 | = |cλ| (7.33)

= | 〈Ω, [ΠF(A∗), ΠF(W( fλ))]ΠF(A)Ω〉 |
(7.34)

≤ ‖[ΠF(A∗), ΠF(W( fλ))]‖ (7.35)

≤ ‖ΠF([A∗, W( fλ)])‖ (7.36)

= ‖[A∗, W( fλ)]‖ (7.37)

Applying Corollary 7.4 gives the result.

Proposition 7.6. Choosing the smeared Axial gauge as in subsection 5.3.2 with the smear-
ing function g(e) = 1

4π + 3
4π e3(e2 − e1) and the test function from Lemma 7.2 via f̂ ′ =

i~ε1(k)k2ζ(|k|) where ζ ∈ C∞
0 (R+)- Then all assumptions from Lemma 7.2 are satisfied.

In this case (7.27) from Lemma 7.5 can not be satisfied for all test functions if ĵ0(0) 6= 0.
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Proof. To start, let us concentrate only on the scalar product appearing in the smeared
Axial gauge in the definition of Fax for general f and g:

〈 f̂ ′λ,
∫

S2
dΩ(e) i

PT(e)
e · p g(e) ĵ0〉 (7.38)

Note that the estimate from the Proof of Lemma 7.2 can no longer be applied since∫
S2 dΩ(e)i PT(e)

e·k g(e) does not map S(Rn) to L∞(Rn).
Moreover, the scalar product is real since f ′λ ∈ PT

(
SR(R

3)⊗R3) is real and as discussed

in (6.19) also F−1
(
−i
∫

S2 dΩ(e) PT(e)
e·k g(e) ĵ0(k)

)
∈ PT

(
L2

R(R
3)⊗R3) is real .

〈 f̂ ′λ,
∫

S2
dΩ(e) i

PT(e)
e · k g(e) ĵ0〉

hT

= 〈−i
∫

S2
dΩ(e)

PT(e)
e · k g(e) f̂ ′λ, ĵ0〉

L2
(7.39)

= 〈−i
∫

S2
dΩ(e)

PT(e)
e · k g(e) f̂ ′, ĵ0(

·
λ
)〉 (7.40)

= 〈−i
∫

S2
dΩ(e)

PT(e)
e · k g(e) f̂ ′, ĵ0(

·
λ
)1supp( f )〉 (7.41)

At this point we need the fact that f is compactly supported and ĵ0 is a Schwartz
function to use the theorem of dominated convergence which gives us:

lim
λ→∞
〈
∫

S2
dΩ(e)

PT(e)
e · k g(e) f̂ ′, ĵ0(

·
λ
)1 f 〉 = ĵ0(0) 〈

∫
S2

dΩ(e)
PT(e)
e · k g(e) f̂ ′, 1 f 〉 (7.42)

Before we evaluate the integral (7.42) for our particular choice of f and g, we need to
make sure that f and g satisfy the assumptions that we made so far.
In subsection 5.3.2 we explained that g is an admissible choice for a smearing function.
In particular, it is obvious that g ∈ C∞(S2).
As product of C∞-functions f̂ ′ itself is C∞ and since we assumed that ζ is compactly
supported, it is obvious that f̂ ′ is compactly supported as well. So, we only need to
show that f̂ ′ is the Fourier transformation of real-valued function.
It is easy to check that the inverse Fourier transformation of a function h is real if
h(·) = h(−·). Now, it is straightforward to check that f has this symmetry property
and hence is the Fourier transformation of a real-valued Schwartz function.
Recall from (5.121) that for the particular choice of g and f , we have:

〈−i
∫

S2
dΩ(e)

PT(e) · f̂ ′

e · k g(e), 1 f 〉 =
∫

R3
d3k k2

ζ(|k|)
|k| cos(2θk)(cos(φk)− sin(φk)) (7.43)

=

∫ ∞

0
drr2ζ(r)

∫ π

0
dθ sin2(θ) cos(2θ)× (7.44)∫ 2π

0
dφ sin(φ)(sin(φ)− cos(φ)) (7.45)

=
π2

4

∫ ∞

0
drr2ζ(r) (7.46)
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7 Unitary inequivalence for non-vanishing total charge

This tells us

〈Ω,
(

ΠF
coh(W( fλ))−ΠF(W( fλ))

)
Ω〉 =

(
e−i〈 f̂ ′λ,

∫
S2 dΩ(e) i PT (e)

e·k g(e) ĵ0〉hT − 1
)

e−
1
4 ‖ fλ‖2

(7.47)

We chose fλ such that ‖ fλ‖ = ‖ f ‖ independently of λ such that:

〈Ω,
(

ΠF
coh(W( fλ))−ΠF(W( fλ))

)
Ω〉 =

(
e−i〈 f̂ ′λ,

∫
S2 dΩ(e) i PT (e)

e·k g(e) ĵ0〉hT − 1
)

e−
1
4 ‖ f ‖2

(7.48)

One easily verifies:

‖ f ‖2 =
4π

3

∫
R+

dr r4|ζ(r)|2 < ∞ (7.49)

Hence, (7.48) is bounded for all λ ∈ R. Moreover, we know from (7.42) that:

lim
λ→∞
〈Ω,

(
ΠF

coh(W( fλ))−ΠF(W( fλ))
)

Ω〉 =
(

e− ĵ0(0) π2
4

∫
R+

drr2ζ(r) − 1
)

e−
1
4 ‖ f ‖2

(7.50)

For an appropriate choice of ζ the integral exponent can be any multiple of ĵ0(0). That
implies that we can choose f such that (7.50) does not converge to 0 if and only if
ĵ0(0) 6= 0.
If (7.50) does not converge to 0, it is obvious that Lemma 7.5 cannot be satisfied.

Remark 7.7. Theorem 7.1 now follows as a corollary because (7.27) needs to be satisfied
whenever a unitary as in Theorem 7.1 exists. In Proposition 7.6, we showed that (7.27) can
not be satisfied for all test function if ĵ0(0) 6= 0 which implies the non-existence of a unitary
intertwining between the observables in the respective gauges.
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8 Conclusion and Open Questions

In this thesis, we addressed the problem of unitary equivalence of different gauges of
the electromagnetic field coupled to an external current on a mathematically rigorous
level.
However, we have seen in Chapter 3 that for physically admissible gauges, there may
appear problems in the well-definiteness of the observables from a mathematical point
of view.
While this issue did not occur for the Coulomb gauge, there were severe singularities
in the formal definition of the representation corresponding to the Axial gauge, which
prevented us from dealing with the unitary equivalence of the representations on a
rigorous level.
In the Chapters 4 and 5, we justified the YSM-type smearing of the Axial gauge by artifi-
cially extending the degrees of freedom and imposing the Axial gauge condition several
times. Repeating this procedure allowed for defining a regularized representation of
the Axial gauge without any pathologies, in the course of which a mathematically
thorough investigation of the gauge equivalence was possible.
In particular, in the Chapters 6 and 7 we showed, that the representation of the smeared
Axial gauge is unitarily equivalent to the representation of the Coulomb gauge if and
only if the total electric charge vanishes.
To be precise, we showed that there is a smearing function g such that the corresponding
representation ΠF

coh is not unitarily equivalent to the Fock representation ΠF on the
transversal Fock Space. In Section 5.4, we explained that the representations ΠF

coh and
ΠF describe the transversal observables in the smeared Axial and the Coulomb gauge
respectively.
Anyway, in Section 5.3 we have worked out that the representations ΠF

coh for the con-
stant smearing function is manifestly equivalent to the Fock representation ΠF.
Hence, together with the results of Chapter 7, we conclude that there are unitarily in-
equivalent representations among the smeared Axial gauge representations depending
on the choice of g. Thus, we should add this dependence to the notation ΠF

coh(g).
An open question, that we did not address in this thesis, is the classification of smearing
functions such that the representations ΠF

coh(g′) are unitarily equivalent for all g′ in the
same class.
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Appendix A

Riemann Integration

The purpose of this chapter is to recall the construction of the Riemann integral and
the main results of the convergence of Riemann sums. This results of this chapter
can be found in most standard textbooks for Analysis. As main references we chose
[Kö04],[Roc13] and [Fri13].

A.1 Riemann integration in one dimension

We start this chapter by recalling the construction of the Riemann integral over an
interval in one dimension. The Riemann integral was introduced as a measure of the
area between a bounded function f : I = [a, b]→ R and the x-axis.

Definition A.1. For this, let I = {x0, . . . , xn} ⊂ I with a = x0 < x1 < · · · < xn = b be a
decomposition of I and denote by |Ii| = xi+1 − xi the length of the i-th subinterval and
call |I| := max

1<i<n
|Ii| the fineness of the decomposition I.

Let I′ be another decomposition of I that results from I by adding points, then we call
I′ a refinement of I and have |I′| ≤ |J|.
ξ = (ξ1, . . . , ξn) is called an intermediate vector of I if xi ≤ ξi ≤ xi+1.

Definition A.2. Let I be a decomposition of I and ξ an appendant intermediate vector,
then:

S(I, ξ, f ) :=
n−1∑
i=1

f (ξi)|Ii| (A.1)

is called the Riemann sum of f associated to I and ξ.
Let (In)∞

n=1 be a series of decompositions of I such that lim
n→∞
|In| = 0 and let ξ(n) be an

intermediate vector for In. Then, the series of Riemann sums S(In, ξ(n), f ) is called a
Riemann series for f .

Definition A.3. A function f : I → R is called Riemann integrable if every Riemann
series S(In, ξ(n), f ) converges.
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Appendix A Riemann Integration

Proposition A.4. Let f : I → R be a Riemann integrable function, then the limit of Riemann
series S(In, ξ(n), f ) is unique and in particular independent of the choice of (In)∞

n=1 and ξ(n).

Proof. Let S1 and S2 be two Riemann series for f . Then S = (S1
1, S2

1, S1
2, S2

2, . . . ) is also a
Riemann series which converges due to the assumption that f is Riemann integrable.
With S being a convergent series all subseries of S also converge to the same limit. This
is in particular true for S1 and S2.

Definition A.5. Let f : I → R be a Riemann integrable function, then we call the
unique limit lim

n→∞
S(In, ξ(n), f ) the Riemann integral of f and denote it by

∫ b
a f (x)dx.

There is a different way to construct the Riemann sum that is more helpful to prove
useful properties of the Riemann-integral.

Definition A.6. Let f : I → R be a function and J a decomposition just like in the
previous definitions. Define:

mi := inf
xi−1<x<xi

f (x) (A.2)

Mi := sup
xi−1<x<xi

f (x) (A.3)

Then, one calls:

L( f , I) =
n∑

i=1

mi(xi − xi−1) (A.4)

U( f , I) =
n∑

i=1

Mi(xi − xi−1) (A.5)

the lower and the upper sum of f with respect to I respectively.
One calls I∗( f ) := sup

I:decomposition of I
L( f , I) the lower integral and I∗( f ) := inf

I:decomposition of I
U( f , I)

the upper integral of f .
If I∗( f ) = I∗( f ), one calls f Darboux-integrable over I.

Proposition A.7. A function f : I → R is Riemann integrable if and only if it is Darboux
integrable and bounded.

Proof. See [Roc13], Satz 8.8 .

Proposition A.8. Every continuous function f : I → R is Riemann integrable.

Proof. See [Fri13], Folgerung 2.3.5 .
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A.2 Riemann integration in Rn

In this chapter, we will generalize the idea of the Riemann integration over an interval
in one dimension to arbitrary many dimensions. First, we need to clarify the analogue
of an interval in Rn.
Under a closed interval in Rn we understand a product

[a1, b1]× · · · × [an, bn] = {x ∈ Rn; ai ≤ xi ≤ bi} (A.6)

and analogously under an open interval in Rn we understand a product:

(a1, b1)× · · · × (an, bn) = {x ∈ Rn; ai < xi < bi} (A.7)

Let I ⊂ Rn be an open or closed interval, then we set its content to:

|I| :=
n∏

i=1

(bi − ai) (A.8)

which gives us for n = 1 intervals and their length, n = 2 rectangles and their are,
n = 3 cuboids and their volumes and so on.

Definition A.9. Let I = I1× · · · × In ⊂ Rn be an interval. A product of decompositions

I = I1 × · · · × In (A.9)

where Ii is a decomposition of Ii is called a decomposition of I. The set of subintervals
of I is the collection of all possible products T1 × · · · × Tn where Ti is a subset of the
decomposition Ii.
A decomposition I′ is called a refinement of I if every I′i is a refinement of Ii in the
sense of Definition A.1.
The fineness of a decomposition I is defined via:

|I| = max
i
|Ii| (A.10)

The definition of an intermediate vector in Rn is analogue to the definition in one
dimension, see Definition A.1.

Definition A.10. Let f : Rn ⊃ I → R be a function and I a decomposition of I with
subintervals Ii, i ∈ {1, . . . , r} and ξ an intermediate vector of I, then:

S(I, ξ, f ) =
r∑

i=1

f (ξi)|Ii| (A.11)

is called the Riemann sum of f associated to I and ξ. Riemann series are defined
analogously to the one dimensional case.
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Definition A.11. A function f : Rn ⊃ I → R is called Riemann integrable if every
Riemann series converges.

Remark A.12. If f is Riemann integrable, then the limit is unique. The modification of the
proof of Proposition A.4 is straightforward.

Remark A.13. With this preparation, the definition of Darboux integrability in Rn is analogue
to the definition in one dimension.

Proposition A.14. A function f : I → R is Riemann integrable if and only if it is Darboux
integrable and bounded.

Proof. See [Roc13], Satz 13.8 .

Proposition A.15. Every continuous function f : I → R is Riemann-integrable.

Proof. See [Fri13], Satz 2.3.5 .

In [Kö04] there is a result about the convergence of Riemann series over arbitrary
subsets A ∈ Rn. To define a Riemann sum, we first need to generalize the definitions
of Definition A.1 to an arbitrary set A ∈ Rn.

Definition A.16. Under a decomposition of fineness δ > 0 of a subset A ⊂ Rn we
understand a collection I of subsets (Ai)i∈J for some index set J such that:

1.
⋃
i∈J

Ai = A

2. Ai ∩ Ik is a zero set for all i 6= k

3. diam(Ai) ≤ δ for all i ∈ J

Let I′ and I be two decompositions of A such that for every Ai ∈ I there is a collection
{A′i,k ∈ I′} such that

⋃
k

A′i,k = Ai, then I′ is called a refinement of I and we have

|I′| ≤ |I|.
ξ = (ξ1, . . . , ξn) is called an intermediate vector of I if ξi ∈ Ai.
The definition of a Riemann sum and a Riemann series are analogue to the previous ones.

Proposition A.17. Let A ∈ Rn be a compact set and f : A → R be continuous, then every
Riemann series converges and we call the (unique) limit∫

A
f (x)dx (A.12)

Proof. See [Kö04], Chapter 7.8, Satz 16.

Remark A.18. The proof idea of Proposition A.4 can also be applied in this case to prove the
uniqueness of the limit.
In [Kö04] the author even proves that

∫
A f (x)dx coincides with the Lebesgue integral.
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Inverse differential operators

The idea of finding inverse differential operators lead to the study of pseudo-differential
operators. The leading idea is to reduce the theory to the so-called symbols which
are defined via the Fourier transformation. The results allow to make sense of some
inverse differential operators.
An essential role in this formalism plays the Fourier transformation. To define and
state the basic properties of the Fourier transformation, we recall fundamental function
spaces:

Definition B.1.

S(Rn) := {φ ∈ C∞(Rn); ∀α, β ∈Nn
0 : sup

x∈Rn
|xα∂βφ| < ∞} (B.1)

is called the Schwartz space of rapidly decreasing functions.
The topological dual space of S(Rn)

{ f : S(Rn)→ C; f linear and continuous} (B.2)

is called the space of tempered distributions.

Definition B.2. Let (Ω,A, µ) be a measure space and K some field and 0 < p < ∞.
Then define

Lp(Ω) := { f : Ω→ K, f is measurable and
∫

Ω
| f |pdµ < ∞}. (B.3)

with the half norm for p ≥ 1:

‖ f ‖p =

(∫
Ω
| f |pdµ

) 1
p

. (B.4)

Then the quotient space Lp(Ω) = Lp(Ω) mod ker ‖·‖p is a Banach space and one refer
to it as Lp-space.

Remark B.3. For every p ≥ 1, the Schwartz space S(Rn) is dense in Lp(Rn) with the
Lebesgue measure with respect to the norm ‖·‖p. For a proof see e.g. [For08].
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Definition B.4. The Fourier transformation is an isometric automorphism F : S(Rn)→
S(Rn) defined via

f̂ (ξ) = F [ f ](ξ) =
∫

Rn

dnx
(2π)

n
2

f (x)eix·ξ (B.5)

where · indicates the standard Euclidean scalar product on Rn.

Remark B.5. Due to the density of S(Rn) in L2(Rn), the Fourier transformation can be
extended to an isometric isomorphism on L2(Rn).

Remark B.6. The Fourier transformation on S ′(Rn) is defined via the composition, i.e. let
φ ∈ S ′(Rn) and f ∈ S(Rn):

F [φ]( f ) = φ(F [ f ]) (B.6)

On S ′(Rn) the Fourier transformation is a linear bijection.

Lemma B.7 (Basic properties of the Fourier transformation). Let f , g ∈ S(Rn), then:

1. F [∂j f ] = iξ jF [ f ] = iξ j f̂

2. ∂ξ j f̂ = F [−ixj f ]

3. F [ f ? g] = f̂ ĝ, where ? denotes the convolution

4. Let (ρε f ) (x) := f (εx) denote the dilaton, then:

F [ρε f ] = ε−nρε−1 f̂ (B.7)

Proof. The proof can be found in many textbooks for Analysis or Partial Differential
Equations, e.g. [Abe12].

Lemma B.8. Let f ∈ S(Rn), then there is a constant Ck ∈ R such that

| f (x)| ≤ Ck

(1 + |x|)k (B.8)

for every k ∈N.

Proof. By definition, we have that with f ∈ S(Rn) also xα f (x) ∈ S(Rn) and hence
f (x) ≤ c0 and xα f (x) ≤ cα for some constants cα ∈ R. This gives us

(1 + |x|) f (x) = f (x) +

 n∑
j=1

x2
j f (x)2

 1
2

(B.9)

≤ c0 +

 n∑
j=1

c2
j

 1
2

≤ C1 (B.10)
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for an appropriate C1 ∈ R.
This tells us:

f (x) ≤ C1

1 + |x| (B.11)

This proof can be generalized to arbitrary orders k ∈ N in the same since xα f is
bounded for all α ∈Nn

0 .

B.1 Fractional Laplacians

Using the basic properties of the Fourier transformation, it is evident that a differential
operator P(D) =

∑
α

cαDα (Dα = i∂α) is mapped the multiplication operator with its

symbol p(ξ) =
∑
α

cαξα.

The idea is to link properties of the Differential operator P(D) to properties of its
symbol p(ξ).

Example B.9. The symbol of the Laplacian ∆ =
n∑

j=1
∂j∂j is p(ξ) = −|ξ|2.

This suggests that the inversion of a differential operator P corresponds to the
multiplication with the inverse symbol 1

p(ξ) on the level of the Fourier multiplication.
Formally, we define

Q f = F−1[
1

p(ξ)
f̂ (ξ)] (B.12)

and have:

PQ f = F−1[p(ξ)F [Q f ]] = F−1[
p(ξ)
p(ξ)

f̂ (ξ)] = f (B.13)

, i.e. Q is the inverse of P.
This discussion is only true on a formal level. One needs to assure that Q is a well-
defined operator. If it is, Q is not a differential operator but belongs to the class of
pseudodifferential operators.
First of all, we notice that for a polynomial differential operator there are obstacles in
the definition of the inverse Q due to the singularities. However, if the singularity turns
out to be integrable, then the definition makes sense and we will discuss an example of
such operators subsequently.
If, however, the singularities are not integrable, e.g. for p(ξ) = 0 for some ξ 6= 0, we
can modify the domain to make sense of Q as an inverse. The following definitions
and theorems are taken from [Uma15].

Definition B.10. Let G ⊂ Rn be an open subset. Denote by ΨG,p the set of functions
φ ∈ Lp(Rn) such that supp(φ) b G.
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Proposition B.11. The space ΨG,p is invariant under A(D) for every differential operator
with symbol A(ξ) ∈ C∞(G). Moreover, A(D) : ΨG,p → ΨG,p is a continuous mapping.

Proposition B.12. Let A(ξ) ∈ C∞(G). If 1
A(ξ)
∈ C∞(G), then the operator A−1(D) corre-

sponding to the symbol 1
A(ξ)

is the inverse of A(D) on ΨG,p.

In the following, we will discuss a certain class of examples of operators such that
the symbol vanishes at ξ = 0, but the inverse can still be defined as in (B.12).

Definition B.13. Let α ∈ 2N, then we call (−∆)
α
2 : S(Rn)→ S(Rn) defined via:

(−∆)
α
2 f = F−1[|ξ|α f̂ (ξ)] (B.14)

powers of the Laplacian of order α
2 .

Remark B.14. Note that the inverse Fourier transformation is well defined since the Schwartz
space is closed under multiplication with polynomials. The definition of the powers coincides
with the usual composition of operators.

Remark B.15. Let 0 < α < n, then |ξ|−α ∈ L1
loc(R

n). In particular, this means, that the
singularity at ξ = 0 is removed by the integration measure. Moreover, it is obvious that |ξ|−α

is bounded at R3\K for any K containing 0 ∈ R3. Thus, |ξ|−α can be viewed as element in
S ′(Rn) [AH99].

Definition B.16. Let α < n, then the operators

Iα :S(Rn)→ S ′(Rn) (B.15)

f 7→ F−1[|ξ|−α f̂ ] (B.16)

are called Riesz potential operators.
The Riesz potential operators can equivalently be defined as convolution operators
with the kernel

Kα =
γα,n

|x|n−α
(B.17)

with γα,n ∈ R being some constant only depending on α and n [AH99]. In formulas,
we then have:

Iα f = Kα ? f (B.18)

Proposition B.17. Let n ≥ 3, then I2 is the fundamental solution of the negative of the
Laplacian, i.e. −∆I2 = δ0 in a distributional sense.

Proof.

(−∆I2) f = −∆F−1[|ξ|2 f̂ ] = F−1[
|ξ|2
|ξ|2 f̂ ] = f (B.19)

in the sense of distributions.
See e.g. [Hor90] for a different proof.
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The idea of fractional Laplacians is to generalize Definition B.13 to non-integer power
α ∈ R. Unfortunately, we can not just replace the integer power by a a fractional since
the inverse Fourier transformation does not exist as |ξ|α : S(Rn) 6→ S(Rn) for α 6∈ 2N

as a multiplication operator. However, we have:

Lemma B.18. Let α ≥ − n−1
2 and f ∈ S(Rn), then:

|x|α f ∈ L2(Rn) (B.20)

Proof. Using Lemma B.8, we have:∫
Rn
| f (x)|2|x|2αdx ≤ Ck

∫
Rn

|x|2α

(1 + |x|)2k dx (B.21)

= CkΞ(n)
∫

R+

ρ2α+n−1(1 + ρ)−2kdρ (B.22)

≤ CkΞ(n)
∫

R+

(1 + ρ)2α+n−1−2kdρ (B.23)

= CkΞ(n)
∫ ∞

1
ρ2α+n−1−2kdρ (B.24)

Choosing k appropriately big gives the result. Note that the second estimate is only true
if the exponent is positive, which restricts α ≥ − n−1

2 . By Ξ(n) we denote the measure
of the n− 1-dimensional sphere.

Since the Fourier transformation extends to an isomorphism on L2(Rn) and S ′(Rn)

respectively, Lemma B.18 and Definition B.16 allow us to can extend the definition of
Definition B.13 to α > −n.

Definition B.19. Operators ∆
α
2 : S(Rn)→ L2(Rn) for α ≥ 0 defined via:

(∆
α
2 f )(x) = F−1[|ξ|α f̂ ] (B.25)

are called fractional Laplacians.

Proposition B.20. Let α1, α2 > −n such that α1 + α2 > −n, then:

∆
α1
2 ◦ ∆

α2
2 = ∆

α1+α2
2 (B.26)

Proof. Let f ∈ S(Rn), then:

(∆
α1
2 ◦ ∆

α2
2 ) f = ∆

α1
2 F−1[|ξ|α2 f̂ ] (B.27)

= F−1 ◦ |ξ|α1 ◦ F ◦ F−1[|ξ|α2 f̂ ] (B.28)

= F−1 ◦ |ξ|α1+α2 f̂ (B.29)

Note that for this computation, we silently assumed that the domain of ∆
α1
2 is enlarged

to all objects such that the definition makes sense.

Corollary B.21. Iα is the fundamental solution of ∆
α
2 for 0 ≤ α < n.
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B.2 Fourier Multiplier

In this section, we will mainly follow the exhibitions of Fourier multipliers in [Abe12].
The main result that we will use is:

Theorem B.22. Let m : Rn → C be a measurable function. Then:

m(D) :L2(Rn)→ L2(Rn) (B.30)

f 7→ F−1[m(ξ) f̂ ] (B.31)

is a well-defined bounded operator m(D) : L2(Rn)→ L2(Rn) if and only if m ∈ L∞.
In this case it is true that ‖m(D)‖L(L2(Rn)) = ‖m‖∞.

Proof. See [Abe12], Thm. 2.13.

Definition B.23. Since mj(ξ) := ξ j
|ξ| ≤ 1, it is evident mj ∈ L∞. The bounded operators

Rj· := F−1[mj ·̂] on L2(Rn) are called Riesz operators.
Therefore

∂i∂j (∆)
−1 f = RiRj f = F−1[

ξiξ j

|ξ|2 f̂ ] (B.32)

is well defined on L2(Rn) and if f ∈ L2(Rn), then ∂i∂j (∆)
−1 f ∈ L2(Rn). In the case that

the derivatives do not exist in the classical sense, they are meant in the distributional
sense.
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