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Abstract

Matrix Product States (MPS) are a particular type of one dimensional tensor network states,

that have been applied to the study of numerous quantum many body problems. One of

their key features is the possibility to describe and encode symmetries on the level of a

single building block (tensor), and hence they provide a natural playground for the study

of symmetric systems. In particular, recent works have proposed to use MPS (and higher

dimensional tensor networks) for the study of systems with local symmetry that appear in

the context of gauge theories. In this work we classify MPS which exhibit local invariance

under arbitrary gauge groups. We study the respective tensors and their structure, revealing

known constructions that follow known gauging procedures, as well as different, other types

of possible gauge invariant states.
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Chapter 1

Introduction

Gauge theories play a paramount role in modern physics. Through the gauge principle, the

theories describing the fundamental interactions in the standard model of particle physics are

obtained by lifting the global symmetries of the interaction-free matter theories to be local

symmetries, minimally coupled [1] to a gauge field. Moreover, gauge theories also emerge as

effective low-energy descriptions in several condensed matter scenarios [2]. Historically, the

gauging procedure was first conceived as a transformation of a Lagrangian or Hamiltonian

describing a physical system; however, it can be performed on the level of quantum states

as well, irrespective of dynamics associated to a specific theory [3].

In spite of their central role in the standard model, non-Abelian gauge theories still

involve puzzles to be solved. Their complete understanding still poses a significant challenge

due to non-perturbative phenomena (e.g. low energy quantum chromodynamics). Among

the various approaches proposed to tackle the strongly coupled regime, a particularly general

and successful one is lattice gauge theory [4]. Monte Carlo sampling of Wilson’s Euclidean

lattice version of gauge theories has so far been the most successful method of numerical

simulation, nevertheless, it suffers from its own drawbacks. The sign problem [5] prevents
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application to systems with large fermionic densities, and the use of Euclidean time does not

allow to study real time evolution and non-equilibrium phenomena in general scenarios. In

order to describe real-time evolution of such theories, one is forced to abandon the Monte

Carlo approach, and search for other methods. In this context, the Hamiltonian formulation

of Kogut and Susskind [6] has been receiving renewed interest, with two recent approaches

coming from the quantum information and quantum optics community: quantum simulation,

using optical, atomic or solid-state systems [7, 8], and tensor network states.

The representation of quantum many-body states as tensor networks is connected to

White’s density-matrix renormalization group [9], and in the case of one dimensional spin

lattices is known as matrix product states (MPS) [10]. Tensor networks provide a way of

significantly reducing the dimension of the space of states one considers when describing a

many body quantum system. By restricting the allowed coefficients appearing in the state’s

expansion to ones that are given by contracting a network of tensors, with a geometric

structure that mimics the structure of the physical system, one can efficiently approximate

physical states (i.e., ground states and their low-energy excitations) while keeping the overall

number of parameters needed for the description low enough to make numerical tasks feasible

[10,11]. Among many useful properties of tensor networks, one which makes them well suited

to the description of states with symmetries, is the ability to encode the symmetry on the

level of a single tensor (or a few) describing the state. In the case of global symmetries,

both for MPS and for certain classes of PEPS in 2D (Projected Entangled Pair States - the

generalization of MPS to higher dimensional lattices), the relation between the symmetry of

the state and the properties of the tensor is well understood [12].

Tensor networks studies of lattice gauge theories have so far included numerical works

(e.g., mass spectra, thermal states, real time dynamics and string breaking, phase diagrams

etc. for the Schwinger model and others) [13–32], furthermore, several theoretical formula-
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tions of classes of gauge invariant tensor network states have been proposed [3, 33–36]. In

all of the latter the construction method follows the ones common to conventional gauge

theory formulations: symmetric tensors are used to describe the matter degree of freedom,

and later on a gauge field degree of freedom is added, or, alternatively - a pure gauge field

theory is considered. As was shown in [12, 37, 38], a tensor giving rise to a MPS with a

global symmetry must have a particular structure; it translates (intertwines) the physical

symmetry operation to a group action on each one of the virtual matrix indices (or tensor

indices in the PEPS case). When copies of the tensor are contracted, since all the physical

symmetry operators act with the same group element, the virtual group actions cancel out.

This fact was used in [35] as a starting point for constructing gauge invariant PEPS. There,

the tensor describing the gauge field degree of freedom is constructed such that it translates

two different symmetry operators, right and left ones, to virtual group actions which locally

cancel out the virtual transformations arising from the symmetry operator acting on the

matter.

While the usefulness of tensor networks in lattice gauge theories has certainly been

demonstrated by the above mentioned works, so far there were few attempts (e.g. [15])

to generally classify tensor network states with local symmetry. As shown in the classifica-

tion of globally symmetric MPS [37] (and is known in group theory as the Wigner-Eckart

theorem [39]), the requirement that a tensor should act as an intertwiner of an irreducible

representation with a tensor product of two irreducible representations defines it up to a

constant. This suggests that the construction presented in [35] might be the only way to

obtain PEPS with a local symmetry.

In this thesis, starting from the assumption of a local symmetry, we find necessary and

sufficient conditions to be satisfied by the tensors encoding a MPS. Similar work was done

in [15] for MPS with local U(1) symmetry and with open boundary conditions. We focus on



4 1. Introduction

translation-invariant MPS, and deal with arbitrary finite or compact Lie groups. Clearly, one

could come up with arbitrarily complicated constructions of states with a local symmetry

(e.g. by using many kinds of symmetric tensors). Our analysis is therefore limited to three

physically meaningful settings corresponding to: states describing matter, pure gauge field

states and states of both matter and gauge field. In our analysis the matter degrees of freedom

are represented by “spins”; this could in principle be extended to fermionic systems.

For states describing only matter we find that local symmetries can only be trivial, and

show how to gauge such states by adding another degree of freedom. When investigating

pure gauge states we show that local symmetry in MPS requires a specific structure of the

Hilbert space describing the gauge field degree of freedom. In Wilson’s lattice gauge theories,

in order to obtain minimal coupling in a continuum limit, the gauge field degree of freedom is

set as a group element in the same representation as the one acting on the matter [4]. In the

Hamiltonian formulation, the corresponding Hilbert space is isomorphic to L2(G), equipped

with the left and right regular representations [40], and is referred to by Kogut and Susskind

as “the rigid rotator” (in the SU(2) case) [6]. The structure that we find for the gauge field

Hilbert space is more general and contains the rotator-like space introduced by Kogut and

Susskind as a particular case.

In the combined matter and gauge field setting we show that, similarly to the case of MPS

with a global symmetry, the tensor describing the matter degree of freedom is a (generalized)

vector operator, and its structure is therefore determined by the Wigner-Eckart theorem; the

gauge field tensor’s structure is simpler: it is an intertwining map that translates the physical

symmetry operators into the same group action on the virtual (bond) spaces. This is a one

dimensional version of the construction principle used in [35]; as expected, we find this

construction method is unique (in the 1D case) and describe the available structural and

parametric freedom in choosing the tensors. However, the structure we derive allows for
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more general gauge invariant MPS, namely, ones that do not arise as a result of gauging a

global symmetry or coupling matter to a pure gauge field. We construct examples of such

states: while possessing a local symmetry when coupled to each other, the matter and gauge

field degrees of freedom do not retain their individual symmetries when separated. Finally,

we discuss mutual implications between the condition of local symmetry of the pure gauge

field and the condition of global symmetry of the matter when the two can be coupled to

each other to produce a MPS with local symmetry.



6 1. Introduction



Chapter 2

Gauge Theories

We shall begin this chapter with a broad review of the role symmetries play in modern

physics. In this context we shall then introduce the notion of gauge theories and describe

the principles which placed them at the forefront of our current understanding of elementary

particles. We shall give a rudimentary example of such a theory and use it as a stepping

stone to introduce Wilson’s lattice gauge theories, their Hamiltonian formulation by Kogut

and Susskind and, within that framework, the local Hilbert spaces describing the matter and

gauge field degrees of freedom.

2.1 Gauge Symmetry in Physics

Noether’s theorem states that to every continuous symmetry of a physical system corresponds

a conserved quantity. Invariance of the mathematical description of a system under space

translations of the coordinate frame of reference leads to the conservation of momentum;

invariance with respect to time translation leads to conservation of energy; invariance under

spatial rotations implies the conservation of angular momentum. These are all geometric

transformations of space-time, and respectively - geometric symmetries.
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However, physical theories could be described in terms of quantities that depend on

coordinate systems other than space-time (e.g. flavor or color). The degrees of freedom

described by these coordinates are called internal. Such theories could be invariant under

transformations of these internal coordinates, they are said to have an internal symmetry.

The conserved quantities corresponding to such symmetries are called charges.

In quantum mechanical systems, equivalent to the existence of a continuous symmetry is

the existence of observables - the generators of the group of transformations - which commute

with the Hamiltonian that describes the dynamics of the system. Let G be a continuous

symmetry group generated by self-adjoint charge operators Qa such that

Θ(g) = exp(i
∑
a

Qaφa(g)) , g ∈ G ,

where φa(g) are real parameters. Let a Hamiltonian H be invariant under all group trans-

formations:

Θ(g)HΘ(g)† = H , ∀g ∈ G.

Differentiating with respect to any of the parameters φa we obtain:

QaH −HQa = 0 .

Fix one value of a. Since Qa commutes with H they can be diagonalized simultaneously,

their eigenvectors labeled by two quantum numbers: Let |φλ〉 be an eigenvector of H with

eigenvalue λ, Qa|φλ〉 is also an eigenvector with the same eigenvalue:

HQa|φλ〉 = QaH|φλ〉 = λQa|φλ〉 .

Qa therefore preserves each λ eigenspace of H and can be diagonalized in each such subspace.

Label the mutual eigenvectors |ϕλ,qa〉 such that

H|ϕλ,qa〉 = λ|ϕλ,qa〉 ; Qa|ϕλ,qa〉 = qa|ϕλ,qa〉 .
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We see that a system with a symmetry exhibits multiplets, i.e. degeneracies of its energy

eigenstates: states with the same energy but with different eigenvalues qa of the generator

Qa. Furthermore, a symmetry with respect to a non-Abelian Lie group G gives information

about the structure of the energy eigenspaces. In this case the generators are representations

of elements of g, the Lie algebra of G. As demonstrated above, the energy eigenspaces are

preserved by the generators and are therefore representation spaces of g. As such, they can

be decomposed into irreducible representation spaces which can be distinguished from one

another by the value of yet another observable: the quadratic Casimir operator [41], e.g. the

total angular momentum operator in the case of SO(3) or SU(2).

In addition, since an observable that commutes with the Hamiltonian also commutes

with the time evolution operator

[Qa, H] = 0 ⇔ [Qa, exp(itH)] = 0 ∀t ∈ R ,

the dynamics of the system preserves the eigenvalues of the generator. These are so-called

selection rules: transitions between certain states (ones with different eigenvalues of the

generator) are not allowed by the dynamics.

Given a description of a physical system (Lagrangian or Hamiltonian) one can find all

the groups of transformations under which it is invariant, apply Noether’s theorem to deduce

the conserved quantities, and predict the multiplets and selection rules. The latter could

then be verified experimentally. Historically, once the relation between symmetries and con-

servation laws has been understood, particle physicists reversed the above reasoning: given

the experimentally observed complex structure of multiplets and selection rules, they looked

for candidate symmetry groups that would give rise to such a structure, and constructed

theories observing those symmetries [42].

Since internal coordinates describe degrees of freedom independent of space-time, we can

consider two kinds of symmetry groups of their transformations. One distinguishes between
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global symmetry groups, when the description of the system is invariant under an applica-

tion of the same transformation at each point in space-time, and local symmetry groups or

gauge symmetry groups, when the transformation applied to the internal coordinate system

depends on the position in space-time. When considering the latter kind of symmetries, one

quickly runs into a problem with an elementary notion, indispensable in any physical theory,

namely, that of rates of change of quantities in space-time. If the quantity in question is

determined up to an arbitrary “rotation” which differs between space-time points, what is

then the meaning of the difference between its values at different points? Consequently, one

is forced to redefine the notion of a derivative to one which is covariant with respect to

the allowed group of transformations [1]. This procedure involves introducing an additional

degree of freedom, one which has a defined transformation law under the gauge group. A

theory which is invariant with respect to such a gauge group of transformations is called a

gauge theory.

Starting with a theory described by a Lagrangian invariant under a given global symmetry

(associated to it - a certain charge), one can gauge this symmetry, i.e. promote it to be a local

one by the above procedure. This results in an interaction term in the Lagrangian, between

the original (matter) degree of freedom and the additional one (gauge field). Adding the

simplest local gauge invariant term which involves only the gauge field to the Lagrangian

results in a theory where the gauge field degree of freedom is interpreted as a massless

particle that mediates the interaction corresponding to that charge. The most well known,

and historically defining example of this procedure, is the case of quantum electrodynamics

(QED) described in detail by numerous authors (e.g. [1]).

We start from the Dirac Lagrangian density

L0(x) = ψ(x) (iγµ∂µ −m)ψ(x) ,

where ψ(x) is the free electron field, ψ(x) = ψ†(x)γ0 the conjugate field and γµ the Dirac
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matrices. Let α ∈ R, L0(x) is invariant under the global phase transformation:

ψ(x) 7→ exp(iα)ψ(x) , ψ(x) 7→ exp(−iα)ψ(x) . (2.1)

This invariance leads to the conservation of an additive quantum number, which is identified

with the total electric charge. The invariance no longer holds if the constant α is replaced

with a function α(x), since the derivative ∂µ acts both on ψ(x) and on α(x) via the product

rule. In order to restore the invariance, the derivative is replaced by the covariant derivative

Dµ

Dµψ(x) = [∂µ − ieAµ(x)]ψ(x) ,

where −e is the electron charge and Aµ(x) a vector field which transforms according to

Aµ(x) 7→ Aµ(x) + e−1∂µα(x) .

This substitution of the derivative introduces an interaction term in the Lagrangian

L(x) = L0(x) + eψ(x)γµψ(x)Aµ(x) ,

where the electron field is coupled to the vector field Aµ(x), which is interpreted as the

vector potential. In order to complete the theory, one needs to add a dynamical term for the

vector potential. The simplest local terms that are at most quadratic in the field Aµ and are

invariant under both Lorentz and gauge transformations are proportional to Fµν(x)F µν(x)

where

Fµν = ∂µAν − ∂νAµ

is the electromagnetic field tensor. The complete, gauge invariant Lagrangian density is

therefore:

L(x) = ψ(x) (iγµ∂µ −m)ψ(x) + eψ(x)γµψ(x)Aµ(x)− 1

4
Fµν(x)F µν(x) . (2.2)
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The fact that by performing this gauging procedure on the free electronic Lagrangian, one

obtains the same theory as the one obtained by quantizing the classical electrodynamics

Lagrangian (which classically includes the vector potential), led to the establishment of

the gauge principle which can be summarized as follows: the fundamental interactions of

nature originate from gauging global symmetries of the free theory. In the QED Lagrangian

(Eq. (2.2)) the electron current is coupled to one Aµ term and not a more complicated

expression involving the vector potential. This is referred to as minimal coupling [1].

The construction just outlined can be done in a much more general setting, with the

group U(1) replaced by a more general Lie group. In the case of groups from the family

SU(n), the obtained theories are called Yang-Mills theories, named after Yang and Mills who

first proposed the construction of an SU(2) gauge invariant theory. Such theories involve a

field Ψ(x) which is an n-tuple of fields ψ(x) = (ψ1(x), ψ2(x), . . . , ψn(x)) which transforms

under V ∈ SU(n) according to

Ψ(x) 7→ VΨ(x) ,

where the product on the RHS is simply matrix multiplication, i.e. (VΨ)i =
∑

j Vi,jψ
j.

Starting from a Lagrangian invariant under such global transformations L0(VΨ, V ∂Ψ) =

L0(Ψ, ∂Ψ), a gauge invariant Lagrangian is obtained by introducing the covariant derivative

Dµ = ∂µ + iAµ(x), where Aµ is now an su(n) valued function (which transforms under the

group action in the appropriate way)

L(Ψ, ∂Ψ) := L0(Ψ, DΨ) .

To this a dynamic term for the gauge field is added 1/4 Tr(FµνF
µν), where Fµν is also an

su(n) valued function given by

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] . (2.3)
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The full Lagrangian is therefore

L(Ψ, ∂Ψ, A, ∂A) := L0(Ψ, DΨ) +
1

4
Tr(FµνF

µν) .

The resulting theory is is one in which the n fields ψi are coupled with N = dim(su(n))

gauge fields Akµ, the components of the su(n) valued function Aµ. Similarly to the Abelian

case, the transformation rule obeyed by the gauge fields does not allow the incorporation of

their mass terms in the Lagrangian. A novel feature of non-Abelian gauge theories is the

fact that the gauge fields interact with each other directly (unlike photons in QED) due to

the terms [Aµ, Aν ] in Eq. (2.3).

Next, we present Wilson’s action [4], which is a discretized version of the Dirac action

in imaginary time, describing fermionic fields in a 3 + 1 dimensional lattice with spacing a.

One could try to construct such an action by performing the following substitutions∫
dxL(x)→ a4

∑
n∈Z4

L(an)

∂µψ(an)→ 1

2a
[ψn+µ̂ − ψn−µ̂] ,

where ψn := ψ(an) and µ̂ is a unit vector in the µ direction. However, this results in an

action that recovers gauge invariance only in the limit a → 0. Instead, Wilson’s action is

constructed such that gauge invariance is preserved for any value of a, and is given by1:

SW = ma4
∑
n

ψnψn +
a3

2

∑
n,µ̂

[
ψnγ

µUn,µψn+µ̂ − ψn+µ̂γ
µU †n,µψn

]
+

1

g2

∑
n

∑
µ̂,ν̂

[
Un,µUn+µ̂,νU

†
n+ν̂,µU

†
n,ν + h.c.

]
,

where g is a coupling constant and Un,µ is a connector, residing on the link between the

vertices n and n+ µ̂ which is introduced in order to preserve gauge invariance and transforms

1This action results in the problem of fermion doubling when taking the continuum limit. This can be

solved, e.g. by introducing staggered fermions [43], which we shall not do here.
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according to

Un,µ 7→ VnUn,µV
†
n+µ̂ ,

where Vn := eiα(an) such that Eq. (2.1) becomes ψn 7→ Vnψn. The terms Un,µUn+µ̂,νU
†
n+ν̂,µU

†
n,ν

are the lattice gauge invariant approximation of the gauge field dynamic term Fµν(x)F µν(x),

each corresponds to a product of the connectors along the closed loop defined by the vertices

(n, n+ µ̂, n+ µ̂+ ν̂, n+ ν̂), i.e. a plaquette.

2.2 Hamiltonian formulation of Lattice gauge theory

The Hamiltonian formulation of Wilson’s lattice gauge theories by Kogut and Susskind

recovers the Yang-Mills Hamiltonian in the continuum limit [6]. We review the construction

of the theory and describe the associated local Hilbert spaces, the structure of which (as we

are interested in studying gauge invariant states) will be in the focus of our attention.

We start from a Hubbard-like Hamiltonian describing fermions on a one dimensional

lattice with sites numbered by the position index x:

H = M
∑
x

ψ†x · ψx + ε
∑
x

(
ψ†x · ψx+1 + h.c.

)
,

where M is the mass, ε is the hopping rate, ψ†x · ψx :=
∑

i(ψ
†
x)
iψix and the field ψ is a vector

of fields which transforms with respect to a finite dimensional unitary representation of a

compact Lie group G as follows:

ψx 7→ V (g)ψx , ψ†x 7→ ψ†xV (g)† ,

where (V (g)ψx)
i =

∑
j V (g)i,i′ψ

i′
x . The Hamiltonian consists of mass terms and nearest

neighbor hopping terms. This Hamiltonian has a global symmetry with respect to the

representation V (g) (as all the group indices are contracted in the dot products). This

symmetry corresponds to a conservation of the total number of fermions, which is also clear
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from inspection of H. Next, we promote the symmetry to be local. We now allow the group

element to depend on the lattice site:

ψx 7→ V (gx)ψx , ψ†x 7→ ψ†xV (gx)
† .

The mass terms in the Hamiltonian are still invariant because they are local (products

of fields at the same site); the hopping terms, however are not. As expected, the problem

comes from the kinetic term, where the derivatives would appear in a continuum theory. As

before, we can restore the symmetry by introducing a connection matrix Ux, associated with

the links between the fermionic sites x and x + 1 which transforms under the group action

as:

Ux 7→ V (gx)UxV (gx+1)† .

Since V is a finite dimensional representation of a compact Lie group it is given as a direct

sum of irreducible representations V = ⊕jDj. Corresponding to the structure of V , the

connection matrix is of the form U = ⊕jU j. The modified, gauge invariant Hamiltonian is

given by:

HG = M
∑
x

ψ†x · ψx + ε
∑
x

(
ψ†x · Uxψx+1 + h.c.

)
,

Note that here we do not consider the dynamical term for the gauge field, as it is not

necessary for our discussion. We denote the generators of the gauge transformation around

lattice site n (when only gx 6= e and e ∈ G is the trivial element) by {Ga
x}a=1...dimG (there

are as many generators as the dimension of G as a manifold). The gauge invariance of the

Hamiltonian implies that all Ga
x commute with the Hamiltonian, which in turn implies that

for any eigenvector of the Hamiltonian |φλ〉 with eigenvalue λ, the generators Ga
x satisfy

HGa
x|φλ〉 = Ga

xH|φλ〉 = λGa
x|φλ〉 ,

which means they preserve the λ eigenspace. The energy eigenspaces therefore consist of

multiplets, i.e. they are representation spaces of the Lie algebra of G. Restricting ourselves
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to the singlet case, we have Gauss’ law which defines the physical, gauge invariant subspace

of states:

Ga
x|φ〉 = 0 ∀x, a . (2.4)

2.3 Matter and Gauge Field Hilbert spaces

We proceed with the above example. Consider a single lattice site, the states in the associated

Hilbert space transform according to:

|jm〉 :=
(
ψ†
)j,m |0〉 7→ (

ψ†V (g)†
)j,m |0〉 =

∑
m

Dj(g−1)m′m|jm′〉 , (2.5)

where |0〉 is the one site Fock space vacuum and the fields composing ψ† were relabeled by

the irreducible representation index corresponding to the decomposition of V : ψi → ψj,m.

We denote the generators of these transformations {Qa
x}a=1...dimG.

The local Hilbert space on the link, describing the gauge field degree of freedom is isomor-

phic to L2(G). Let Dj be irreducible representation matrices of G, where for every j Dj is a

unique representative of an equivalence class of irreducible representations. According to the

Peter-Weyl theorem the matrix elements of the representations matrices Dj
mn are orthogonal

to each other in L2(G) and span the entire Hilbert space [44]. We denote the elements of the

orthonormal basis in ket notation |jmn〉 =
√
dim(j)Dj

mn where, similarly to the notation

for wave-functions in QM 〈x | φ〉 ≡ φ(x), for any g ∈ G 〈g | jmn〉 =
√
dim(j)Dj

mn(g). Each

matrix element of Ux: (Ux)
j
mn acts as a multiplication operator by the function Dj

m,n on

the Hilbert space L2(G) at link x (between lattice sites x and x + 1). Its action on the

singlet state |000〉, i.e. the constant function 〈g | 000〉 ≡ 1 (we assume the Haar measure is

normalized such that |G| = 1), is given by
√
dim(j)(Ux)

j
mn|000〉x = |jmn〉x.

If we consider the action of a gauge transformation corresponding to a trivial action in all

sites except one (∀x 6= x0 gx = e, where e ∈ G is the trivial element), we see that the group
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action on the link Hilbert space is given by two transformations corresponding to gx0 6= e

and gx0+1 6= e:

|jmn〉x0 =
√
dim(j)(Ux0)

j
mn|000〉x0 7→

√
dim(j)

(
V (gx0)Ux0V (e)†

)j
mn
|000〉x0

=
√
dim(j)

∑
m′,n′

Dj(gx0)mm′(Ux0)
j
m′n′δn′,n|000〉x0

=
∑
m′

Dj(gx0)mm′ |jm′n〉x0

|jmn〉x0 =
√
dim(j)(Ux0)

j
mn|000〉x0 7→

√
dim(j)

(
V (e)Ux0V (gx0+1)†

)j
mn
|000〉x0

=
√
dim(j)

∑
m′,n′

δm,m′(Ux0)
j
m′n′D

j(g−1
x0+1)

n′n
|000〉x0

=
∑
n′

Dj(g−1
x0+1))

n′n
|jmn′〉x0 .

These correspond to the left and right regular representations of G on L2(G) [44], acting,

however, with the inverse group element. This can by fixed by interchanging V and V † in

the definitions of the transformations of the fields. Equation (2.5) then also assumes the

form of a proper group action. Respectively, these transformations are generated by the left

and right generators of the group {Lax0}a=1...dimG and {Ra
x0
}a=1...dimG [35].

In terms of the generators of the transformations on the local Hilbert spaces Eq. (2.4)

reads:

Ra
x +Qa

x + Lax+1|φ〉 = 0

For Abelian groups R = −L and, therefore, Ra
x+Lax+1 is the lattice divergence of L; identify-

ing L with the electric field and Q with the charge, when taking a continuum limit Eq. (2.4)

becomes the familiar Gauss law.

In Wilson’s lattice gauge theory, in order to recover the covariant derivative when taking

a continuum limit, the connector Ux is taken to be an element in the representation of

the group and not of its Lie algebra (as described in the previous section) [4]. However,
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one does not have to consider a continuum limit in order to obtain such a structure. The

properties of the degree of freedom on the link, which has two parts - left and right - each

one of which transforms independently, and thereby compensate for the local transformation

of the matter field, seem like an intuitive solution to the problem of restoring invariance

once the symmetry operation is allowed to be local. Once these properties are imposed as

constraints on the gauge field degree of freedom, not many options remain for choosing it.

It will indeed be a central theme in this work, the fact that the behavior of objects under

group transformations determines their structure. To show the uniqueness of the gauging

procedure described in our example is beyond the scope of this work, however, in the MPS

framework we will demonstrate just that. One can therefore recover the minimal coupling

rule in the continuum theory by finding the simplest (i.e. local) structure that connects two

mass degrees of freedom on the lattice in a gauge invariant way.



Chapter 3

MPS Background

In this chapter we shall introduce the MPS formalism and the notation used throughout

this work. We shall then present essential definitions and results from the theory of MPS,

building up to the fundamental theorem of MPS. Next we shall proceed with a brief review of

background in representation theory, in particular, projective representations, Schur’s lemma

and the Wigner-Eckart theorem. Finally we shall present the classification of MPS with a

global symmetry, which will be utilized when we will prove our results in the next chapter.

3.1 Matrix product vectors

We consider matrix product vectors (MPV) rather than states (MPS). The distinction is

emphasized because MPV can refer to unnormalized MPS as well as to matrix product

operators, to which our results can also be applied. Moreover, in the following we shall

define symmetries in terms of equalities between vectors and not states, i.e. we shall not

allow a phase difference. For a comprehensive introduction to MPS we refer the reader

to [10, 45, 46]. In the following we shall review the basic definitions, and quote essential

results.



20 3. MPS Background

Let H be a d-dimensional Hilbert space. A matrix product vector (MPV) is a vector

|ψNA 〉 ∈ H⊗N given by

|ψNA 〉 =
∑
{i}

Tr
(
Ai1Ai2 . . . AiN

)
|i1i2 . . . iN〉 , (3.1)

where {Ai|i = 1, . . . , d} are D×D matrices and {|i〉|i = 1, . . . , d} is an orthonormal basis in

H. The dimension of the matrices, D, is called the bond dimension of A. We say that the

tensor A, which consists of the matrices Ai, generates the MPV |ψNA 〉; in fact, it generates

a family of vectors:
{
|ψNA 〉|N ∈ N

}
. We refer to the entire family of vectors as the MPV

generated by A. Vectors of this form will be at the focus of our study; they are typically

used to describe translationally invariant (TI) states of N spins on a 1 dimensional lattice

with periodic boundary conditions, where each spin is described by the Hilbert space H, and

the order of the terms in the tensor product corresponds to the positions of the spins on

the lattice. Similarly, it is possible to describe states of a spin lattice with open boundary

conditions, and that are not TI, with a different tensor A[k] associated with each site number

k, and where two arbitrary vectors |α0〉, |β0〉 ∈ CD encode the boundary conditions:

|ψ̃NA 〉 =
∑
{i}

〈α0|A[1]i1A[2]i2 . . . A[N ]iN |β0〉|i1i2 . . . iN〉 . (3.2)

The number of parameters needed in order to specify a general state of the N body spin

chain is dim(H⊗N) = dN . On the other hand, the vector |ψ̃NA 〉 is specified by the entries of

the tensors A[k], i.e. D2 × d × N parameters, which grows linearly with the system size N ,

rather than exponentially. It was shown in [47] that any state of a spin chain can be written

in the form Eq. (3.2), and that the minimal D required is determined by the maximum rank

of the reduced density matrix over all partitions of the chain of spins into two subsystems

[1, 2, . . . , k][k + 1, . . . , N ]:

D ≥ max{rank(ρk)|k = 1, . . . N} ,
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which is a measure of the maximum entanglement between two parts of the system.

An intuitive explanation for this is provided by the following so-called valence bond

construction: To each spin on the lattice associate two auxiliary D dimensional Hilbert

spaces (virtual spins), a left one and a right one. Initialize the auxiliary system so that

each pair of neighboring virtual spins corresponding to different sites on the lattice are in an

(unnormalized) maximally entangled state
∑D

α=1 |α〉 ⊗ |α〉 (and the rightmost and leftmost

virtual spins in some states |α0〉 and |β0〉). Next, at each site, apply a linear map A[k] from

the virtual pair associated to that site to the physical Hilbert space:

A[k] :=
d∑
i=1

D∑
α,β=1

A
[k]i
α,β|i〉〈α, β| .

The resulting vector is the MPV in Eq. (3.2). Throughout this thesis we shall consider only

TI-MPV.

Example 3.1.1. We demonstrate the valence bond construction for N = 2 with periodic

boundary conditions. The initial configuration of the virtual spins is
∑

γ,κ |γ〉1,L|κ〉1,R|κ〉2,L|γ〉2,R.

Apply the map A to each virtual pair to obtain:

d∑
i=1

D∑
α,β=1

D∑
γ,κ=1

Ajα′,β′A
i
α,β 〈α′ | γ〉1,L 〈β

′ | κ〉1,R 〈α | κ〉2,L 〈β | γ〉2,R |j〉1|i〉2

=
d∑
i=1

D∑
γ,κ=1

Ajγ,κA
i
κ,γ|j〉1|i〉2

=
d∑
i=1

Tr
(
AjAi

)
|j〉1|i〉2 ,

which is exactly Eq. (3.1).

In order to avoid cumbersome notation involving many indices, we will use the graphical

notation commonly used in tensor networks. Each tensor is denoted by a rectangle with lines

connected to it. Each line corresponds to an index of the tensor. For example, the tensor A
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generating the MPV |ψNA 〉 in Eq. (3.1) is represented as:

A ,

where the top line corresponds to the physical index: i = 1, . . . , d, and the horizontal lines

- to the (“virtual” or “bond”) matrix indices: α = 1, . . . , D. Contraction of tensor indices

is indicated by connecting the respective lines. If M is a square matrix, i.e. a rank 2 tensor,

then Tr(M) is denoted by:

M .

The coefficient corresponding to the |i1i2 . . . iN〉 basis element of the MPV |ψNA 〉 in Eq. (3.1)

is denoted by:

A A A A

i1 i2 i3 iN

. . . ,

where we specified the values of the physical indices. We identify the MPV of length N

generated by A with the set of its coefficients and denote the MPV as:

A A A A. . . .

Definition 3.1.1. Let A be a tensor composed of matrices {Ai}. Blocking of b copies of A

defines a new tensor denoted by A×b, which is composed of the matrices given by the b-fold

products of Ai, and are numbered by an index I := (i1, i2, . . . , ib):{
(A×b)

I = Ai1Ai2 . . . Aib | i1, i2, . . . , ib = 1, . . . , d
}
.

The new index I corresponds to the basis {|I〉 := |i1〉 ⊗ |i2〉⊗, . . . ,⊗|ib〉} of H⊗b . Graphi-

cally:

A×b

I

= A A A

i1 i2 ib

. . . .

The MPV of length N generated by A×b is |ψNA×b〉 ∈
(
H⊗b

)⊗N
.
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Definition 3.1.2 (Injective tensor). A tensor A consisting of D × D matrices {Ai}di=1 is

injective if

span
{
Ai | i = 1, . . . , d

}
=MD×D ,

where MD×D is the algebra of D ×D matrices.

Definition 3.1.3. Let A be a tensor consisting of matrices {Ai}di=1. The completely positive

(CP) map associated with A is defined by:

EA(·) =
D∑
i=1

Ai · Ai† ,

i.e., the matrices {Ai} are the Kraus operators of EA [48].

This map arises when computing the squared norm of |ψNA 〉:

〈
ψNA | ψNA

〉
= Tr

[(
ÊA

)N]
,

where ÊA =
∑

iAi ⊗ Ai is the matrix representation of EA [48]. This can be seen by direct

computation, or alternatively, by the graphical representation of
〈
ψNA | ψNA

〉
:

A A A A. . .

. . .A A A A

.

Instead of first contracting the row of As (horizontal indices) and then taking the inner

product (vertical indices), we can first contract the vertical indices and obtain a trace of N

powers of the map EA, which is represented by:

A

A

,
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(when the tensor is drawn upside down, a complex conjugation is assumed, see [33] for

more detailed notation convention) and acts from right to left mapping a matrix X to

EA(X) =
∑D

i=1A
iXAi

†
:

A

A

X

.

Similar expressions are obtained when computing expectation values of local operators of

the form O = O[1] ⊗O[2] ⊗ . . .⊗O[N ]:

〈ψNA |O|ψNA 〉 = Tr

[
N∏
k=1

Ê
(O[k])
A

]
,

where ÊO[k]

A =
∑

i,j〈i|O[k]|j〉Ai ⊗ Aj, and is represented graphically by:

A

A

O[k]

.

It is clear that many different tensors give rise to the same vector, e.g. for any invertible

matrix X, the tensor composed of the matrices Ãi := X−1AiX generates the same MPV as

A. Furthermore, it could happen that the matrices Ai are all of an upper block diagonal

structure:

Ai =

 Ai1,1 Ai1,2

0 Ai2,2

 .

In this case the MPV |ψNA 〉 does not depend on {Ai1,2}. These two observations motivate the

definition of a canonical form of a tensor generating a given MPV, which will be introduced

shortly.
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Definition 3.1.4 (Normal tensor). a tensor A, consisting of D × D matrices {Ai}di=1, is

normal if there exists L ∈ N such that:

span
{
Ai1Ai2 . . . AiL | i1, i2, . . . , iL = 1, . . . , d

}
=MD×D ,

where MD×D is the algebra of D×D matrices. That is, A is normal if it becomes injective

after blocking a sufficient number of its copies. In addition we require that the spectral

radius of the CP map EA is equal to 1.

Remark 3.1.1. If a tensor becomes injective after blocking L0 copies, it is also injective when

blocking any number L ≥ L0 of copies. There is an upper bound on the minimal number of

copies of a normal tensor needed to be blocked in order for the blocked tensor to be injective,

which depends only on its bond dimension [49].

Proposition 3.1.1. A tensor is normal (Definition 3.1.4) iff the CP map associated with it

is primitive (irreducible and non-periodic). [48]

Definition 3.1.5 (Canonical form). A tensor A is in CF if the matrices Ai are block diagonal

and have the following structure:

Ai = ⊕nk=1νkA
i
k , (3.3)

where {Ak} are normal tensors and νk are constants.

Definition 3.1.6 (Canonical form II). A is in CFII if in addition to being in CF, for any

k appearing in Eq. (3.3) the CP map EAk is trace preserving, and has a positive full rank

diagonal fixed point Λk > 0.

Proposition 3.1.2. Let |ψNA 〉 be the MPV generated by a tensor A. If the CP map EA has

no periodic irreducible blocks, then there exists a tensor Ã in CF (or CFII) such that:

|ψNA 〉 = |ψN
Ã
〉 ,∀N ∈ N .
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If EA does have periodic blocks, then there exist a tensor Ã in CF (of CFII) and b ∈ N such

that:

|ψNA×b〉 = |ψN
Ã
〉 ,∀N ∈ N ,

where A×b is the tensor obtained by blocking b copies of A (Definition 3.1.1). [46]

Definition 3.1.7 (Basis of normal tensors). Let A be a tensor in CF. A set of tensors {Âj}

is said to be a basis of normal tensors (BNT) of A if Âj are normal tensors, and for every

Ak appearing in A’s expansion (Eq. (3.3)) there exists a unique Âj, an invertible matrix V

and a phase eiφ such that Ak = eiφV −1ÂjV .

From now on whenever we consider a tensor A in CF we shall write it in terms of a BNT

{Aj}mj=1:

Ai = ⊕mj=1 ⊕
rj
q=1 µj,qV

−1
j,q A

i
jVj,q . (3.4)

The MPV of length N generated by such a tensor A takes the form:

|ψNA 〉 =
m∑
j=1

rj∑
q=1

(µj,q)
N |ψNAj〉 .

Proposition 3.1.3. Definition 3.1.2 is equivalent to the existence of a one-sided inverse

tensor A−1 which satisfies:

A

A-1

= ,

that is: ∑
i

Aiαβ(A−1)
i

αβ = δα,α′δβ,β′

Definition 3.1.8 (Span of matrix products). For a tensor A with bond dimension D let

SL ⊆MD×D be the space spanned by all possible L-fold matrix products:

SL := span
{
Ai1Ai2 . . . AiL | i1, i2, . . . , iL = 1, . . . , d

}
.
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Definition 3.1.9. Let ΓLA :MD×D → H⊗L be defined by:

ΓLA(X) =
∑

Tr
(
XAi1Ai2 . . . AiL

)
|i1i2 . . . iL〉 .

For a normal tensor, according to Definition 3.1.4, for L large enough, SL =MD×D. For

tensors in CF the following holds:

Proposition 3.1.4 (Span property of BNT). Let A be in CF with each block being a unique

element of its BNT, i.e. there is no q summation in Eq. (3.4). Then for L large enough, SL

is the entire matrix algebra M := ⊕mj=1MDj×Dj where MDj×Dj is the algebra of Dj × Dj

matrices and Dj is the bond dimension of Aj. [45]

Proposition 3.1.5. Let A be a tensor consisting of block diagonal matrices: Ai ∈ M :=

⊕mj MDj×Dj , and let SL and ΓLA be as in Definition 3.1.8 and Definition 3.1.9 respectively.

Then SL =M iff ΓLA|M is injective.

Proof. Assume injectivity of ΓLA|M, then any element X ∈ S⊥ ∩M satisfies ΓLA(X†) = 0

because the coefficients of the the vector ΓLA(X†) are inner products of X with elements in

S. This implies X = 0. If S =M, then for every nonzero X ∈ M, X† has a non vanishing

inner product with at least one element Ai1Ai2 . . . AiL , and therefore ΓLA(X) is non zero.

Proposition 3.1.6. For a tensor A in CF as in Eq. (3.4), for L large enough the space SL

(Definition 3.1.8) has the form:

SL =
{
⊕mj=1 ⊕

rj
q=1 µ

L
j,qV

−1
j,q MjVj,q |Mj ∈MDj×Dj

}
(3.5)

Proof. Consider a tensor Ã which consists of the BNT of A without multiplicities (as in

Proposition 3.1.4). An element S = ⊕mj=1⊕
rj
q=1 µ

L
j,qV

−1
j,q MjVj,q in SL is obtained by taking the

same linear combination of the matrix products Ai1Ai2 . . . AiL as the one which generates

S̃ = ⊕mj=1Mj from the matrix products Ãi1Ãi2 . . . ÃiL .
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Proposition 3.1.7. Let {Aj}mj=1 be a BNT of A, and let each Aj appear in A with no

multiplicities, i.e. Ai = ⊕mj=1νjA
i
j. For L large enough the image of the algebra of block

diagonal matrices M := ⊕mj=1MDj×Dj , where Dj is the bond dimension of Aj, under the

map ΓLA is a direct sum:

ΓLA (M) :=
{

ΓLA(X) | X ∈M
}

=
m⊕
j=1

ΓLAj(MDj×Dj) .

In particular
∑m

j=1 ΓLAj(Xj) = 0 implies Xj = 0 ∀j = 1, . . . ,m. [45]

Proposition 3.1.7 allows us to prove the following lemma:

Lemma 3.1.1. Let A be a tensor in CF with BNT {Aj}, and let S and T be tensors with

the exact same block structure as A:

Ai = ⊕mj=1 ⊕
rj
q=1 µjqV

−1
j,q A

i
jVj,q

Si = ⊕mj=1 ⊕
rj
q=1 µjqV

−1
j,q S

i
jVj,q

T i = ⊕mj=1 ⊕
rj
q=1 µjqV

−1
j,q T

i
jVj,q .

If the following equality holds for any length N :∑
{i}

Tr
(
Si1Ai2 . . . AiN

)
|i1, i2, . . . , iN〉 =

∑
{i}

Tr
(
T i1Ai2 . . . AiN

)
|i1, i2, . . . , iN〉 , (3.6)

which in tensor notation reads:

A A AS . . . = A A AT . . . ,

then S = T .

Proof. Plugging in the block structure of the tensors into Eq. (3.6) we obtain:

0 =
∑
{i}

Tr
(
⊕mj=1 ⊕

rj
q=1 µ

N
j,q

[
T i1j − S

i1
j

]
Ai2j . . . A

iN
j

)
|i1, i2, . . . , iN〉

=
m∑
j=1

rj∑
q=1

µNj,q
∑
{i}

Tr
([
T i1j − S

i1
j

]
Ai2j . . . A

iN
j

)
|i1, i2, . . . , iN〉 .
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Plugging in the definition of the map ΓA (Definition 3.1.9)

m∑
j=1

∑
i1

ΓN−1
Aj

(
rj∑
q=1

µNj,q
[
T i1j − S

i1
j

])
⊗ |i1〉 = 0 .

According to Proposition 3.1.7, for N large enough (≥ L0) we have for all i1 and all j

rj∑
q=1

µNj,q
[
T i1j − S

i1
j

]
= 0 .

For all j, since {µj,q}
rj
q=1 are nonzero, there exists an N ≥ L0 such that

∑rj
q=1 µ

N
j,q 6= 0.

Therefore for all j we have:

T ij = Sij . (3.7)

We review the fundamental theorem of MPV [46].

Proposition 3.1.8. [46] Let A and B be tensors in CF (Eq. (3.4)) with BNT {Aj}gaj=1 and

{Bk}gbk=1 respectively. If for all N the tensors A and B generate MPVs proportional to each

other, then ga = gb and for every j there is a unique k(j), a unitary matrix Xj and a phase

eiφj such that:

Aij = eiφjX−1
j Bi

k(j)Xj .

Remark 3.1.2. Note that Xj are determined up to a phase.

Proposition 3.1.8 was proved in [46] and was used to prove the following:

Theorem 3.1.1 (The Fundamental Theorem of MPV). Let two tensors A and B in CF

(CFII) generate the same MPV for all N . Then they have the same block structure, and

there exists an invertible (unitary) matrix X:

X = ⊕mj=1 ⊕
rj
q=1 Xj , (3.8)
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which is block diagonal, with the same block structure as A, and a permutation matrix Π

between the blocks, such that:

A = X-1 Π-1 B Π X .

Before we proceed to apply the this result to MPV with a global symmetry, we shall

pause in order to review basic notions from representation theory.

3.2 Representation theory

In this section we introduce projective representations. We review basic facts from rep-

resentation theory, stated in the more general setting of projective representation, follow-

ing [41, 50]. Next, we describe how the general setting of a MPV with a symmetry with

respect to a finite dimensional representation Θ(g), can be simplified by writing the MPV in

a form compatible with the decomposition of Θ(g) into irreducible representations. Finally,

we quote two theorems: Schur’s lemma and the Wigner-Eckart theorem, that will allow us

to classify the tensors generating symmetric MPVs.

Projective representations

Let H be a finite dimensional Hilbert space. Denote by U(H) the group of unitary operators

on H. Throughout the thesis, unless explicitly stated otherwise, G will always refer to a

finite group or a compact Lie group.

Definition 3.2.1. A function γ : G×G→ U(1) satisfying:

γ(g, h)γ(gh, f) =γ(g, hf)γ(h, f), ∀g, h, f ∈ G

γ(g, e) =γ(e, g) = 1, ∀g ∈ G ,

where e ∈ G is the trivial element, is called a multiplier of G. For compact Lie groups we

require γ to be continuous.
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Definition 3.2.2. A projective unitary representation of a group G on H is a map Θ : G→

U(H) such that for all g, h ∈ G Θ(g)Θ(h) = γ(g, h)Θ(gh), where γ is a multiplier of G.

That is, projective unitary representations are unitary representations up to a phase

factor. Throughout this thesis all representations will be assumed to be unitary and finite

dimensional. From this point on, unitary representation shall be used to emphasize that it

is not projective. Projective representations can refer to both, as unitary representations

are a particular case of projective representations, namely, they are the ones with the trivial

multiplier.

Two projective representations (Θ,H) and (Θ′,H′) with multipliers γ and γ′ are equiva-

lent in the sense of projective representations if there exist an isomorphism φ : H → H′ and

a function µ : G→ U(1) such that Θ′(g)φ = µ(g)φΘ(g) for all g ∈ G. Their multipliers then

satisfy:

γ′(g, h) = γ(g, h)µ(g)µ(h)µ(gh)−1 . (3.9)

Equation (3.9) defines an equivalence relation on the group of multipliers of G. The quotient

of the subgroup of multipliers of the form γ(g, h) = µ(g)µ(h)µ(gh)−1 in the group of all

multipliers is the second cohomology group H2(G,U(1)) of G over U(1) [50]. When two

projective representations Θ and Θ′ have multipliers related by Eq. (3.9), for some function

µ : G→ U(1) we say they are in the same cohomology class.

Definition 3.2.3. Two projective representations (Θ,H) and (Θ′,H′) with the same multi-

plier γ are equivalent if there exists an isomorphism φ : H → H′ such that Θ′(g)φ = φΘ(g)

for all g ∈ G. We denote Θ′(g) ∼= Θ(g).

Complete reducibility

Fix a choice of representatives from the equivalence classes (Definition 3.2.3) of irreducible

projective representations of G with multiplier γ; denote them by Dj
γ : G→ U(Hj). Fixing
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a basis {|i〉} in Hj for every j defines the irreducible projective representation matrices:

Dj
γ(g) =

∑
m,nD

j
γ(g)m,n|m〉〈n|. These generalize the SU(2) Wigner matrices to projective

representations of arbitrary groups.

Let H be a finite dimensional Hilbert space, and let Θ : g 7→ Θ(g) be a projective

representation of G with multiplier γ. For finite and compact groups any finite dimensional

projective representation is fully reducible and is equivalent to a direct sum of irreducible

projective representations ⊕jDj
γ(g) with the same multiplier, i.e., there exists a basis {|j,m〉}

of H such that:

Θ(g)|j,m〉 =
∑
n

Dj
γ(g)n,m|j, n〉 . (3.10)

We refer to such a basis as the irreducible representation basis of Θ(g) (in general it is not

unique, e.g., when an irreducible representation appears multiple times [51]; we shall assume

a choice of such a basis).

When considering a representation acting on a MPV, it is convenient to write the MPV

in the irreducible representation basis. In the following we describe how this is achieved, and

show that it does not interfere with CF properties of the tensor generating the MPV.

Remark 3.2.1. A change of basis of the physical space from {|i〉} to the irreducible repre-

sentation basis {|j,m〉} (Eq. (3.10)), involves a transformation of the tensor generating the

MPV: A 7→ Ã, where Ã consists of the matrices {Ãj,m =
∑

i 〈j,m | i〉Ai}. This is easily seen

by inserting an identity operator
∑

j,m |j,m〉〈j,m| for every copy of H in the definition of

|ψNA 〉 (Eq. (3.1)).

Proposition 3.2.1. Let {Ai}di=1 be the Kraus operators defining a CP map EA. For any

unitary d× d matrix U the matrices {
∑

j Ui,jA
j}di=1 define the same CP map. [48]

Corollary 3.2.1. Let A be a tensor in CF (CFII) composed of the matrices {Ai} corre-

sponding to the basis {|i〉} of H. Then the tensor Ã, composed of the matrices {Ãj,m =∑
iA

i 〈j,m | i〉} as in Remark 3.2.1, is also in CF (CFII).
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Proof. Ã has the same block structure as A (Eq. (3.3)):

Ãj,m = ⊕nk=1νkÃ
j,m
k = ⊕nk=1νk

∑
i

〈j,m | i〉Aik .

According to Proposition 3.1.1, the normality and CFII properties of each block Ãk are

defined by the CP map associated to it. Proposition 3.2.1 says this maps is not affected by

the transformation Ak 7→ Ãk because {〈j,m | i〉} are the entries of a unitary matrix. Each

block Ãk is therefore a normal tensor (and in CFII).

Intertwining relations

It was shown in [37, 38] that an injective tensor A which generates a MPV with a global

symmetry with respect to a representation Θg, satisfies:

A

Θ(g)

= X(g)-1 A X(g) , (3.11)

i.e., for all i = 1, . . . , d:
∑

i′ Θ(g)ii′A
i′ = X(g)−1AiX(g), where X(g) is a projective repre-

sentation of G. While we will make the precise statement and derive this result later, we

now point out that in Eq. (3.11) the tensor A translates the action of Θ(g) on the physical

space into a group action on the virtual space.

In the following, we quote two theorems: Schur’s lemma and the Wigner-Eckart theorem,

which can be used to classify tensors satisfying such intertwining relations.

Definition 3.2.4 (Intertwining map). Let (η, V ) and (π,W ) be projective representations

of a group G with the same multiplier. A linear map T : V → W is called an intertwining

map if π(g)T = Tη(g), ∀g ∈ G.
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Lemma 3.2.1 (Schur’s lemma). An intertwining map between irreducible projective repre-

sentations with the same multiplier is zero if they are inequivalent, and proportional to the

identity if they are equal. [50]

The tensor product of two irreducible projective representations with multipliers γ and

γ′ is a projective representation with multiplier γγ′ (γγ′ : (g, h) 7→ γ(g, h)γ′(g, h)), and is

generally a reducible one. The unitary map that realizes the decomposition of Dj
γ(g)⊗Dl

γ′(g)

into a direct sum of irreducible representations ⊕J∈JDJ
γγ′ is the Clebsch-Gordan map whose

matrix elements are the Clebsch-Gordan coefficients 〈j,m; l, n | J,M〉, which are determined

by the choice of the representation matrices Dj
γ (for a discussion of their uniqueness having

fixed the representation matrices see [51]).

The following is a generalization of the SO(3) vector operators, well known in quantum

mechanics [41].

Definition 3.2.5 (Vector operator). Let (η, V ), (π,W ) and (κ,H) be projective representa-

tions of G with dim(H) = d. A vector operator with respect to (κ, π, η) is a d-tuple of linear

operators ~A = (A1, A2, . . . , Ad), Ai : V 7→ W which, for all g ∈ G and all ~v ∈ H, satisfies:

(κ(g)~v) · ~A = π(g)
(
~v · ~A

)
η(g)−1 (3.12)

where ~v · ~A :=
∑

i v
iAi.

It was shown in [37] that Eq. (3.11) can be used to determine the tensor A satisfying it,

and that it consists of Clebsch-Gordan coefficients. We will derive the same result using a

generalized version of the well known Wigner-Eckart theorem, using the fact that Eq. (3.11)

resembles a vector operator relation for A (Definition 3.2.5).

Theorem 3.2.1 (Wigner-Eckart). Let DJ0
γ (g), Dj

γ′(g) and Dl
γ′′(g) be irreducible projective

representations. Let ~A be a vector operator with respect to (κ := DJ0
γ , π := Dj

γ′ , η := Dl
γ′′).
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If γγ′′ 6= γ′, then A = 0. Otherwise (if γγ′′ = γ′), then {AM |M = 1, . . . , dim(J0)} are of the

form:

AM =
∑

J∈J:DJ=DJ0

αJ
∑
m,n

〈
j,m; l, n | J,M

〉
|m〉〈n| , (3.13)

where J is the set of irreducible projective representation indices appearing in the decomposi-

tion of Dj
γ′(g)⊗Dl

γ′′(g),
〈
j,m; l, n | J,M

〉
are the Clebsch-Gordan coefficients of this decompo-

sition, Dl
γ′′(g) is the complex conjugate representation to Dl

γ′′(g), {|m〉} and {|n〉} are the ir-

reducible representation bases: π(g)|m〉 =
∑

m′ D
j
γ′(g)

m′,m
|m′〉, η(g)|n〉 =

∑
n′ D

l
γ′′(g)

n′,n
|n′〉

and αJ are arbitrary constants.

For a proof of the theorem in the familiar SO(3) setting, we refer the reader to [41]; for

a proof in the the setting of projective representations see [39].

Remark 3.2.2. Apart from the freedom of choosing the constants {αJ} in Eq. (3.13), there

is an additional freedom which comes from the fact that the the Clebsch-Gordan coefficients

are not uniquely determined by the irreducible representation matrices [51].

Remark 3.2.3. The multiplier of the complex conjugate projective representation Dl
γ(g) is

γ−1. We will always use Theorem 3.2.1 with γ ≡ 1, then A = 0 unless γ′ = γ′′.

Remark 3.2.4. We assume a choice of a unique representative in each equivalence class

of irreducible projective representations of G, so any two are either inequivalent or are

represented by the same matrices.

Remark 3.2.5. A is zero if DJ0
γ (g) does not appear in the decomposition of Dj

γ′(g)⊗Dl
γ′′(g).

There is a J summation in Eq. (3.13) because in general the same irreducible representation

could appear multiple times in the decomposition of the tensor product of two irreducible

representations.
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3.3 Classification of MPV with a global symmetry

We review the derivation of of the classification of MPVs with a global symmetry, originally

shown in [37]. In order for this work to be self contained, we derive the result from the

fundamental theorem of MPV (Theorem 3.1.1), following [46] and references therein.

Let HA be a dA dimensional Hilbert space corresponding to a single degree of freedom

(“spin”). Consider N such “spins” positioned on a one dimensional lattice, with periodic

boundary conditions. A tensor A consisting of square matrices {Ai}dAi=1 generates a TI-MPV

that describes a state of what, in the next chapter, we will refer to as the chain of matter

“spins”. Let Θ be a unitary representation of G on HA, Θ : g 7→ Θ(g).

Definition I (Global Symmetry for matter MPV). A MPV |ψNA 〉 has a global symmetry

with respect to Θ(g) if for all N ∈ N:

Θg ⊗Θg ⊗ . . .⊗Θg|ψNA 〉 = |ψNA 〉, ∀g ∈ G .

We first apply the fundamental theorem of MPV to the case when a MPV generated by

a tensor A in CFII is invariant under the action of the same unitary operator on every site

(later we shall consider the case when it is invariant with respect to a unitary representation,

i.e. when it has a global symmetry as in Definition I):

Corollary 3.3.1. Let A be a tensor in CFII (Eq. (3.4)) generating a MPV with a global

invariance under a unitary Θ:

Θ⊗N |ψNA 〉 = |ψNA 〉 ,

then A transforms under the unitary matrix as:

A

Θ

= X-1 Π-1 A Π X ,
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where X is a unitary matrix with the same block structure as A, and is unitary in each block

(Eq. (3.8)), and Π is a permutation between the j blocks of A (it does not permute the q

blocks).

Proof. The tensor Ã consisting of the matrices Ãi :=
∑

i′ Θi,i′A
i′ generates Θ⊗N |ψNA 〉. Before

finishing the proof, we shall now prove the following lemma:

Lemma 3.3.1. Let {Aj} be the BNT of A, then the tensors {Ãj} composed of the matrices

Ãij =
∑

i′ Θi,i′A
i′
j form a BNT of Ã, and Ã is in CFII.

Proof: Lemma 3.3.1. Ãj are normal tensors and in CFII because a unitary mixture of the

Kraus operators gives the same CP map (Proposition 3.2.1), and they are a basis because

{Aj} is.

We can now apply the fundamental theorem of MPV to A and Ã. In this case, however,

because the coefficients µj,q in Eq. (3.4) are the same for A and Ã, Π permutes only between

j blocks.

Next we apply the above to a MPV with a global symmetry as in Definition I:

Θ(g)⊗N |ψNA 〉 = |ψNA 〉 .

Theorem I. A tensor A in CFII which generates a MPV with a global symmetry with respect

to a representation Θ(g) of a connected Lie group G (Definition I), transforms under the

representation matrix as:

A

Θ(g)

= X(g)-1 A X(g) , (3.14)
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where X(g) has the same block structure as A:

X(g) = ⊕mj=1 ⊕
rj
q=1 Xj(g) , (3.15)

and where each block Xj(g) is a projective representation, in the general case, for different

j values Xj(g) belong to different cohomology classes.

Proof. According to Corollary 3.3.1, for every g ∈ G we have:∑
i′

Θ(g)i,i′A
i′ = X(g)−1Π(g)−1AiΠ(g)X(g) . (3.16)

Consider the action of the group element gh ∈ G in two ways using Eq. (3.16):

X(gh)−1Π(gh)−1AiΠ(gh)X(gh) =
∑
i′

Θ(gh)i,i′A
i′

=
∑
i′,k

Θ(g)i,kΘ(h)k,i′A
i′

=
∑
k

Θ(g)i,kX(h)−1Π(h)−1AkΠ(h)X(h)

=X(h)−1Π(h)−1X(g)−1Π(g)−1AiΠ(g)X(g)Π(h)X(h) .

Taking the L-fold product of the LHS and RHS for different indices i1, i2, . . . , iL we obtain:

X(gh)−1Π(gh)−1
(
Ai1Ai2 . . . AiL

)
Π(gh)X(gh) =

X(h)−1Π(h)−1X(g)−1Π(g)−1
(
Ai1Ai2 . . . AiL

)
Π(g)X(g)Π(h)X(h) .

(3.17)

We shall now prove the following lemma, and then continue with the proof.

Lemma 3.3.2. Π(g) is a representation of G and is therefore the trivial one.

Proof: Lemma 3.3.2. According to Proposition 3.1.6, by taking appropriate linear combina-

tions of Eq. (3.17) we can obtain:

X(gh)−1Π(gh)−1 (∆[j]) Π(gh)X(gh) = X(h)−1Π(h)−1X(g)−1Π(g)−1 (∆[j]) Π(g)X(g)Π(h)X(h) ,

(3.18)
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where ∆[j0] is a matrix consisting of multiples of I in the j0 block and zero in all the

rest: ∆[j0] := ⊕mj=1 ⊕
rj
q=1 µ

L
j,qδj,j0IDj×Dj . This is achieved by setting Mj = δj,j0I in Eq. (3.5).

Denote by g(j) the image of the block j under the permutation Π(g), then Π(g)−1∆[j]Π(g) =

∆[g−1(j)]. Plugging this into Eq. (3.18) we get:

LHS =X(gh)−1
(
∆[(gh)−1(j)]

)
X(gh)

=∆[(gh)−1(j)] =

RHS =X(h)−1Π(h)−1X(g)−1
(
∆[g−1(j)]

)
X(g)Π(h)X(h)

=X(h)−1Π(h)−1
(
∆[g−1(j)]

)
Π(h)X(h)

=∆[h−1(g−1(j))] ,

where in each step the Xs commute with the ∆s because they have the same block structure

and the ∆s are proportional to I in each block. We conclude that (gh)−1(j) and h−1(g−1(j))

are the same block number and therefore Π(g) is a group homomorphism. It remains to

show that Π(g) depends on g smoothly. From Eq. (3.16) we obtain:

X(g)−1Π(g)−1Ai1Ai2 . . . AiLΠ(g)X(g) =
∑
{i′}

(
Θ(g)i1,i′1A

i′1

)(
Θ(g)i2,i′2A

i′2

)
. . .
(

Θ(g)iL,i′LA
i′L

)
.

(3.19)

As above, we can take a linear combination of the As to get a ∆[j] between the permutations

in the LHS. Knowing how the permutation acts on each ∆[j] determines Π(g) completely.

The Xs on the LHS commute with all ∆[j] as before. The RHS will then be a linear

combination of {Θ(g)A}, and will thus depend on g smoothly. Since we assumed G is a

connected Lie group we conclude that Π(g) ≡ I.

We now repeat the step leading to Eq. (3.18) but this time with an arbitrary matrix M

in the j block: ∆M
j0

:= ⊕mj=1 ⊕
rj
q=1 δj,j0µ

L
j,qM . Equation Eq. (3.18) becomes:

X(gh)−1
(
∆M
j

)
X(gh) = X(h)−1X(g)−1

(
∆M
j

)
X(g)X(h) .
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This means that for any j block we have:

⊕rjq=1µ
L
j,qXj(gh)−1MXj(gh) = ⊕rjq=1µ

L
j,qXj(h)−1Xj(g)−1MXj(g)Xj(h) .

We see that Xj(g)Xj(h)(Xj)
−1(gh) commutes with every matrix M and is therefore propor-

tional to the identity. Xj(g) is therefore a projective representation.

Remark 3.3.1. Note that different blocks of X(g) can belong to different equivalence classes

of projective representations. We could construct such an example by taking the direct sum

of two normal tensors A and Ã, which transform under a given representation Θ(g) with X(g)

and X̃(g), projective representations from different cohomology classes. X(g)⊕ X̃(g) is then

not a projective representation because X(gh)⊕ X̃(gh) differs from X(g)X(h)⊕ X̃(g)X̃(h)

by a diagonal matrix and not a scalar one.



Chapter 4

Classification of MPVs with a local

symmetry

Gauge theories involve the dynamics of two kinds of degrees of freedom: matter and gauge

field. Given those two ingredients, one can consider three types of states: states of only mat-

ter degrees of freedom, states of only gauge field degrees of freedom and states of both matter

and gauge field. These correspond to non-interacting theories, pure gauge theories and in-

teracting gauge theories respectively (where interactions are understood as those between

matter and gauge degrees of freedom).

When constructing a gauge theory one usually starts from an interaction-free theory of

the matter degree of freedom which is invariant with respect to a group of global transforma-

tions, i.e., the same group element acting in each point in space (or space-time). Adding an

additional degree of freedom - the gauge field - with its own transformation law with respect

to the group, allows to define local symmetry operators which act on both the matter and

the gauge field degrees of freedom. These operators commute with the transformed (gauged)

Hamiltonian, and the subspace of states which is invariant under all such operators is consid-
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ered as the space of physical states. The generators of such local symmetry operators are the

so-called Gauss law operators. They correspond to locally conserved quantities (charges),

i.e., associated to each point in space (or space-time).

Conversely, one could start from a pure gauge field theory with a local symmetry and

couple a matter degree of freedom to it, once again resulting in a system with local symmetry.

Finally one could have matter and gauge field coupled in such a way that the combined state

has a local symmetry but neither the mass state nor the gauge field state have a symmetry

on their own.

4.1 Three Settings of Gauge Invariant MPVs

We shall now describe the three types of MPVs considered in this thesis, corresponding to

the above mentioned types of states, and for each one of them define the symmetries which

will be investigated in subsequent sections.

4.1.1 Matter MPV

The setting of the matter MPV was introduced in Section 3.3, when we discussed global

symmetries. We repeat in here for convenience. Let HA be a dA dimensional Hilbert space

corresponding to a single degree of freedom (“spin”). Consider N such “spins” positioned

on a one dimensional lattice, with periodic boundary conditions. A tensor A consisting of

square matrices {Ai}dAi=1 generates a TI-MPV that describes a state of the chain of matter

“spins”. Let Θ be a unitary representation of G on HA, Θ : g 7→ Θ(g).

It is well known that in order to lift a global symmetry to be a local one, an additional

degree of freedom must be introduced [1]. When investigating the possibility of a local

symmetry for a matter MPV, we will find this statement reaffirmed (see Theorem II). We
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define the setting of the theorem in the following:

Definition II (Local Symmetry for matter MPV). A MPV |ψNA 〉 has a local symmetry with

respect to Θ(g) if for all N ∈ N:

Θg1 ⊗Θg2 ⊗ . . .⊗ΘgN |ψNA 〉 = |ψNA 〉, ∀g1, g2, . . . , gN ∈ G .

Remark 4.1.1. The condition of a local symmetry (Definition II) is equivalent to invariance

under any single-site group action (all gi = e except one). For TI-MPV it is therefore

sufficient to consider only g1 6= e.

4.1.2 Gauge field MPV

Next we shall consider a case in which the local transformations act on two neighboring sites

of a TI-MPV, which will be eventually seen as the pure gauge case.

Let HB be a dB dimensional Hilbert space corresponding to a single “spin”. Consider

N such spins positioned on a one dimensional lattice, with periodic boundary conditions. A

tensor B consisting of square matrices {Bi}dBi=1 generates a TI-MPV that describes a state

of the chain of gauge field “spins”.

Definition III (Local Symmetry for gauge field MPV). Let R,L be two projective repre-

sentations of G on HB, R : g 7→ R(g), L : g 7→ L(g) with multipliers γ and γ−1, so that the

tensor product R(g)⊗L(g) is a unitary representation. A MPV |ψNB 〉 has a local symmetry

with respect to R(g)⊗L(g) if for all N ∈ N and for any two neighboring lattice sites K and

K + 1:

R[K]
g ⊗ L[K+1]

g |ψNB 〉 = |ψNB 〉, ∀g ∈ G .
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4.1.3 Matter and gauge field MPV

Let HA and HB be as in Section 4.1.1 and Section 4.1.2 respectively. Consider a lattice of

length 2N with matter and gauge field spins alternating among sites. Tensors A and B,

consisting of D1×D2 matrices {Ai}dAi=1 and D2×D1 matrices {Bj}dBj=1 respectively, generate

a TI-MPV (in the sense of translating two sites) that describes a state of the chain of matter

and gauge field “spins”. The MPV, generated by a tensor we denote AB, takes the form:

|ψNAB〉 =
∑
{i},{j}

Tr
(
Ai1Bj1Ai2Bj2 . . . AiNBjN

)
|i1j1i2j2 . . . iNjN〉 .

In lattice gauge theories, the matter degrees of freedom are located on the sites of a

lattice whereas the gauge field degrees of freedom - on the links connecting adjacent sites [4].

In the one dimensional case, our setting differs from this structure only in notation, e.g., we

could have chosen to call the even numbered sites “links”.

Let Θ(g) and R(g), L(g) be as in Section 4.1.1 and Section 4.1.2 respectively.

Definition IV (Local Symmetry for both matter and gauge field MPV). A MPV |ψNAB〉 has

a local symmetry with respect to R(g) ⊗ Θ(g) ⊗ L(g) if for all N ∈ N and for any three

neighboring lattice sites numbered 2K, 2K+1 and 2K+2 (corresponding to HB⊗HA⊗HB):

R(g)[2K] ⊗Θ(g)[2K+1] ⊗ L(g)[2K+2]|ψNAB〉 = |ψNAB〉, ∀g ∈ G .

4.2 Generators and Gauss’ law

In the previous section we defined the symmetries in terms of representations of a group G.

For matrix Lie groups it is often the case that one could describe the same symmetry in terms

of representations of the Lie algebra g of G. While the two descriptions are mathematically

equivalent, it is precisely the elements of the Lie algebra representation that correspond to
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observables in physical theories. Such observables are conserved by the dynamics in a theory

which respects the symmetry, and are therefore of great importance.

To each scenario described above (Section 4.1.1, Section 4.1.2 and Section 4.1.3) corre-

spond different such observables, and physical theories corresponding to the different settings

- matter, gauge field or matter and gauge field - observe different conservation laws. In the

following we describe the relation of those settings to physical lattice gauge theories [40].

When G is a compact and connected Lie group, e.g. U(1) or SU(N), the exponential map

exp : g→ G is surjective. Thus every group element can be written as an exponential of an

element in the Lie algebra g [52]. Let R(g), L(g) and Θ(g) be representations on HB and HA

respectively (for SU(N) we can always choose R(g) and L(g) to be unitary representations

keeping R(g)⊗ L(g) unchanged [41]), and let |ψNAB〉 be as defined in Section 4.1.3. We can

express the physical representations as exponentials of generators:

Θ(g) = exp

(
i
∑
a

Qaϕa(g)

)

R(g) = exp

(
i
∑
a

Raϕa(g)

)

L(g) = exp

(
i
∑
a

Laϕa(g)

)
,

where {ϕa(g)}dim(g)
a=1 are real parameters and {Ra}dim(g)

a=1 , {La}dim(g)
a=1 and {Qa}dim(g)

a=1 are Her-

mitian operators on HB and HA respectively such that {iRa}, {iLa} and {iQa} are bases of

the respective Lie algebras. In the Hamiltonian formulation of lattice gauge theories [6, 40]

{Ra} and {La} satisfy the Lie algebra relations:

[Ra, Rb] =ifabcRc

[La, Lb] =ifabcRc

[Ra, Lb] =0 ,
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where fabc are the structure constants of the Lie algebra g. {Qa} satisfy the relations:

[Qa, Qb] = ifabcQc .

The local symmetry transformations appearing in the matter and gauge field MPV scenario

(Definition IV):

R[2K](g)⊗Θ[2K+1](g)⊗ L[2K+2](g)|ψNAB〉 = |ψNAB〉 , (4.1)

are generated by the operators:

G[2K+1]
a :=

(
R[2K]
a +Q[2K+1]

a + L[2K+2]
a

)
.

Differentiating Eq. (4.1) with respect to any of the parameters ϕa we obtain:(
R[2K]
a +Q[2K+1]

a + L[2K+2]
a

)
|ψNAB〉 = G[2K+1]

a |ψNAB〉 = 0 . (4.2)

This is the lattice version of Gauss’ law. In physical theories, states |ψA〉 have a global

symmetry generated by {Qa} - the SU(N) charge operators. In the U(1) case there is one

generator Q - the electric charge operator; furthermore, for Abelian groups L = −R. In

that case Eq. (4.2) says that at each lattice site corresponding to matter, the charge is equal

to the difference between the values of L on the right and on the left of it (the 1D lattice

divergence of L). This becomes Gauss’ law when taking a continuum limit. L is therefore

identified as the electric field. Analogously, in the SU(N) case {Ra} and {La} are identified

with right and left electric fields respectively [40].

The same kind of equation can be obtained for the case of a gauge field MPV with a

local symmetry (Definition III): (
R[K]
a + L[K+1]

a

)
|ψNB 〉 = 0 .

In the case of a global symmetry for a matter MPV, differentiating the symmetry relation

(Definition I), we obtain a global operator - the total charge:∑
K

Q[K]
a |ψNA 〉 = 0 .
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4.3 Results

We summarize the results presented in this thesis, first stating the main results of each

of the cases presented above, and then turning to a more detailed and formal description.

The detailed proofs will be given in the subsequent chapter. For each one of the settings

introduced in the previous section, we shall first show that the symmetry condition implies

a transformation relation satisfied by the tensor(s) generating the MPV. Second, we shall

show that those transformation relations determine the structure of the tensor(s). For each

setting we shall then discuss implications of the derived tensor structures.

4.3.1 Matter MPV with local symmetry

We show that a MPV with one degree of freedom - the mass “spins” - can have a local

symmetry as in Definition II, only if it is the trivial one. This is consistent with the way

gauge invariant states are usually constructed in lattice gauge theories, as well as with

the construction of continuum gauge theories, where an additional degree of freedom is

introduced. The first observation is a general one, not restricted to MPVs:

Proposition I. Let H be a finite dimensional Hilbert space and let Θ : g 7→ Θ(g) be a

representation on H. Let |ψN〉 ∈ H⊗N be a vector with a local symmetry, i.e.

Θ(g1)⊗Θ(g2)⊗ . . .Θ(gN)|ψN〉 = |ψN〉, ∀g1, g2, . . . , gN ∈ G .

Then |ψN〉 ∈ H0
⊗N , where H0 ⊂ H is the subspace on which Θ(g) acts trivially.

In the following we show that for MPVs a similar statement to Proposition I can be made

for the tensor generating the MPV. Let |ψA〉 and Θ(g) be as in Section 4.1.1. According to

Proposition 3.1.2, given an arbitrary tensor A generating |ψA〉, one can obtain a tensor in

CF which generates the same state, (possibly after blocking A). We therefore assume A to

be in CF.
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Theorem II. Let A be a tensor in CF generating a MPV with a local symmetry with respect

to a representation Θ(g) (Definition II). Then for all g ∈ G the tensor A satisfies:

A

Θ(g)

= A ,

i.e., for all i = 1, . . . , dA:
∑

i′ Θ(g)ii′A
i′ = Ai.

According to Remark 3.2.1, the MPV generated by A can be written in terms of a tensor

Ã, composed of the matrices {Ãj,m}, corresponding to the irreducible representation basis

{|j,m〉} on which Θ(g) acts as Θ(g)|j,m〉 =
∑

nD
j(g)n,m|j, n〉. According to Corollary 3.2.1,

Ã is also in CF. Applying Theorem II to Ã leads to the following:

Corollary I. The matrices Ãj,m are non-zero only for j such that Dj(g) ≡ I1×1.

4.3.2 Gauge field MPV

We show that a local symmetry for a gauge field MPV |ψNB 〉 generated by a tensor B (in

CFII) (as defined in Section 4.1.2), implies the following transformation relations for B:

B

R(g)

= B X(g) ; B

L(g)

= X(g)-1 B , (4.3)

where X(g) is a projective representation with the same multiplier as that of R(g). This

transformation relation allows to determine the structure of the physical Hilbert space of the

gauge field degree of freedom. We find that the gauge field “spins” are composed of right

and left parts:

HB =
⊕
k

Hlk ⊗Hrk ,
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where Hrk are irreducible representation spaces of G. The physical representations R(g) and

L(g) take the forms: R(g) = ⊕k(I⊗Drk
γ (g)), L(g) = ⊕k(Dlk

γ-1(g)⊗ I), and act on the right

and left parts of HB respectively.

The transformation relation Eq. (4.3) also determines the structure of the tensor B. De-

compose X(g) into its constituent irreducible representations and project Eq. (4.3) to the

corresponding irreducible subspaces (virtual and physical). The obtained blocks of B in-

tertwine irreducible representations, and their structure is therefore determined by Schur’s

lemma (Lemma 3.2.1). When the irreducible representations in Eq. (4.3) match, the corre-

sponding elementary block of B is proportional to the tensor composed of the matrices:

Bm,n = |m〉〈n| ,

so that B, when represented in graphical notation, takes the form:

B ∝ .

Otherwise, if the irreducible representations do not match, that block of B is zero.

The tensor B is composed out of such elementary building blocks multiplied by constants

- free parameters. Finally, we show that for any B generating a gauge field MPV with a local

symmetry, one can always find a tensor A, describing a matter degree of freedom, such that

the matter and gauge field MPV generated by A and B has a local symmetry.

We shall now describe these results in detail, and state the relevant theorems.

Let |ψB〉 be a MPV generated by a tensor B and let R(g), L(g) be projective represen-

tations as defined in Section 4.1.2. As in the case of a matter MPV above, according to

Proposition 3.1.2 we can assume B is in CFII and write it in terms of its BNT:

Bi = ⊕nj=1 ⊕
rj
q=1 µj,qB

i
j , (4.4)
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where {Bj} are normal tensors in CFII forming a BNT of B (Definition 3.1.7) and µj,q are

constants.

Theorem III (Gauge field MPV with a local symmetry). A tensor B in CFII which gen-

erates a MPV that has a local symmetry with respect to R(g) ⊗ L(g) where R(g) and L(g)

are projective representations with inverse multipliers (Definition III), transforms under the

representation matrices as:

B

R(g)

= B X(g) ; B

L(g)

= X(g)-1 B , (4.5)

where X(g) is a projective representation of G with the same multiplier as R(g) and with

the same block structure as B (Eq. (4.4)):

X(g) = ⊕mj=1 ⊕
rj
q=1 Xj(g) . (4.6)

When considering matter and gauge field MPVs in the next section, we will show that

in that setting, a more general relation than Eq. (4.5) is satisfied by the tensor B. Namely:

B

R(g)

= B X(g) ; B

L(g)

= Y (g)-1 B , (4.7)

where X(g) and Y (g) are different projective representations (in the case when B is composed

of non-square matrices they are of different dimensions). We shall now present results which

follow from the more general relation (Eq. (4.7)), as they will be relevant also in the next

section. Then we will apply them to the case at hand - Eq. (4.5) (i.e., when X(g) = Y (g)

and B is composed out of square matrices).

Equation (4.7) allows us to determine the structure of the Hilbert space of the gauge field

degree of freedom. The fact that the action of R(g) is translated to a matrix multiplication
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from the right, and that of L(g) - to multiplication from the left implies that their actions

on the “spin” representing the gauge field are independent, consequently the “spin” must be

composed of right and left parts:

Proposition II (Structure of HB). Given a tensor B, projective representations R(g), L(g)

with inverse multipliers γ and γ−1 (as defined in Section 4.1.2) and matrices X(g) and Y (g)

which satisfy Eq. (4.7), the Hilbert space HB can be restricted to a representation space of

G×G and thus decomposes into a direct sum of tensor products of irreducible representation

spaces of G:

HB =
M⊕
k=1

Hlk ⊗Hrk ,

where rk and lk are irreducible representation labels.

The structure of HB described in [35] is a particular case of this Hilbert space. There:

HB =
M⊕
k=1

Hrk ⊗Hrk , (4.8)

where rk indicates the complex conjugate representation to rk. Equation (4.8) is a truncated

version of the K-S Hilbert space, which allows to regain the whole space if M is increased such

that all the irreducible representations are included. Each k sector in Eq. (4.8): Hrk ⊗Hrk

is isomorphic to the function space spanned by

{
Drk
m,n : g 7→ Drk

m,n(g) | m,n = 1, . . . , dim(rk)
}
⊂ L2(G) ,

with R(g) and L(g) equivalent to the right and left translations [44].

Remark 4.3.1. The group transformationsR(g) and L(g) are equivalent, according to Propo-

sition II, to ⊕k(I ⊗ Drk
γ (g)) and ⊕k(Dlk

γ-1(g) ⊗ I) respectively, where Dj
γ(g) are irreducible

projective representations. Changing the basis of the physical Hilbert space (as in Re-

mark 3.2.1) to {|lk,m〉 ⊗ |rk, n〉} in which the representations take this block diagonal form,



52 4. Classification of MPVs with a local symmetry

involves transforming B into B̃ given by the matrices: B̃k,m,n =
∑

iB
i 〈lk,m; rk, n | i〉. Ac-

cording to Corollary 3.2.1 B̃ is also in CFII. Equation (4.7) holds for the new tensor under

the action of the transformed operators: R̃(g) = ⊕k(I⊗Drk
γ (g)) and L̃(g) = ⊕k(Dlk

γ-1(g)⊗I).

We shall always assume B, L(g) and R(g) are in these forms.

Remark 4.3.2. The simplest case of Eq. (4.7) one could consider is when R(g) = I⊗Dr(g)

and L(g) = Dl(g)⊗ I, for irreducible projective representations Dr
γ(g) and Dl

γ-1(g). To these

corresponds the basis {|m〉 ⊗ |n〉 | m = 1, . . . , dim(l), n = 1, . . . , dim(r)}, and the matrices

composing the tensor B are numbered by two indices:

Bm,n =
∑
α,β

Bm,n
α,β |α〉〈β| .

B transforms under R(g) and L(g) in the following manner:

R(g) : Bm,n 7→
∑
n′

Dr
γ(g)

n,n′
Bm,n′ = Bm,nX(g)

L(g) : Bm,n 7→
∑
m′

Dl
γ-1(g)

m,m′
Bm′,n = Y (g)−1Bm,n .

We have seen in Remark 3.2.1 how to change the basis of the physical Hilbert space in

order to bring the physical representations to block diagonal form. We would like to do

the same for the virtual projective representation X(g) appearing in Eq. (4.5). This can be

achieved by a different transformation of the tensor B described in the following:

Remark 4.3.3. Given B,R(g), L(g) and X(g) that satisfy Eq. (4.5), redefine B:

Bk;m,n 7→ B̃k;m,n = V −1Bk;m,nV ,

with any invertible matrix V . The new tensor B̃ generates the same MPV and transform as

in Eq. (4.5) with X(g) replaced by X̃(g) = V −1X(g)V .

Remark 4.3.4. Note that the transformation described in Remark 4.3.3 may ruin the CF

property of B, as V does not in general preserve B’s block structure (Eq. (4.4)). We shall
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therefore take care to use this freedom of choosing the basis of X(g) only when we no longer

intend to use the CF property.

Remark 4.3.3 allows us to assume without loss of generality X(g) takes the form ⊕aXa(g),

where Xa(g) are irreducible projective representations. Next we project Eq. (4.5) to the k

sector of the physical Hilbert space (Remark 4.3.1) and to the (a, b) block in the virtual space,

since the representations are block diagonal they commute with the projection operators for

every group element g ∈ G. We therefore obtain:

Bka,b

I⊗Drkγ (g)

= Bka,b Xb(g) ; Bka,b

D
lk
γ-1 (g)⊗ I

= Xa(g)-1 Bka,b , (4.9)

where Bk
a,b is the tensor that consists of the (a, b) blocks of the matrices Bk;m,n.

The reduction procedure described above motivates the following definition of an elemen-

tary B block. Next we shall show that the irreducible representations appearing in Eq. (4.9)

determine such blocks up to a constant.

Definition 4.3.1. An elementary block of the tensor B is one which satisfies Eq. (4.7), where

R(g) = I ⊗ Dr
γ(g), L(g) = Dl

γ-1(g) ⊗ I and X(g), Y (g), Dr
γ(g) and Dl

γ-1(g) are irreducible

projective representations (both X(g) and Y (g) have multiplier γ).

Proposition III (Structure of an elementary B block). Let B be an elementary B block

(Definition 4.3.1). If X(g) = Dr
γ(g) and Y (g) = Dl

γ-1(g), then B is proportional to the

tensor composed of the matrices

Bm,n = |m〉〈n| ,m = 1, . . . , dim(l), n = 1, . . . , dim(r) .

Otherwise B = 0.
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We have thus classified all tensors B that satisfy Eq. (4.5). There is however more

information to be extracted from Theorem III. According to Proposition III, when projected

to sectors corresponding to inequivalent representations, the tensor B is zero. This result,

combined with the assumption that B is in CF imposes relations between the irreducible

representations that comprise R(g), L(g) and X(g):

Proposition IV. Let B,R(g),L(g) and X(g) be as in Theorem III. Let Xj(g) = ⊕aXa
j (g)

be a block of X(g) appearing in Eq. (4.6), consisting of irreducible projective representations

Xa
j (g). Let R(g) = ⊕k(I ⊗ Drk

γ (g)) and L(g) = ⊕k(Dlk
γ-1(g) ⊗ I), where Drk

γ and Dlk
γ-1 are

irreducible projective representations. Then the following hold:

1. For all k either there exist a and b such that Xb
j (g) = Drk

γ (g) and Xa
j (g) = Dlk

γ-1(g), or

the projection of the corresponding tensor Bj (a BNT element of B) to the sector k of

the physical space is zero.

2. ∀a ∃k such that Xa
j (g) = Dlk

γ-1(g).

3. ∀a ∃k such that Xa
j (g) = Drk

γ (g).

The elementary block of B described in Proposition III is the same as the one used in [35].

Note that even in lattices of higher dimensionality each gauge field degree of freedom still

connects two lattice sites. There:

Bj;m,n = βj|j,m〉〈j, n| , (4.10)

where βj are arbitrary constants. The overall structure of the B tensor derived above admits

more general structures than Eq. (4.10); these structures are recovered if for example, all

blocks Xj(g) appearing in X(g) (Eq. (4.6)) are irreducible representations. In this case (since

in Proposition IV the index a can assume only one value), for all k Dlk
γ-1(g) = Drk

γ (g) and

HB takes the K-S form, as in Eq. (4.8).
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In the following two propositions we consider adding a matter degree of freedom to a

gauge field MPV with a local symmetry. We show that it is always possible to find a tensor

A and a unitary representation Θ(g) (non-trivial ones) that couple to it:

Proposition V. Let B be in CFII and let |ψNB 〉 have a local symmetry with respect to

R(g)⊗L(g) (as in Theorem III). It is always possible to find a tensor A and a representation

Θ(g) such that the corresponding matter and gauge field MPV |ψNAB〉 has a local symmetry

with respect to R(g) ⊗ Θ(g) ⊗ L(g) (Definition IV). In addition, the corresponding matter

MPV - |ψNA 〉 - has a global symmetry with respect to Θ(g).

For a restricted class of B tensors, any A and Θ(g) that couple to it (satisfy Definition IV)

will have a global symmetry:

Proposition VI. Let B, R(g) and L(g) be as in Theorem III and in addition let span{Bk;m,n | k,m, n}

contain the identity matrix (e.g. Eq. (4.10)). Let A and Θ(g) be such that the MPV generated

by AB has a local symmetry with respect to R(g)⊗Θ(g)⊗L(g) (Definition IV). Then |ψNA 〉

has a global symmetry with respect to Θ(g). If in addition A is in CF with the same block

structure as B (Eq. (4.4)), then A transforms as:

A

Θ(g)

= X(g)-1 A X(g) ,

with the same X(g) from Theorem III.

The MPVs described above may be combined in a way that allows coupling matter and

gauge fields such that each of them could be invariant on its own, as in the conventional well

known scenarios of gauge theories. However, as we shall demonstrate in the next section,

this is not the most general setting of a local symmetry involving these two building blocks.
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4.3.3 Matter and gauge field MPV

We show that a local symmetry for a combined matter and gauge field MPV |ψNAB〉 (defined

in Section 4.1.3) generated by tensors A and B (in an appropriate form), implies the following

transformation relations for A and B:

B

R(g)

= B X(g) ; B

L(g)

= Y (g)-1 B

A

Θ(g)

= X(g)-1 A Y (g) (4.11)

where X(g) and Y (g) are projective representations from the same cohomology class. As

described in the previous section, the relation for B allows to infer the structure of the

Hilbert space HB associated with the gauge field degree of freedom. As before, HB splits

into right and left parts. The structure of the tensor B can be derived in the same way

as in the previous section. Each elementary block of the tensor A, obtained by projecting

Eq. (4.11) to irreducible representation spaces, satisfies a vector operator relation, and is

therefore determined by the Wigner-Eckart theorem (Theorem 3.2.1).

In the general case, the structure described in this section allows for “unconventional”

gauge symmetries where a local symmetry exists for the matter and gauge field MPV but

none of the constituents has a symmetry on its own, i.e., the gauge field MPV does not have

a local symmetry and the matter MPV does not have a global one. We construct an explicit

example of such a case (see Proposition XI).

Finally we use the known results about global symmetries in MPV [37] to find a class of

matter MPVs with a global symmetry that can be gauged by adding a gauge field degree of
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freedom. We shall now state the above results in detail.

Let |ψNAB〉 be a MPV generated by tensors A and B and let R(g), Θ(g) and L(g) be as

defined in Section 4.1.3.

Theorem IV (Matter and gauge field MPV with a local symmetry). Let both BA and AB

be normal tensors in CFII and let Θ(g) and R(g),L(g) be unitary and projective representa-

tions (with inverse multipliers) of a group G respectively. Let |ψNAB〉 be a MPV with a local

symmetry with respect to R(g) ⊗ Θ(g) ⊗ L(g) (Definition IV). Then there exist projective

representations X(g) and Y (g) on CD1 and CD2 respectively, such that X(g) has the same

multiplier as R(g), and Y (g) - the inverse multiplier to that of L(g). The tensors A and B

transform as follows:

B

R(g)

= B X(g) ; B

L(g)

= Y (g)-1 B (4.12)

A

Θ(g)

= X(g)-1 A Y (g) (4.13)

In the following proposition we show that given arbitrary tensors A and B, generating a

MPV |ψNAB〉, it is possible to describe the same MPV as a linear combination of MPVs that

satisfy the normality condition in Theorem IV:

Proposition VII. Let |ψNAB〉 be a MPV generated by arbitrary tensors A and B. Then

there exist tensors {Aχ} and {Bχ}, and there exists b ∈ N such that for all χ both AχBχ and

BχAχ are normal tensors and ∀N ∈ N |ψNAB×b〉 =
∑

χ µ
N
χ |ψNAχBχ〉, where µχ are constants

and AB×b is the tensor obtained by blocking b copies of the tensor AB.
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Next we show that if |ψNAB〉 =
∑

χ µ
N
χ |ψNAχBχ〉 has a local symmetry with respect to

R(g)⊗Θ(g)⊗ L(g), then every normal component |ψNAχBχ〉 must have the same symmetry.

We can then apply Theorem IV to each of the components.

Proposition VIII. Let |ψNAB〉 =
∑

χ µ
N
χ |ψNAχBχ〉 where both AχBχ and BχAχ are normal

tensors. Let O be a local operator acting on a fixed number of adjacent sites. If ∀N O leaves

the MPV invariant:

O ⊗ I|rest|ψNAB〉 = |ψNAB〉 ,

then O leaves every component invariant:

O ⊗ I|rest|ψNAχBχ〉 = |ψNAχBχ〉 ∀χ .

Having derived Eq. (4.12), Proposition II can be applied to determine the structure of

the Hilbert space HB. As in the case of a gauge field MPV discussed in the previous section,

we are free to assume X(g) and Y (g) are block diagonal in irreducible representations:

Remark 4.3.5. In Theorem IV we are free to choose similarity transformations for X(g) and

Y (g) independently. Given A,B,R(g),Θ(g),L(g), X(g) and Y (g) that satisfy Eq. (4.12) and

Eq. (4.13) we can redefine A and B:

Aj,m 7→ Ãj,m = U−1Aj,mV , Bk;m,n 7→ B̃k;m,n = V −1Bk;m,nU ,

with any invertible matrices U and V of fitting dimensions. The new tensors generate

the same MPV |ψNAB〉 and transform as in Theorem IV with X(g) and Y (g) replaced by

X̃(g) = U−1X(g)U and Ỹ (g) = V −1Y (g)V .

Definition 4.3.2 (Elementary A block). An elementary block of the tensor A is one which

satisfies Eq. (4.13), where Θ(g), X(g) and Y (g) are all irreducible projective representations.
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By bringing all of the representations appearing in Eq. (4.12) and Eq. (4.13) to block

diagonal form (using Remark 3.2.1 on the physical representations and Remark 4.3.5 on the

virtual ones), and projecting Eq. (4.12) and Eq. (4.13) to irreducible sectors of the physical

and virtual Hilbert spaces (as explained in Section 4.3.2), we may reduce Eq. (4.12) and

Eq. (4.13) to the cases of elementary blocks of B and of A respectively.

We have seen in Section 4.3.2 that Eq. (4.12) determines the tensorB givenR(g), L(g), X(g)

and Y (g) (Proposition IV). We now show that Eq. (4.13) determines the tensor A given

Θ(g), X(g) and Y (g).

Proposition IX. Let A be an elementary block (Definition 4.3.2), with Θ(g) = DJ0(g), X(g) =

Dj
γ(g) and Y (g) = Dl

γ-1(g). Then A is built out of Clebsch-Gordan coefficients and has the

form:

AM =
∑

J∈J:DJ=DJ0

αJ
∑
m,n

〈
J,M | j,m; l, n

〉
|m〉〈n| ,

where J is the set of irreducible representation indices appearing in the decomposition of

Dj
γ(g)⊗Dl

γ-1(g) into irreducible representations,
〈
j,m : l, n | J,M

〉
are the Clebsch-Gordan

coefficients of the decomposition, Dj
γ(g) is the complex conjugate representation to Dj

γ(g) and

αJ are arbitrary constants.

Proposition IX was shown in [37] in the context of MPS with a global symmetry.

The relation between the irreducible projective representations appearing in R(g) (L(g))

and X(g) (Y (g)) is characterized by the following:

Proposition X. Let AB and BA be normal tensors and let B satisfy Eq. (4.12) with R(g) =

⊕k(I⊗Drk
γ (g)), L(g) = ⊕k(Dlk

γ-1(g)⊗ I), Y (g) = ⊕aY a(g) and X(g) = ⊕bXb(g), where Drk
γ ,

Dlk
γ-1, Y a and Xb are irreducible projective representations, then

1. For all k either there exist a and b such that Xb(g) = Drk
γ (g) and Y a(g) = Dlk

γ-1(g) or

the projection of the tensor B to the sector k of the physical space is zero (and it can
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be discarded).

2. ∀a ∃k such that Y a(g) = Dlk
γ-1(g).

3. ∀b ∃k such that Xb(g) = Drk
γ (g).

By constructing tensors A and B that transform as in Theorem IV with X(g) 6= Y (g)

we show the existence of matter and gauge field MPVs which have a local symmetry but for

which the corresponding matter MPV does not have a global symmetry, nor does the gauge

field MPV have a local one:

Proposition XI. There exist tensors A and B such that |ψAB〉 has a local symmetry with

respect to R(g)⊗Θ(g)⊗L(g), but |ψA〉 does not have a global symmetry with respect to Θ(g).

In addition R(g)⊗ L(g)|ψB〉 6= |ψB〉.

We review known results about MPV with global symmetry [37]. Let A be a tensor in

CFII:

Ai = ⊕nj=1 ⊕
rj
q=1 µj,qA

i
j , (4.14)

where {Aj} are normal tensors in CFII forming a BNT of A (Definition 3.1.7) and µj,q are

constants.

Recall Theorem I:

Theorem I. A tensor A in CFII which generates a MPV with a global symmetry with respect

to a representation Θ(g) of a connected Lie group G (Definition I), transforms under the

representation matrix as:

A

Θ(g)

= X(g)-1 A X(g) , (3.14)
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where X(g) has the same block structure as A:

X(g) = ⊕mj=1 ⊕
rj
q=1 Xj(g) , (3.15)

and where each block Xj(g) is a projective representation, in the general case, for different

j values Xj(g) belong to different cohomology classes.

In the case when all Xj(g) obtained in Theorem I are from the same cohomology class,

we can find a gauge field tensor B and projective representations R(g) and L(g) that gauge

the symmetry:

Proposition XII. Let A be a tensor in CFII generating a MPV with a global symmetry i.e.,

satisfying Theorem I. Let X(g) (in Eq. (3.14)) be a projective representation (i.e. all Xj(g)

in Eq. (3.15) are in the same cohomology class). Then there exist a tensor B and projec-

tive representations R(g) and L(g) with inverse multipliers such that both local symmetries:

Definition IV for |ψNAB〉 and Definition III for |ψNB 〉 are satisfied.
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Chapter 5

Derivation and Proofs of the Results

In this chapter we prove the theorems stated in Section 4.3.

5.1 Matter MPV with local symmetry

Proposition I. Let H be a finite dimensional Hilbert space and let Θ : g 7→ Θ(g) be a

representation on H. Let |ψN〉 ∈ H⊗N be a vector with a local symmetry, i.e.

Θ(g1)⊗Θ(g2)⊗ . . .Θ(gN)|ψN〉 = |ψN〉, ∀g1, g2, . . . , gN ∈ G .

Then |ψN〉 ∈ H0
⊗N , where H0 ⊂ H is the subspace on which Θ(g) acts trivially.

Proof. Write |ψN〉 in the irreducible representation basis which satisfies:

Θ(g)|j,m〉 =
∑
n

Dj(g)n,m|j, n〉 ,

where Dj(g) are irreducible representation matrices.

|ψN〉 =
∑

cj1,m1,...,jN ,mN |j1,m1, . . . , jN ,mN〉 .
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The local symmetry condition implies:∑
n1

Dj1(g)m1,n1
cj1,n1,...,jN ,mN = cj1,m1,...,jN ,mN ,

which means that the vector of coefficients −→c j1,(·),...,jN ,mN is either zero or an invariant sub-

space of Dj1(g), in which case Dj1(g) is the trivial representation. This implies that the

coefficients cj1,m1,...,jN ,mN are zero whenever any one of the jks corresponds to a non trivial

representation.

Theorem II. Let A be a tensor in CF generating a MPV with a local symmetry with respect

to a representation Θ(g) (Definition II). Then for all g ∈ G the tensor A satisfies:

A

Θ(g)

= A ,

i.e., for all i = 1, . . . , dA:
∑

i′ Θ(g)ii′A
i′ = Ai.

Proof. We apply Lemma 3.1.1 with Si :=
∑

i′ Θ(g)ii′A
i′ and T i := Ai.

Remark 5.1.1. We have never used any properties of Θ(g) as a representation. The same

proof is valid for any operator Θ.

According to Remark 3.2.1, the MPV generated by A can be written in terms of a tensor

Ã, composed of the matrices {Ãj,m}, corresponding to the irreducible representation basis

{|j,m〉} on which Θ(g) acts as Θ(g)|j,m〉 =
∑

nD
j(g)n,m|j, n〉. According to Corollary 3.2.1,

Ã is also in CF. Applying Theorem II to Ã leads to the following:

Corollary I. The matrices Ãj,m are non-zero only for j such that Dj(g) ≡ I1×1.

Proof. From Theorem II we deduce that each vector of matrix elements of A: ~Ajα,β =(
Aj,1α,β, A

j,2
α,β, . . . , A

j,dim(j)
α,β

)T
is invariant under Dj(g) for all g ∈ G. This implies that ei-

ther ~Ajα,β is zero or that Dj(g) is the one dimensional trivial representation.
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5.2 Pure gauge field MPV

In order to prove Theorem III we shall proceed as in Section 3.3: we shall first prove a lemma

which describes the case when R and L are just unitary operators, and later use that to

prove the case when they are representations.

Lemma 5.2.1. Let B be a tensor in CFII:

Bi = ⊕mj=1 ⊕
rj
q=1 µj,qB

i
j ,

and let R and L be two unitary operators such that for all K

R[K]L[K+1]|ψNB 〉 = |ψNB 〉 .

Then B transforms under the unitary matrices as follows:

B

R

= B X ; B

L

= X-1 B , (5.1)

where X is a unitary matrix with the same block structure as Bi, as in Eq. (3.8).

Proof. Applying Theorem II (recall Remark 5.1.1) to the tensor BB and the unitary R⊗L

(BB is in CF if B is in CF), we obtain:

B B

R L

= B B . (5.2)

Applying the pair of operators to every site on the chain (for even N) we conclude that

the MPV is invariant under the global application of the operators in reversed order: (L ⊗

R)⊗N |ψ2N
B 〉 = |ψ2NB〉. Using Corollary 3.3.1 we obtain:

B B

L R

= X-1 Π-1 B B Π X , (5.3)
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where X is unitary and Π is a permutation, as in Corollary 3.3.1. Next consider the following

tensor:

B B B B B

L LR R R

. . . .

According to Eq. (5.2) this tensor is equal to the LHS of the following, and according to

Eq. (5.3) - to the RHS:

LHS = B B B B B

L R

. . . =

RHS = B B B B BX-1 Π-1 Π X. . . .

(5.4)

Using the same argument as in equation Eq. (3.18), we show that the permutation must act

trivially: use Proposition 3.1.6 on the string of consecutive Bs, excluding the extreme right

and left ones, to obtain multiples of I in a single j block and zeros elsewhere. Note that R

and L do not change the block structure of the tensors they act on. Now compare the RHS

with the LHS block-wise, if Π acts non trivially on a block j, then we get that BjBj is zero,

which is a contradiction to Bj being normal. Next, having eliminated the possibility of a

permutation, project Eq. (5.4) to any (j, q) block to obtain:

Bj Bj Bj Bj Bj

L R

. . . =

= Bj Bj Bj Bj BjX-1
j Xj. . . ,

where Bj is a normal tensor by assumption. We can now apply the inverse on the string of
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Bs in the middle (BB is normal if B is normal) to obtain:

Bj

L

⊗ Bj

R

= X-1
j Bj ⊗ Bj Xj .

According to Remark 3.1.2, the matrices Xj are determined up to a constant. We now choose

a representative from the projective unitary class of Xj. The above implies that for any such

choice there is a constant xj such that:

Bj

R

= Bj Xj(xj) ; Bj

L

= X-1
j Bj

(
x−1
j

)
.

Therefore the desired X is X = ⊕mj=1 ⊕
rj
q=1 xjXj.

Theorem III (Gauge field MPV with a local symmetry). A tensor B in CFII which gen-

erates a MPV that has a local symmetry with respect to R(g) ⊗ L(g) where R(g) and L(g)

are projective representations with inverse multipliers (Definition III), transforms under the

representation matrices as:

B

R(g)

= B X(g) ; B

L(g)

= X(g)-1 B , (4.5)

where X(g) is a projective representation of G with the same multiplier as R(g) and with

the same block structure as B (Eq. (4.4)):

X(g) = ⊕mj=1 ⊕
rj
q=1 Xj(g) . (4.6)

Proof. As we have seen in the proof of Lemma 5.2.1, Eq. (5.1) holds for each block of B, so
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for every group element g ∈ G we have:

Bj

R(g)

= Bj Xj(g) ; Bj

L(g)

= Xj(g)
-1 Bj . (5.5)

We write the action of the group element R(gh) on B in two ways:

Bj Xj(gh)γ(g, h)× = Bj

R(gh)

γ(g, h)× =

= Bj

R(g)

R(h)

= Bj

R(g)

Xj(h) = Bj Xj(g) Xj(h) .

Now by contracting with the tensor BjBj . . . Bj from the left, and taking the appropriate lin-

ear combination which results in the identity matrix (Bj is normal), we obtain γ(g, h)Xj(gh) =

Xj(g)Xj(h). This means that for all j Xj(g) is a projective representation with the same

multiplier as R(g) (γ). Therefore X(g) is a projective representation.

Proposition II (Structure of HB). Given a tensor B, projective representations R(g), L(g)

with inverse multipliers γ and γ−1 (as defined in Section 4.1.2) and matrices X(g) and Y (g)

which satisfy Eq. (4.7), the Hilbert space HB can be restricted to a representation space of

G×G and thus decomposes into a direct sum of tensor products of irreducible representation

spaces of G:

HB =
M⊕
k=1

Hlk ⊗Hrk ,

where rk and lk are irreducible representation labels.
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Proof. Even though |ψB〉 is defined in terms of the basis {|j〉} in HB, it is sufficient to

consider only vectors of the form:

|φα,β〉 =
∑
i

〈α|Bi|β〉|i〉 ∈ HB .

Let H := span{|φα,β〉}α,β. The group transformations L(g) and R(g) preserve H:

R(g)|φα,β〉 =
∑
i

〈α|BiX(g)|β〉|i〉 =
∑
i,γ

〈α|Bi|γ〉〈γ|X(g)|β〉|i〉 =
∑
γ

〈γ|X(g)|β〉|φα,γ〉

L(g)|φα,β〉 =
∑
i

〈α|Y (g)−1Bi|β〉|i〉 =
∑
i,γ

〈α|Y (g)−1|γ〉〈γ|Bi|β〉|i〉 =
∑
γ

〈α|Y (g)−1|γ〉|φγ,β〉 ,

where Eq. (4.7) was used. Performing a Schmidt decomposition of |ψAB〉 (or |ψB〉, the

argument is the same) with respect to any partition where one gauge field Hilbert space is

split off from the rest of the system:

|ψAB〉 =
∑

{i},{j},α,β

(
〈α|Bj1|β〉 〈β|Ai2Bj2 . . . AiNBjNAi1|α〉

)
|i1〉 ⊗ |j1〉 ⊗ |i2 . . . iNjN〉

=
∑
α,β

|φα,β〉[2]|ψβ,α〉[3,...,2N,1] ,

we see that only vectors from H appear. Therefore it is sufficient to restrict ourselves to

HB = H. Next we show that H has a representation space structure. Equation (4.7) implies

that R(g) and L(h) commute on H:

L(g)R(h)|φα,β〉 =
∑
i

〈α|Y (g)−1BiX(h)|β〉|i〉 = R(h)L(g)|φα,β〉 .

Thus H forms a projective representation space of G×G with the projective representation

map (g, h) 7→ L(g)R(h) with multiplier γ−1×γ ofG×G defined by γ−1×γ : ((g, h), (g′, h′)) 7→

γ−1(g, g′)γ(h, h′) [50]:

L(g)R(h)L(g′)R(h′)|H = L(g)L(g′)R(h)R(h′)|H = γ−1(g, g′)γ(h, h′)L(gg′)R(hh′)|H ,

where we used the fact that L(g) and R(h) commute and preserve H; . For finite or compact

groups H decomposes into a direct sum of irreducible projective representations of G × G
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with multiplier γ−1× γ, each one of which is equivalent to a projective representation of the

form (g, h) 7→ Dl
γ-1(g)⊗Dr

γ(h) [50], which proves the proposition.

Recall the definition of an elementary B block:

Definition 4.3.1. An elementary block of the tensor B is one which satisfies Eq. (4.7), where

R(g) = I ⊗ Dr
γ(g), L(g) = Dl

γ-1(g) ⊗ I and X(g), Y (g), Dr
γ(g) and Dl

γ-1(g) are irreducible

projective representations (both X(g) and Y (g) have multiplier γ).

Proposition III (Structure of an elementary B block). Let B be an elementary B block

(Definition 4.3.1). If X(g) = Dr
γ(g) and Y (g) = Dl

γ-1(g), then B is proportional to the

tensor composed of the matrices

Bm,n = |m〉〈n| ,m = 1, . . . , dim(l), n = 1, . . . , dim(r) .

Otherwise B = 0.

Proof. Write B as a map B : CD2 → CD1 ⊗HB:

B =
∑
m,n

Bm,n ⊗ |m〉|n〉 =
∑

m,n,α,β

Bm,n
α,β |α〉〈β| ⊗ |m〉|n〉

By hypothesis B satisfies (Eq. (4.7)):

[I⊗ (R(g)L(h))]B =
[
I⊗

(
Dl
γ-1(h)⊗Dr

γ(g)
)]
B =

[
Y (h)−1 ⊗ I

]
B [X(g)⊗ I] .

Write the above equality explicitly (repeated indices are summed over):

LHS =
∑

Bm,n
α,β |α〉〈β| ⊗D

l
γ-1(h)|m〉Dr

γ(g)|n〉 =∑
Bm,n
α,β |α〉〈β| ⊗D

l
γ-1(h)

m′,m
|m′〉Dr

γ(g)
n′,n
|n′〉 =

RHS =
∑

Bm,n
α,β Y (h)−1|α〉〈β|X(g)⊗ |m〉|n〉 =∑

Bm,n
α,β Y (h)α,α′|α

′〉〈β′|X(g)β,β′ ⊗ |m〉|n〉 .
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Projecting both LHS and RHS to |α̂〉〈β̂| ⊗ |m̂〉|n̂〉 we obtain

∑
m,n

Dl
γ-1(h)

m̂,m
Dr
γ(g)

n̂,n
Bm,n

α̂,β̂
=
∑
α,β

Bm̂,n̂
α,β Y (h)α,α̂X(g)β,β̂ .

The LHS is a multiplication from the left (summing the indices m,n) of the matrix B, with

entries B(m,n),(α,β) := Bm,n
α,β , with the matrix Dl

γ-1(h) ⊗ Dr
γ(g), which is an irreducible pro-

jective representation of G×G. The RHS is a multiplication of B from the right (summing

the indices α, β) with the matrix Y (h)⊗X(g), which is also an irreducible projective repre-

sentation of G×G (with the same multiplier). By Schur’s lemma (Lemma 3.2.1) B ∝ I (i.e.

Bm,n
α,β ∝ δα,mδβ,n) if Dl

γ-1(h)⊗Dr
γ(g) = Y (h)⊗X(g), and zero otherwise.

Proposition IV. Let B,R(g),L(g) and X(g) be as in Theorem III. Let Xj(g) = ⊕aXa
j (g)

be a block of X(g) appearing in Eq. (4.6), consisting of irreducible projective representations

Xa
j (g). Let R(g) = ⊕k(I ⊗ Drk

γ (g)) and L(g) = ⊕k(Dlk
γ-1(g) ⊗ I), where Drk

γ and Dlk
γ-1 are

irreducible projective representations. Then the following hold:

1. For all k either there exist a and b such that Xb
j (g) = Drk

γ (g) and Xa
j (g) = Dlk

γ-1(g), or

the projection of the corresponding tensor Bj (a BNT element of B) to the sector k of

the physical space is zero.

2. ∀a ∃k such that Xa
j (g) = Dlk

γ-1(g).

3. ∀a ∃k such that Xa
j (g) = Drk

γ (g).

Proof. Recall the structure of the tensor B and the projective representation X(g):

Bk;m,n =⊕mj=1 ⊕
rj
q=1µj,qB

k;m,n
j

X(g) =⊕mj=1 ⊕
rj
q=1Xj(g) ,

where {Bj} are normal tensors. Project Eq. (4.5) to a block j, q of the virtual space to
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obtain:

Bj

R(g)

= Bj Xj(g) ; Bj

L(g)

= Xj(g)
-1 Bj .

Let Xj(g) = ⊕aXa
j (g) be a block of X(g). We shall prove each item in the statement:

1. Let Bk
j be the projection of the tensor Bj to the k sector of the physical Hilbert space. If

for a certain k there exist no a and b such that Xb
j (g) = Drk

γ (g) and Xa
j (g) = Dlk

γ-1(g),

then according to Proposition III, for all a, b the a, b block of Bk
j , consisting of the

matrices Bk,m,n
j,a,b , is zero. This means Bk

j is zero.

2. If there is a Y a(g) for which there is no appropriate k then according to Proposition III,

Bk,m,n
j all have a zero row which is a contradiction to the normality of Bj.

3. As in Item 2, Bk,m,n
j now would have a zero column, which contradicts the normality

of Bj.

The proof of Proposition V will be presented in the next section after we derive the

structure of the symmetric matter tensor A.

Proposition VI. Let B, R(g) and L(g) be as in Theorem III and in addition let span{Bk;m,n | k,m, n}

contain the identity matrix (e.g. Eq. (4.10)). Let A and Θ(g) be such that the MPV generated

by AB has a local symmetry with respect to R(g)⊗Θ(g)⊗L(g) (Definition IV). Then |ψNA 〉

has a global symmetry with respect to Θ(g). If in addition A is in CF with the same block

structure as B (Eq. (4.4)), then A transforms as:

A

Θ(g)

= X(g)-1 A X(g) ,
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with the same X(g) from Theorem III.

Proof. We use the local symmetry condition around every A:

B BA A A

R(g) Θ(g) L(g)

R(g) Θ(g)L(g) Θ(g)

. . .

. . .

. . .

= B BA A A. . . .

According to the transformation laws for B, the LHS of the above equals:

= B BA A A

Θ(g) Θ(g) Θ(g)

X(g) X(g) X(g)X(g)-1 X(g)-1 X(g)-1 . . . .

We can now use the assumption I ∈ span{Bk;m,n} to eliminate the Bs from the equation,

the Xs then cancel out and we obtain the desired global symmetry:

A A A

Θ(g) Θ(g) Θ(g)

. . . = A A A. . . .

If in addition A is in CF, we can apply Theorem I to obtain transformation relations for A.

To show the rest of the claim (if A in addition has the block structure of B) we write the

symmetry condition and again use the transformation rules for B:

B BA A AX(g) X(g)-1

Θ(g)

. . . = B BA A A. . . .
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We eliminate all Bs as before and are left with:

A A A

Θ(g)

X(g) X-1
(g)

. . . = A A A. . . .

We can now use Lemma 3.1.1 with Si = Ai and T i = X(g)
∑

i′ Θ(g)ii′A
i′X(g)−1 to finish

the proof (this is where we use the assumption about the block structure of A, the crucial

thing is that X(g) is compatible with A’s blocks as in Lemma 3.1.1).

5.3 Matter and gauge field MPV

Theorem IV (Matter and gauge field MPV with a local symmetry). Let both BA and AB

be normal tensors in CFII and let Θ(g) and R(g),L(g) be unitary and projective representa-

tions (with inverse multipliers) of a group G respectively. Let |ψNAB〉 be a MPV with a local

symmetry with respect to R(g) ⊗ Θ(g) ⊗ L(g) (Definition IV). Then there exist projective

representations X(g) and Y (g) on CD1 and CD2 respectively, such that X(g) has the same

multiplier as R(g), and Y (g) - the inverse multiplier to that of L(g). The tensors A and B

transform as follows:

B

R(g)

= B X(g) ; B

L(g)

= Y (g)-1 B (4.12)

A

Θ(g)

= X(g)-1 A Y (g) (4.13)
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Proof. Apply Theorem III on the tensor AB and the representations R̃(g) := I⊗R(g) and

L̃(g) := Θ(g)⊗ L(g) to obtain:

A B

R(g)

= A B X(g) , (5.6)

and

A B

Θ(g) L(g)

= X(g)-1 A B , (5.7)

where X(g) is a projective representation with the same multiplier as R(g). Apply Theo-

rem III once more, this time on the tensor BA and the representations R̃(g) := R(g)⊗Θ(g)

and L̃(g) := L(g)⊗ I to obtain:

B A

R(g) Θ(g)

= B A Y (g) , (5.8)

and

B A

L(g)

= Y (g)-1 B A , (5.9)

where Y (g) is a projective representation with inverse multiplier to L(g). By contracting

Eq. (5.6) from the left with the tensor BA . . . B, and taking the appropriate linear combina-

tion to obtain the identity matrix out of the tensor BA . . . BA (using the normality of BA),

we eliminate the the A in Eq. (5.6)). By contracting Eq. (5.9) with BA . . . B from the right -

we eliminate the A in Eq. (5.9) (using the normality of AB). This proves the transformation
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rule for B - Eq. (4.12). Next plug in the transformation rules of B under R(g) into Eq. (5.8)

to obtain:

B X(g) A

Θ(g)

= B A Y (g) . (5.10)

Finally, eliminate the B from the equation as in the previous steps to obtain the transfor-

mation rule for A and finish the proof.

Proposition VII. Let |ψNAB〉 be a MPV generated by arbitrary tensors A and B. Then

there exist tensors {Aχ} and {Bχ}, and there exists b ∈ N such that for all χ both AχBχ and

BχAχ are normal tensors and ∀N ∈ N |ψNAB×b〉 =
∑

χ µ
N
χ |ψNAχBχ〉, where µχ are constants

and AB×b is the tensor obtained by blocking b copies of the tensor AB.

Proof. We argue similarly to [46] where it is described how to obtain, from an arbitrary

tensor, a tensor in CF generating the same MPV. Begin by finding all of AB’s minimal

invariant subspaces Sα, such that AiBjPα = PαA
iBjPα for all i and j, where Pα is the

orthogonal projection to Sα. Let P̂α be the partial isometry P̂α : CD1 → Sα such that

P̂ †αP̂α = Pα and P̂αP̂
†
α = I|Sα . Define Aiα := P̂αA

i and Bj
α := BjP̂ †α. Then

|ψNAB〉 =
∑
{i},{j}

Tr
(
Ai1Bj1 . . . AiNBjN

)
|i1j1 . . . iNjN〉

=
∑
{i},{j},α

Tr
(
PαA

i1Bj1 . . . AiNBjNPα
)
|i1j1 . . . iNjN〉

=
∑
{i},{j},α

Tr
(
PαA

i1Bj1Pα . . . PαA
iNBjNPα

)
|i1j1 . . . iNjN〉

=
∑
{i},{j},α

Tr
(
P̂αA

i1Bj1P̂ †αP̂α . . . P̂
†
αP̂αA

iNBjN P̂ †α

)
|i1j1 . . . iNjN〉

=
∑
α

|ψNAαBα〉 .
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Note that the bond dimension of the tensor AαBα is dim(Sα) which is smaller than the

original bond dimension D2. Now AαBα has no invariant subspaces but BαAα might, there-

fore, perform the same for BαAα - for each α find all minimal invariant subspaces Tαβ of

BαAα. Let Qαβ be the orthogonal projections to the invariant subspaces and Q̂αβ the partial

isometries. Define Aiαβ := AiαQ̂
†
αβ = P̂αA

iQ̂†αβ, and Bj
αβ := Q̂αβB

j
α = Q̂αβB

jP̂ †α. For each α

we have

|ψNAαBα〉 =
∑
β

|ψNAαβBαβ〉 ,

and thus

|ψNAB〉 =
∑
α

|ψNAαBα〉 =
∑
αβ

|ψNAαβBαβ〉 .

Now each AαβBαβ might be reducible. Continue iterating this decomposition, once for AB

and once for BA. Since the bond dimension of the tensors obtained at each step decreases,

this procedure is bound to end after a finite number of steps. In the final step, we obtain the

tensors Aiχ = P̂χA
iQ̂†χ and Bj

χ = Q̂χB
jP̂ †χ, where χ incorporates all the previous indices, such

that both AχBχ and BχAχ have no non trivial invariant subspaces. We can then perform

the second step (as in [46]) which involves blocking the tensors in order to eliminate the

periodicity of the associated CP maps. The blocking scheme is the following: Ãijk := AiBjAk

and B̃lmn := BlAmBn. We can find the least common multiple of the length needed to

eliminate the periodicity of all CP maps, and perform step 1 again if needed (after blocking

the CP maps again become reducible [48]). We can repeat these steps as many times as

needed. The process terminates at some point because the bond dimension decreases at

each step. Finally, rescale the matrices AχBχ by a constant µχ to make the spectral radius

of EAχBχ and EBχAχ equal to 1. The following lemma is required:

Lemma 5.3.1. EAχBχ and EBχAχ have the same spectral radius.

Proof. Let X be an eigenvector of EAχBχ with eigenvalue λ: EAχBχ(X) = EAχEBχ(X) = λX.
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Apply EBχ to both sides to obtain EBχAχEBχ(X) = λEBχ(X), i.e., EBχ(X) is an eigenvector

of EBχAχ with eigenvalue λ. Interchanging A and B we obtain that EAχBχ and EBχAχ have

the same spectrum, and therefore the same spectral radius.

Remark 5.3.1 (Blocking of the symmetry operators). In the blocking scheme described

in Proposition VII, if we start out with a MPV with a local symmetry under the op-

erators R(g) ⊗ Θ(g) ⊗ L(g), after blocking we need to redefine the operators to act on

the blocked degrees of freedom as follows: R̃(g) := R(g) ⊗ Θ(g) ⊗ (L(g)R(g)), Θ̃(g) :=

Θ(g)⊗ (L(g)R(g))⊗Θ(g) and L̃(g) := (L(g)R(g))⊗Θ(g) ⊗ L(g).

Proposition VIII. Let |ψNAB〉 =
∑

χ µ
N
χ |ψNAχBχ〉 where both AχBχ and BχAχ are normal

tensors. Let O be a local operator acting on a fixed number of adjacent sites. If ∀N O leaves

the MPV invariant:

O ⊗ I|rest|ψNAB〉 = |ψNAB〉 ,

then O leaves every component invariant:

O ⊗ I|rest|ψNAχBχ〉 = |ψNAχBχ〉 ∀χ .

Proof. Pick a BNT {AjBj} out of the normal tensors {AχBχ} and construct a new tensor

C by blocking the tensors {AχBχ} diagonally (possibly changing the order of the blocks):

Cii′ = ⊕χµχAiχBi′

χ = ⊕j ⊕q µj,qV −1
j,q A

i
jB

i′

j Vj,q ,

where for every χ there is a j and a q such that µχAχBχ = µj,qV
−1
j,q A

i
jB

i′
j Vj,q. Now C is in

CF and generates the same MPV as AB. We have

O|ψNC 〉 = O|ψNAB〉 = |ψNAB〉 = |ψNC 〉 .
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We can now use Lemma 3.1.1 (use Eq. (3.7) from the proof of the lemma) for the tensor

C = AB to obtain

Aj AjBj Bj Bj. . .

(I⊗)O (⊗I)

= Aj AjBj Bj Bj. . . ,

where the operator in the box contains O (we need to extend it by at most one ⊗I from the

right and from the left in order to occupy a full AB . . . AB block). Finally, we have

O|ψNAχBχ〉 = O|ψN
V −1
j,q AjBjVj,q

〉 = |ψNAjBj〉 = |ψNAχBχ〉

Recall the definition of an elementary A block:

Definition 4.3.2 (Elementary A block). An elementary block of the tensor A is one which

satisfies Eq. (4.13), where Θ(g), X(g) and Y (g) are all irreducible projective representations.

Proposition IX. Let A be an elementary block (Definition 4.3.2), with Θ(g) = DJ0(g), X(g) =

Dj
γ(g) and Y (g) = Dl

γ-1(g). Then A is built out of Clebsch-Gordan coefficients and has the

form:

AM =
∑

J∈J:DJ=DJ0

αJ
∑
m,n

〈
J,M | j,m; l, n

〉
|m〉〈n| ,

where J is the set of irreducible representation indices appearing in the decomposition of

Dj
γ(g)⊗Dl

γ-1(g) into irreducible representations,
〈
j,m : l, n | J,M

〉
are the Clebsch-Gordan

coefficients of the decomposition, Dj
γ(g) is the complex conjugate representation to Dj

γ(g) and

αJ are arbitrary constants.

Proof. Write out Eq. (4.13):

∑
i′

Θ(g)ii′A
i′ = X(g)−1AiY (g) .
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Taking the complex conjugate of both sides∑
i′

Θ(g−1)i′iA
i′ = X(g)−1AiY (g)

we see that ~A satisfies Eq. (3.12) for ~v = ~ei and the group element g−1, with κ = Θ(g), π =

X(g) and η = Y (g). Therefore ~A is a vector operator with respect to the above representa-

tions. In the case when Θ(g) = DJ0(g), X(g) = Dj
γ(g) and Y (g) = Dl

γ-1(g) are irreducible

representations, according to Theorem 3.2.1 A is of the form:

AM =
∑

J :Dj(g)=DJ0 (g)

αJ
∑
m,n

〈
j,m; l, n | J,M

〉
|m〉〈n| ,

taking the complex conjugate, we find the desired form of A.

Example 5.3.1. A direct calculation using the Clebsch-Gordan series [51]:

Dj(g)m,m′D
l(g)n,n′ =

∑
L,N,N ′

〈j,m; l, n | L,N〉 〈L,N ′ | j,m′; l, n′〉Dl(g)N,N ′

shows that the tensor composed of the matrices

AJ,M =
∑
m,n

〈
J,M | j,m; l, n

〉
|m〉〈n| ,

for a fixed value of J , satisfies

A

DJ (g)

= Dj(g)-1 A Dl(g) .

Consequently, the tensor composed out of all matrices {AJ,M}J∈J,M (all J appearing in the

decomposition Dj(g)⊗Dl(g) = ⊕J∈JDJ(g)) satisfies:

A

⊕J∈JDJ (g)

= Dj(g)-1 A Dl(g) .
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In addition to being a symmetric tensor, this tensor is always injective: let D := dim(j) =

dim(l). Due to the fact that the C-G coefficients are the entries of a unitary matrix, the

matrices AJ,M satisfy Tr
(
AJ,M

†
AJ
′,M ′
)

= δJ,J ′δM,M ′ . Since there are D ×D of them, they

form an ONB of the space of D ×D matrices.

We can now prove the following proposition, the proof of which we postponed in the

previous section.

Proposition V. Let B be in CFII and let |ψNB 〉 have a local symmetry with respect to

R(g)⊗L(g) (as in Theorem III). It is always possible to find a tensor A and a representation

Θ(g) such that the corresponding matter and gauge field MPV |ψNAB〉 has a local symmetry

with respect to R(g) ⊗ Θ(g) ⊗ L(g) (Definition IV). In addition, the corresponding matter

MPV - |ψNA 〉 - has a global symmetry with respect to Θ(g).

Proof. For each Djk
γ (g) appearing in X(g) = ⊕sk=1D

jk
γ (g), let J(k) be an irreducible repre-

sentation index appearing in the decomposition of Djk
γ (g) ⊗Djk

γ (g). Let A(k) be the tensor

presented in Example 5.3.1, satisfying

A(k)

DJ(k)(g)

= Djk (g)-1
A(k) Djk (g) .

Let the matter Hilbert space be HA := ⊕kHJ(k). Let the tensor A in each sector J(k) of the

physical space be zero except for in the k, k virtual block, such that:[
X−1(g)AJk,MX(g)

]
l,l′

= δ(l, k)δ(l′, k)DJk
M,M ′(g)A(k)Jk,M

′
.

Proposition X. Let AB and BA be normal tensors and let B satisfy Eq. (4.12) with R(g) =

⊕k(I⊗Drk
γ (g)), L(g) = ⊕k(Dlk

γ-1(g)⊗ I), Y (g) = ⊕aY a(g) and X(g) = ⊕bXb(g), where Drk
γ ,

Dlk
γ-1, Y a and Xb are irreducible projective representations, then
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1. For all k either there exist a and b such that Xb(g) = Drk
γ (g) and Y a(g) = Dlk

γ-1(g) or

the projection of the tensor B to the sector k of the physical space is zero (and it can

be discarded).

2. ∀a ∃k such that Y a(g) = Dlk
γ-1(g).

3. ∀b ∃k such that Xb(g) = Drk
γ (g).

Proof. 1. Assume the contrary is true, then according to Proposition III, Bk,m,n are all

zero and this value of k does not contribute to the MPV.

2. If there is a Y a(g) for which there is not an appropriate k then according to Proposi-

tion III, Bk,m,n all have a zero row which is a contradiction to the normality of AB.

3. As in Item 2, Bk,m,n now would have a zero column and would contradict normality of

BA.

Proposition XI. There exist tensors A and B such that |ψAB〉 has a local symmetry with

respect to R(g)⊗Θ(g)⊗L(g), but |ψA〉 does not have a global symmetry with respect to Θ(g).

In addition R(g)⊗ L(g)|ψB〉 6= |ψB〉.

The proof is given by the following example:

Example 5.3.2. Let G = D10 the dihedral group of order 10. It is the group generated

by two elements: r and s satisfying r5 = s2 = (sr)2 = e. D10 has two inequivalent two
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dimensional irreducible representations ρ1 and ρ2 generated by:

ρ1 : r 7→ R1 :=

 eiθ 0

0 e−iθ


s 7→ S :=

 0 1

1 0


ρ2 : r 7→ R2 :=

 ei2θ 0

0 e−i2θ


s 7→ S :=

 0 1

1 0

 ,

where θ = 2π/5. The tensor product ρ1 ⊗ ρ2 decomposes into ρ1 ⊕ ρ2:

ρ1 ⊗ ρ2 : r 7→ R1 ⊗R2 =


eiθ 0 0 0

0 e−i3θ 0 0

0 0 ei3θ 0

0 0 0 e−iθ



s 7→ S ⊗ S =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


.

It is clear from inspection of the above 4 × 4 matrices that the unitary transformation

realizing the direct sum decomposition is a permutation of the basis elements, the non zero



84 5. Derivation and Proofs of the Results

Clebsch-Gordan coefficients are:

〈ρ1, 1 | ρ1, 1; ρ2, 1〉 =1

〈ρ1, 2 | ρ1, 2; ρ2, 2〉 =1

〈ρ2, 1 | ρ1, 1; ρ2, 2〉 =1

〈ρ2, 2 | ρ1, 2; ρ2, 1〉 =1 .

Following Example 5.3.1, and using these coefficients, define the tensor A:

A1 =

 1 0

0 0

 A2 =

 0 0

0 1

 .

A satisfies:

A

ρ1(g)

= ρ1(g)-1 A ρ2(g) . (5.11)

According to Proposition III the following tensor B:

B11 =

 1 0

0 0

 B12 =

 0 1

0 0


B21 =

 0 0

1 0

 B22 =

 0 0

0 1

 ,

satisfies:

B

ρ1(g)

= B ρ1(g) ; B

ρ2(g)

= ρ2(g)-1 B . (5.12)

Eq. (5.11)) and Eq. (5.12) are easily verified for the generators of the group, r and s, and

therefore hold for any group element. From these equations it follows that |ψNAB〉 has a local
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symmetry (Definition IV with R(g) = ρ1(g), Θ(g) = ρ1(g) and L(g) = ρ2(g)); however, ρ1

is not a global symmetry for |ψNA 〉, as is easily verified for a MPV of length 1. Similarly, a

direct computation shows R(g)⊗ L(g)|ψ2
B〉 6= |ψ2

B〉.

Proposition XII. Let A be a tensor in CFII generating a MPV with a global symmetry i.e.,

satisfying Theorem I. Let X(g) (in Eq. (3.14)) be a projective representation (i.e. all Xj(g)

in Eq. (3.15) are in the same cohomology class). Then there exist a tensor B and projec-

tive representations R(g) and L(g) with inverse multipliers such that both local symmetries:

Definition IV for |ψNAB〉 and Definition III for |ψNB 〉 are satisfied.

Proof. As X(g) appears in Eq. (3.14) together with its inverse, it is defined only up to a

phase. As we assumed all Xj(g) are from the same cohomology class, we can lift each one of

them to be projective representations with the same multiplier γ. We can assume without

loss of generality (same argument as in Remark 4.3.3) that each Xj(g) is block diagonal:

X(g) = ⊕j ⊕q ⊕ajD
aj
γ (g). Set R(g) = X(g), L(g) = X(g) and let B be completely block

diagonal:

Bj,q,aj ;m,n = |j, q, aj;m〉〈j, q, aj;n| ,

i.e., for each irreducible block of X(g) there is a corresponding sector in HB:

HB = ⊕j ⊕q ⊕ajHaj ⊗Haj ,

where aj is the complex conjugate representation to aj.

Example 5.3.3 (An SU(2) gauge invariant MPV). For G = SU(2) we demonstrate the

construction of a general locally invariant MPV emphasizing the constituents of physical

theories and relating our setting and notation to [35,40]. Write the irreducible representations

Dj(g) in terms of their generators:

Dj(g) = exp

(
i
∑
a

τ jaϕa(g)

)
, ∀g ∈ SU(2),
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where {ϕa(g)}3
a=1 are real parameters and {τ ja}3

a=1 are Hermitian (2j+1)× (2j+1) matrices

satisfying the su(2) Lie algebra relations:[
τ ja , τ

j
b

]
= iεabcτ

j
c ,

where εabc is the totally antisymmetric tensor. Let Dr and Dl be two irreducible represen-

tations of SU(2) and let J0 be the set of irreducible representation indices appearing in the

decomposition of the tensor product: Dr(g)⊗Dl(g) ∼= ⊕J∈J0DJ(g). Let J ⊆ J0. Define the

representation Θ(g) as generated by {Qa :=
⊕

J∈J τ
J
a }3

a=1:

Θ(g) =
⊕
J∈J

DJ(g) =
⊕
J∈J

exp

(
i
∑
a

τJa ϕa(g)

)
= exp

(
i
∑
a

Qaϕa(g)

)
.

As in Example 5.3.1, the tensor A, defined by the matrices:

AJ,M =
∑
m,n

αJ 〈J,M | r,m; l, n〉 |m〉〈n| , J ∈ J,M = 1, . . . , dim(J) (5.13)

satisfies:

A

Θ(g)

= Dr(g)-1 A Dl(g) .

This relation, written in terms of the generators, reads:∑
M ′

[
exp

(
i
∑
a

τJa ϕa(g)

)]
M,M ′

AJ,M
′
= exp

(
−i
∑
a

τ raϕa(g)

)
AJ,M exp

(
i
∑
a

τ laϕa(g)

)
.

Differentiating this equation with respect to any one of the group parameters ϕa we obtain

the “virtual Gauss law” satisfied by A:

Qa : AJ,M 7→
∑
M ′

[
τJa
]
M,M ′

AJ,M
′
= −τ raAJ,M + AJ,Mτ la .

Next, add a gauge field degree of freedom to the matter MPV, described by a tensor: Bm,n =

|m〉〈n|, and define the transformations:

R(g) = I⊗Dr(g) ; L(g) = Dl(g)⊗ I .
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The action of L(g) on the gauge field Hilbert space is given by:

L(g)|m,n〉 = (Dl(g)⊗ I)|m,n〉 =
∑
m′

Dl(g)m′,m|m
′, n〉 =

∑
m′

Dl(g−1)m,m′ |m
′, n〉 ;

whereas R(g) acts as:

R(g)|m,n〉 =
∑
n′

Dr(g)n′,n|m,n
′〉 .

R(g) and L(g) can be defined in terms of right and left generators {Ra}3
a=1 and {La}3

a=1,

as described in Section 4.2:

R(g) = exp

(
i
∑
a

Raϕa(g)

)

L(g) = exp

(
i
∑
a

Laϕa(g)

)
.

In our case Ra is simply given by I⊗ τ ra but in general Ra and La can have a block diagonal

structure. Define the generators of the local gauge transformation around lattice site 2K+1:

G[2K+1]
a :=

(
R[2K]
a +Q[2K+1]

a + L[2K+2]
a

)
.

From our construction it follows that for all g ∈ G and for all lattice sites K:

R[2K](g)⊗Θ[2K+1](g)⊗ L[2K+2](g)|ψNAB〉 = |ψNAB〉 .

Once again, differentiating with respect to the group parameters ϕa we obtain:

(
R[2K]
a +Q[2K+1]

a + L[2K+2]
a

)
|ψNAB〉 = G[2K+1]

a |ψNAB〉 = 0 . (5.14)

This is the lattice version of Gauss’ law. In physical theories Dl = Dr and thus states |ψA〉

have a global symmetry generated by {Qa} - the SU(2) charge operators. Ra and La are

identified with right and left electric fields respectively [40].

One could generalize the above construction for

R(g) = ⊕k (I⊗Drk(g)) ; L(g) = ⊕k
(
Dlk(g)⊗ I

)
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by constructing A and B as above for each k sector and combining them together block

diagonally (in both physical and virtual dimensions). Duplicating the virtual representations

while keeping the physical ones fixed can be achieved by Bm,n 7→ (Bm,n ⊕ Bm,n), AJ,M 7→

(AJ,M1 ⊕ AJ,M2 ). This can be used to enlarge the number of variational parameters. The

tensors A1 and A2 must both have the same structure (Eq. (5.13)) but can have different

parameters αJ . The generalization to of the above to G = SU(N) is straightforward.
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Summary

In this work, we studied and classified translationally invariant MPVs with a local (gauge)

symmetry under arbitrary groups. The states we classified may involve two types of building

blocks, A and B tensors, which represent matter and gauge fields respectively. We studied

three physically relevant settings: mass field, pure gauge field and combined mass and gauge

field states. In each one of the settings the analysis method was the same, and can be

summarized as follows: first, we identified the form of the tensors appropriate for the setting

in question (e.g. canonical form); next, we derived transformation relations satisfied by the

tensors; finally, we used the transformation relations to derive the structure of the tensors.

Note that while the second step relied mostly on established MPS theory, the third step was

almost entirely group theoretical.

We showed that matter-only MPVs may only have a local symmetry, when one transforms

a single site, if they are trivial (composed of products of invariant states at each site). This

result, although expected, motivates the introduction of an additional degree of freedom, or

alternatively, the inspection of the setting where there are two distinct operators (right and

left ones) that act on the same degree of freedom.
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Consequently, we studied and classified pure gauge states, which involve only B ten-

sors and have local invariance when one transforms two neighboring sites. The B tensor

is composed of elementary blocks (intertwining irreducible representations), each of which

intertwining the left (right) physical transformation with a group action on the virtual space

to the left (right) of the tensor. This property defines the structure of such elementary blocks

up to a constant. The structure of well-known physical states involving only gauge fields is a

particular case of the general structure that we found. We showed how to construct tensors

A describing matter fields that can be coupled to the general B tensor and result in an overall

gauge invariant state. We further showed that any matter field that can be coupled (in the

same sense) to a gauge field described by a B tensor which corresponds to the well-known

physical case, must have a global symmetry. So far our findings described generalizations of

constructions common in conventional lattice gauge theory settings, where one starts from

one degree of freedom with a symmetry (either matter field with a global symmetry or gauge

field with a local symmetry) and to it couples the other one. These constructions, however,

do not cover all possible gauge invariant states involving both types of degrees of freedom.

In the combined matter and gauge field setting we found familiar structures for A and for

B: the structure of A resembles the one known from the classification of MPV with a global

symmetry; the structure of B is similar to the pure gauge field case; however, in the general

case A and B intertwine representations in such a way that symmetry is only observed when

they are coupled together. When considered on their own, the matter field does not posses

a global symmetry, and the gauge field does not have a local one. In this sense we expanded

the class of gauge invariant states, and classified the structure of such MPVs as well. We

have shown an example of such a state, which, aside from providing a proof of existence

of such cases, provides a demonstration of how the tensors involved are constructed. We

also showed how, and under which conditions, a global symmetry of a matter MPV can be
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gauged by adding a gauge field degree of freedom.

In both settings involving the gauge field, we found that the Hilbert space describing the

gauge field degree of freedom must have a specific structure: it is a direct sum of spaces,

each one of which is a tensor product of a left part and a right part. This structure is the

only one which allows the gauge field to have two different group representations act on

it independently, as required in order to have local symmetry of a MPV. The well-known

Kogut-Susskind Hilbert space is a particular case of this more general structure.

Further work shall include a generalization to more dimensions, i.e. using PEPS. In our

work we were able to connect some of the results to the symmetry properties and structure of

previous gauge invariant PEPS constructions [3,33,35] when the space dimension is reduced

to one, and therefore higher dimensional generalizations in the spirit of the current work

should be possible. In particular, the tensor describing the gauge field, as it resides on the

links of a lattice, is a one dimensional object for any spatial dimension, and has shown, in

some particular cases, properties known from previous PEPS studies. In the 2D case, as a

classification of global symmetry for injective PEPS is available [12], we suspect that the same

methods used in this work can be applied with few modifications in deriving transformation

relations for the tensors; from the group theoretical aspect, the question of the uniqueness

of the A tensor constructed in [35] might require a generalization of the Wigner-Eckart

theorem to higher rank tensors. Another important generalization one should consider is a

fermionic representation of the matter, combining the spirit of this work with previous works

on fermionic PEPS with gauge symmetry [34,36] or with global symmetry [53,54]. From the

physical point of view, a physical study aiming at understanding the new classes of gauge

invariant states introduced in this work, in which the matter and gauge field do not posses

separate symmetries, may also potentially unfold new physical phenomena and phases.
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[19] H. Saito, M. C. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, The temperature dependence

of the chiral condensate in the Schwinger model with Matrix Product States, PoS LAT-

TICE2014 (2014) 302. arXiv:1412.0596.

http://dx.doi.org/10.1007/JHEP11(2013)158
https://doi.org/10.1007/JHEP11(2013)158
https://link.aps.org/doi/10.1103/PhysRevD.90.014508
https://link.aps.org/doi/10.1103/PhysRevD.90.014508
http://dx.doi.org/10.1103/PhysRevD.90.014508
http://dx.doi.org/10.1103/PhysRevD.90.014508
https://link.aps.org/doi/10.1103/PhysRevD.90.014508
https://link.aps.org/doi/10.1103/PhysRevLett.113.091601
https://link.aps.org/doi/10.1103/PhysRevLett.113.091601
http://dx.doi.org/10.1103/PhysRevLett.113.091601
http://dx.doi.org/10.1103/PhysRevLett.113.091601
https://link.aps.org/doi/10.1103/PhysRevLett.113.091601
http://stacks.iop.org/1367-2630/16/i=10/a=103015
http://stacks.iop.org/1367-2630/16/i=10/a=103015
http://arxiv.org/abs/1411.0020
https://link.aps.org/doi/10.1103/PhysRevLett.112.201601
https://link.aps.org/doi/10.1103/PhysRevLett.112.201601
http://dx.doi.org/10.1103/PhysRevLett.112.201601
https://link.aps.org/doi/10.1103/PhysRevLett.112.201601
http://arxiv.org/abs/1412.0596


98 BIBLIOGRAPHY
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overcoming the Monte Carlo sign problem with tensor networks, in: European Physical

Journal Web of Conferences, Vol. 137 of European Physical Journal Web of Conferences,

2017, p. 04001. arXiv:1611.04791, doi:10.1051/epjconf/201713704001.

https://link.aps.org/doi/10.1103/PhysRevD.93.085012
http://dx.doi.org/10.1103/PhysRevD.93.085012
https://link.aps.org/doi/10.1103/PhysRevD.93.085012
http://arxiv.org/abs/1611.01458
https://link.aps.org/doi/10.1103/PhysRevD.94.085018
https://link.aps.org/doi/10.1103/PhysRevD.94.085018
http://dx.doi.org/10.1103/PhysRevD.94.085018
http://dx.doi.org/10.1103/PhysRevD.94.085018
https://link.aps.org/doi/10.1103/PhysRevD.94.085018
http://arxiv.org/abs/1511.00794
https://link.aps.org/doi/10.1103/PhysRevLett.118.071601
https://link.aps.org/doi/10.1103/PhysRevLett.118.071601
http://dx.doi.org/10.1103/PhysRevLett.118.071601
https://link.aps.org/doi/10.1103/PhysRevLett.118.071601
http://arxiv.org/abs/1611.04791
http://dx.doi.org/10.1051/epjconf/201713704001


100 BIBLIOGRAPHY
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