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1 Introduction

The quantum Hall effect describes the fact that at low temperatures the Hall conductance of a
given quantum system is quantized to integer multiples of e2/h with the electron charge e and
Planck’s constant h. This effect was originally predicted in 1975 in [3] based on approximate
calculations. Klitzling discovered in 1980 that this is an exact quantization, i.e. up to remarkable
precision [12]. For this he was awarded the 1985 Nobel Prize in Physics. The first intuitive
understanding of this phenomenon was given by Laughlin in his 1981 work [13]. But up to
date there has been no fully rigorous mathematical proof for the reason behind this. There are
many approaches under simplified conditions of free particles, which rely on non-commutative
geometry [7] or under assumption of averaged or uniform conductances [4, 5, 15], which are
based on Chern numbers as topological invariants. Other works base upon perturbations of
simple models to add complexity ([1, 2, 11]) but only work as long as the perturbations stay
small. In his 2004 paper [8] Hastings introduced a technique which he called "quasi-adiabatic
continuation". This in combination with Lieb-Robinson bounds for quantum lattice dynamics
allowed him to prove the Lieb-Schultz-Mattis theorem for higher dimensions. Afterwards that
technique was also applied by Hastings as well as others for new applications [9, 16], mostly for
systems with uniformly gapped Hamiltonians. Then in October 2013 Hastings and Michalakis
submitted a paper [10] in which they proved Hall quantization for finite k-body interactions on
a torus, provided a unique groundstate and conserved local charge. They managed to avoid any
averaging assumptions and gave explicit bounds. This paper was finally accepted in June 2014
and published, it was however much disputed and critized for lack of readability and consistent
notations. This can also be seen in the quite long time between submission and publishing. In
this work based on that paper, we aim to provide a refined version of their paper, which should
be easier to understand and resolve some questions and dubious parts.
In the next chapter we will begin with general systems of Hamiltonians on a torus, define the
quasi-adiabatic continuation and derived operators and present properties shown in [6]. Further
we prove some bounds which we will use later in the proof, but which can be formulated more
generally than later used. In chapter 3 we will introduce the system for which we want to show
quantization of the Hall conductance, state the main theorem and give an high outline of the
proof. We construct families of so called twisted Hamiltonians on a flux-torus and derive first
properties. Chapter 4 and 5 are dedicated to prove two estimates needed for the main theorem.
The first one is based on partial traces which will lead to energy bounds for systems without a
uniform gap. The second shows a certain uniformity of phase for the quasi-adiabatic evolution
which follows amongst others from Lieb-Robinson bounds introduced in [14, 6]. Those two
chapters are the most technical ones and need the most notations. The last chapter contains
remarks on the work and possible extensions.
Where possible, all occurring bounds were given explicitly in the parameters of the system,
such as interaction strength and range. In chapter 5 however there will be bounds with implicit
dependency which will persist in the final result.
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2 General Observations

2.1 Quasi-Adiabatic Continuation

In this section we consider differentiable one- and two-parameter families H(s, t), s, t ∈ [0, 1] of
Hamiltonians on the torus T . We define certain super-operators and the unitaries defined by
them and give properties of these objects. Afterwards we define loop operators for 2-parameter
families of Hamiltonians and compute a certain phase for uniformly gapped Hamiltonians.

In [6] the authors defined for ∆ > 0 a bounded, odd weight function W∆ ∈ L1(R) with the
following properties:

i. |W∆(t)| is continuous and monotone decreasing for t ≥ 0 s.t. ‖W∆‖∞ = W∆(0) = 1/2;

ii. |W∆(t)| ≤ f(∆|t|) for a subexponential function f of the form f(x) = cx4exp(−2
7

x
ln2x)

iii. ‖W∆‖1 ≤ K
∆ for some constant K > 0.

A function f : [0,∞[→ [0,∞[ is said to be subexponential small if f(x) = O(exp(−xc)) for all
c ∈ [0, 1[. This set of functions has the property that it is closed under scaling and multiplication
with polynomials. The function given above is a typical example.

Let H, A be operators on T . Then we define:

S∆(H,A) =
∫ ∞
−∞

dtW∆(t) · eitHAe−itH (2.1)

Now consider a smooth one-parameter familiy of Hamiltonians H(s) with s ∈ [0, 1]. We define

D∆(s) = S∆(H(s), H ′(s)) =
∫ ∞
−∞

dtW∆(t) · eitH(s)H ′(s)e−itH(s) (2.2)

Then this defines a unitary U∆(s) by the differential equation

d

ds
U∆(s) = iD∆(s)U∆(s), U∆(0) = I, (2.3)

which is called in [10] the quasi-adiabatic evolution corresponding to H(s) with threshold ∆.
The reason for this lies in the following lemma.

Lemma 2.1. Assume that {H(s)}s∈[0,1] is a smooth path of gapped Hamiltonians with spectral
gap ∆(s) ≥ ∆ > 0 and (up to phase) unique groundstate |Ψ0(s)〉. Then U∆(s) |Ψ0(0)〉 is the
unique groundstate of H(s) fulfilling the parallel transport condition 〈Ψ(s)|Ψ′(s)〉 = 0.

This means that for smooth paths of Hamiltonians with a spectral gap uniformly bounded below
by ∆, the quasi-adiabatic evolution with threshold ∆ simulates the true adiabatic evolution of
H(s).
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Proof. Set |Ψ0〉 := |Ψ0(0)〉. Then corollary 2.8 in [6] states

|Ψ0(s)〉〈Ψ0(s)| = U∆(s) |Ψ0〉〈Ψ0|U∗∆(s) (2.4)

and we only have to check that U∆(s) |Ψ0〉 fulfills the parallel transport condition. We have

d

ds
(U∆(s) |Ψ0〉) = iD∆(s)U∆(s) |Ψ0〉 (2.5)

and therefore by inserting 〈Ψ0|Ψ0〉 = 1 twice we get with (2.4)

〈Ψ0|U∗∆(s) d
ds
U∆(s) |Ψ0〉 = i 〈Ψ0|Ψ0〉〈Ψ0|U∗∆(s)D∆(s)U∆(s) |Ψ0〉〈Ψ0|Ψ0〉 =

= i 〈Ψ0|U∗∆(s) |Ψ0(s)〉〈Ψ0(s)|D∆(s) |Ψ0(s)〉〈Ψ0(s)|U∆(s) |Ψ0〉 = 0 (2.6)

since

〈Ψ0(s)|D∆(s) |Ψ0(s)〉 =
∫ ∞
−∞

dtW∆(t) 〈Ψ0(s)| eitH(s)H ′(s)e−itH(s) |Ψ0(s)〉 =

=
∫ ∞
−∞

dtW∆(t) 〈Ψ0(s)|H ′(s) |Ψ0(s)〉 = 0 (2.7)

where the second equality holds since the |Ψ0(s)〉 are groundstates for H(s) and the last equality
comes from the fact that W∆ is an odd function.

2.2 Loop Operators

Now we consider a two-parameter family of Hamiltonians H(s, t), s, t ∈ [0, 2π] with groundstates
|Ψ0(s, t)〉 and introduce loop operators which describe the quasi-adiabatic evolution around a
small (quadratic) loop in flux-space (s, t). Therefore we define the generators

D∆,x(s, t) = S∆(H(s, t), ∂1H(s, t)) (2.8)

D∆,y(s, t) = S∆(H(s, t), ∂2H(s, t)) (2.9)

and the corresponding unitaries for fixed (s, t) through the differential equations

∂rU∆,x(s, t, r) = iD∆,x(s+ r, t)U∆,x(s, t, r), U∆,x(s, t, 0) = I (2.10)

∂rU∆,y(s, t, r) = iD∆,y(s, t+ r)U∆,y(s, t, r), U∆,y(s, t, 0) = I (2.11)

so that e.g. U∆,x(s, t, r) is the unitary corresponding to the quasi-adiabatic evolution from (s, t)
to (s+ r, t) in flux-space.
By differentiating both sides with respect to r′ and using the uniqueness of solutions to the
ODEs, one gets the following composition formulas:

U∆,x(s+ r, t, r′)U∆,x(s, t, r) = U∆,x(s, t, r + r′) (2.12)

U∆,y(s, t+ r, r′)U∆,y(s, t, r) = U∆,y(s, t, r + r′) (2.13)

The loop operator corresponding to a loop of side r, starting at (s, t) is then defined as

V∆,	(s, t, r) = U∗∆,y(s, t, r)U∗∆,x(s, t+ r, r)U∆,y(s+ r, t, r)U∆,x(s, t, r) (2.14)
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and is given by quasi-adiabatic evolution along the path Λ(s, t, r), which runs along the sides of
a square with length r in counter-clockwise direction, starting at (s, t).
From the previous lemma we then get the following:

Lemma 2.2. Assume that {H(s, t)}(s,t)∈Λ(s,t,r) is a smooth two-parameter family of Hamiltoni-
ans which are gapped uniformly along Λ(s, t, r) with lower bound ∆ > 0. Denote |Ψ0(a, b)〉 the
groundstate of H(a, b). Then we have:

〈Ψ0(s, t)|V∆,	(s, t, r) |Ψ0(s, t)〉 = eiΦ(s,t,r) (2.15)

where
Φ(s, t, r) = 2

∫ s+r

s
dx

∫ t+r

t
dy Im 〈∂2Ψ0(x, y)|∂1Ψ0(x, y)〉 (2.16)

and Im(·) denotes the imaginary part.

Proof. Since we have uniformly gapped Hamiltonians, lemma 2.1 tells us that every unitary of
V∆,	(s, t, r) gives us the groundstate fulfilling the parallel transport condition. So in the four
sides of the loop we acquire the following four phases (since those exactly ensure the parallel
transport condition):

iΦ1 = −
∫ s+r

s
dx 〈Ψ0(x, t)|∂1Ψ0(x, t)〉 (2.17)

iΦ2 = −
∫ t+r

t
dx 〈Ψ0(s+ r, x)|∂2Ψ0(s+ r, x)〉 (2.18)

iΦ3 =
∫ s+r

s
dx 〈Ψ0(x, t+ r)|∂1Ψ0(x, t+ r)〉 (2.19)

iΦ4 =
∫ t+r

t
dx 〈Ψ0(s, x)|∂1Ψ0(s, x)〉 (2.20)

Putting those together we get the claim from Φ(s, t, r) = Φ1 + Φ2 + Φ3 + Φ4 and the Theorem
of Stokes.

2.3 Useful Bounds

Remark 2.3. Let g(x, y) be a smooth function of two variables. Then

ϕ(r) :=
∫ r

0
dx

∫ r

0
dy g(x, y) (2.21)

has the following Taylor expansion around 0:

ϕ(r) = g(0, 0)r2 +
∫ r

0
ds

(r − s)2

2

(
3∂1g(s, s) + 3∂2g(s, s) +

∫ s

0
dt (∂2

1g(s, t) + ∂2
2(t, s))

)
(2.22)

In particular, we get the following bound:∣∣∣∣ϕ(r)
r2 − g(0, 0)

∣∣∣∣ ≤ r ·
(

1
2 sup

0≤s≤r
(|∂1g(s, s)|+ |∂2g(s, s)|) + r

24 sup
0≤s,t≤r

(|∂2
1g(s, t)|+ |∂2

2g(s, t)|)
)

(2.23)

Later we will relate g(0, 0) for the function Φ(0, 0, r) from Lemma 2.2 with the Hall conductance.
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To get explicit bounds in (2.23) we need to bound the norm of derivates of groundstates. We
show how this is principally done in the following

Remark 2.4. Let {H(s)}s∈[0,1] be a smooth family of Hamiltonians with spectral gap ∆(s) > 0
and |Ψ0(s)〉 the corresponding groundstates with energies E0(s) fulfilling the parallel transport
condition. So we have the relations

(H(s)− E0(s)) |Ψ0(s)〉 = 0 (2.24)〈
Ψ0(s)|Ψ′0(s)

〉
= 0 (2.25)

H(s)− E0(s) ≥ ∆(s)(I− |Ψ0(s)〉〈Ψ0(s)|) (2.26)

Differentiating (2.24), multiplying with Q0(s) := I− |Ψ0(s)〉〈Ψ0(s)| and inserting (2.25) yields

∣∣Ψ′0(s)
〉

= Q0(s)
H(s)− E0(s)H

′(s) |Ψ(s)〉 (2.27)

so that with (2.26) we get the bound

‖
∣∣Ψ′0(s)

〉
‖ ≤ ‖H

′(s)‖
∆(s) (2.28)

From differentiating (2.24) twice and (2.25) once we get the next bound

‖
∣∣Ψ′′0(s)

〉
‖ ≤ 3‖H

′(s)‖2

∆(s)2 + ‖H
′′(s)‖

∆(s) (2.29)

By repeating this procedure we see that we can bound the norm of derivatives of |Ψ0(s)〉 as
polynomials in the norm of derivatives of H(s) and ∆(s).

In the situation of the remark above, we have the following bound on ∆(s):

Lemma 2.5. For r ∈ [0, 1] it is

∆(r) ≥ ∆(0)− 2r sup
s∈[0,r]

‖H ′(s)‖ (2.30)

Proof. When we look at the spectrum of H(r), a triangle inequality gives us

∆(r) ≥ ∆(0)− 2‖H(r)−H(0)‖ (2.31)

and the claim readily follows.

So we see that later we will only need bounds for the derivatives of the Hamiltonians.

In chapter 5 we will also use the following

Proposition 2.6. For a ∈ {1, 2} let Ua be the unitary generated by Da, i.e.

d

ds
Ua(s) = iDa(s)Ua(s), Ua(0) = I (2.32)

Then for r ≥ 0 we have

‖U1(r)− U2(r)‖ ≤ r · sup
0≤s≤r

‖D1(s)−D2(r)‖ (2.33)
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Proof. We have
d

dr
(U∗1 (r)U2(r)) = −iU∗1 (r)(D1(r)−D2(r))U2(r) (2.34)

and therefore the claim follows simply by the fundamental theorem of calculus and the unitary
invariance of the norm.

2.4 Localization

At the end of this chapter we state another important property of the generator for the quasi-
adiabatic evolution, mainly Lemma 4.7 in [6].
For a subset X ⊂ T and n ∈ N denote X(n) := {s ∈ T |d(X, s) ≤ n} the broadening of X by n.
Let H(s) =

∑
Z⊆T Φ(Z, s) be the sum of local interactions and denote by

τ
H(s)
t (A) = eitH(s)Ae−itH(s) (2.35)

the Heisenberg dynamics of H(s). We assume a uniform, exponential Lieb-Robinson bound for
τ
H(s)
t . Then we have:

Lemma 2.7. Let A be an operator with X := supp(A) ⊆ T and let n ∈ N Then there is an
operator S(n)

∆ (H(s), A) supported on X(n) such that the following hold:

i. ‖S(n)
∆ (H(s), A)‖ ≤ ‖A‖ ·K/∆ for some constant K > 0.

ii. ‖S∆(H(s), A)− S(n)
∆ (H(s), A)‖ ≤ ‖A‖g∆(n) for a subexponential function g∆

iii. If we define HΛ(s) :=
∑
Z⊆Λ Φ(Z, s) for a subset Λ ⊆ T , then S(n)

∆ (H,A) = S
(n)
∆ (HX(n), A).

Remark 2.8. The subexponential function g∆ fulfills the bound g∆(t) ≤ C · t22exp(−c t
ln2t) for

some constants C, c depending on ∆ and the Lieb-Robinson bound.
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3 Introducing our System

With the preliminary work done, we will now formally introduce the setting in which we are
interested as it is defined in [10]. We consider the Torus T of length L as lattice [0, L]× [0, L] ⊂
Z2, where we identify the sides in the usual way. On T we have a metric d(·, ·) defined by
d(s1, s2) = |x(s1)− x(s2)|+ |y(s1)− y(s2)| where | · | is the absolutely smallest residue mod L,
i.e. | · | ≤ L/2. Then we have the known algebra AX of local operators for a subset X ⊆ T . At
each side s ∈ T we define the charge operator qs ∈ A{s} with eigenvalues 0, 1, ..., qmax. We are
interested in properties of H0 =

∑
Z⊆T Φ(Z) which satisfies the following conditions:

1. The interaction terms Φ(Z) are local kmax-body interactions with finite strength J and finite
range R, i.e.

i. Φ(Z) = Φ(Z)∗ ∈ AZ ,
ii. sups∈T

∑
Z3s ‖Φ(Z)‖ ≤ J ,

iii. For all Z ⊆ T , if diam(Z) > R or |Z| > kmax, then Φ(Z) = 0.
2. The Hamiltonian H0 has a unique groundstate |Ψ0〉 and a spectral gap of γ > 0. We denote
P0 = |Ψ0〉〈Ψ0| the projector onto the groundstate.
3. The total charge Q =

∑
s∈T qs is conserved, i.e. [Q,H0] = 0.

By replacing Φ(Z) with

Φ′(Z) := 1
2π

∫ 2π

0
dt eitQΦ(z)e−itQ (3.1)

we can assume [Q,Φ(Z)] = 0, since Φ′(Z) ∈ AZ , ‖Φ′(Z)‖ ≤ ‖Φ(Z)‖, [Q,Φ′(Z)] = 0 (since
exp(2πiQ) = 1 becauseQ is sum of commuting charges with integer spectrum) and

∑
Z⊆T Φ′(Z) =

H0 because of [Q,H0] = 0.

In this work we want to prove the following Theorem:

Theorem 3.1. Let H0 be a Hamiltonian satisfying the above properties for fixed, L-independent
R, J , kmax, qmax and γ. Then for large enough L the difference between the Hall conductance
σ and the nearest integer multiple of e2/h is subexponential small in the linear size L.

Here, e and h are the known fundamental physical constants and the Hall conductance σ is
given by Kubo’s formula in (3.13).
This theorem says that the Hall conductance is quantified up to an error subexponential small
in the size of the system. It does not, however, say that this quantization is independent of the
size L since the integer given by the theorem may depend upon L.

We will now give a short sketch of how the proof will be done. In the next section we construct a
family of twisted Hamiltonians H(s, t) by introducing charge fluxes of strength (s, t) at the sides
and center of the torus. Since H0 is gapped, this family will be uniformly gapped as long as we
stay close to H0. Kubo’s formula then relates σ with the function given by Lemma 2.2, which
is the phase picked up by a small loop around the origin in flux space. In the next step we will
show that a big loop of size 2π picks up a phase which is trivial up to subexponential errors. We
will then decompose such a big loop into paths in flux-space of the form (0, 0)→ (0, t)→ (s, t),
followed by a small loop around (s, t) and back to the origin. By going such a path one picks
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up a phase φ(s, t). In the crucial step we show that this phase is independent of s, t up to
subexponential errors and thus can be correlated to the phase φ(0, 0) which is linked to the Hall
conductance.
We have to stress that the phase φ(s, t) can only be related to the Hall conductance of H(s, t)
by Lemma 2.2 if this Hamiltonian is gapped. Since this needs only be true at the origin in flux
space, we in particular do not prove that the Hall conductance is uniform in s, t. This uniformity
is a consequence of the quasi-adiabatic evolution used for the paths and is not necessarily true
for the true adiabatic evolution.
To make this clearer, we look into more details of the sketch given above. From now on, we
will fix the threshold ∆ = γ/2, with the γ given by H0. If we take a loop in flux space small
enough around (0, 0), then the Hamiltonians H(s, t) along this loop will have a gap which is
lower bounded uniformly by ∆. So in this region, the quasi-adiabatic evolution with threshold
∆ coincides with the true adiabatic evolution and therefore φ(0, 0) can be related to the Hall
conductance σ. If we leave the gapped area, we cannot control the adiabatic evolution anymore,
but we can still control the quasi-adiabatic one via ∆. In [6] the authors show properties of the
quasi-adiabatic evolution and the spectral flow derived from it. We will use those properties to
show the uniformity of φ(s, t). The size of the small loops is left as a parameter in the beginning.
In the end we will set it to be subexponential in L.

3.1 Twisted Hamiltonians

Following the notation in [10] we construct the following family of Hamiltonians:

H(θx, φx, θy, φy) =
∑
Z⊆T

Φ(Z; θx, φx, θy, φy) (3.2)

which corresponds to a twisted Hamiltonian with fluxes at the lines x = 0 with strength θx,
x = L/2 with strength φx and accordingly for y. For this we introduce for a subset Λ ⊆ T the
unitary equivalence

RΛ(t, A) = eitQΛAe−itQΛ , QΛ =
∑
s∈Λ

qs. (3.3)

We note that RΛ is 2π-periodic in t and for Z := supp(A) we have RΛ(t, A) = RΛ∩Z(t, A) ∈
AZ and d

dtRΛ(t, A) = i[QΛ∩Z , RΛ(t, A)]. We also see that RΛ1(s, ·) and RΛ2(t, ·) commute for
arbitrary Λ1,Λ2 ⊆ T .
In particular we are interested in RX and RY corresponding to the sets X = {s ∈ T | x(s) ∈
[0, L/2]} and Y = {s ∈ T | y(s) ∈ [0, L/2]}.

The interactions Φ(Z; θx, φx, θy, φy) are then defined by the following rules:
X-1: If ∃s ∈ Z : |x(s)| < R, then Φ(Z; θx, φx, θy, φy) = RX(θx,Φ(Z; 0, 0, θy, φy)).
X-2: If ∃s ∈ Z : |x(s)− L/2| < R, then Φ(Z; θx, φx, θy, φy) = RX(φx,Φ(Z; 0, 0, θy, φy)).
X-3: Otherwise Φ(Z; θx, φx, θy, φy) = Φ(Z; 0, 0, θy, φy).

Further, we define Φ(Z; 0, 0, θy, φy) by:
Y-1: If ∃s ∈ Z : |y(s)| < R, then Φ(Z; 0, 0, θy, φy) = RY (θy,Φ(Z)).
Y-2: If ∃s ∈ Z : |y(s)− L/2| < R, then Φ(Z; 0, 0, θy, φy) = RY (φy,Φ(Z)).
Y-3: Otherwise Φ(Z; 0, 0, θy, φy) = Φ(Z).
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Since those definitions are quite formal, we will discuss them for a bit.
First, we note that this is well-defined, i.e. X-1 and X-2 cannot hold simultaneously, as long as
L > 6R since the interactions Φ have finite range R and Φ(Z; θx, φx, θy, φy) ∈ AZ .
Since 0 = [Q,Φ(Z)] = [QZ ,Φ(Z)], we get RX(t,Φ(Z)) = Φ(z) as long as Z ∩X = ∅ or Z ⊆ X
and similarly for RY . So RX only acts non-trivially on Φ(Z) if Z crosses the lines x = 0 or
x = L/2. Therefore, Φ(Z) only feels the twist at x = 0 if Z lies within a strip of width 2R,
centered at x = 0. Since we will use that way of saying quite often, we denote by Bx(a, d) the
strip (or band) centered at x = a of width 2d and similarly By(a, d). In particular, if Z is such
that X-3 applies, RX acts trivially on Φ(Z) so that we get the formulas

RY (t, (RX(s,Φ(Z))) = Φ(Z; s, s, t, t) for all Z ⊆ T and (3.4)
RY (t, (RX(s,H0)) = H(s, s, t, t) (3.5)

which means that H0 and H(s, s, t, t) are unitarily equivalent. Later we will only consider the
two-parameter families of the forms H(s, 0, t, 0) and H(s, s, t, t). The former is the one that
leads to the Hall conductance but is in general not unitarily equivalent to H0. Therefore it will
be useful to introduce the second family.
The probably most recent and general Lieb-Robinson bounds from [14] apply to our families so
that we can use the approximations introduced in (2.7) for those two families.

3.2 Bounding Derivatives

As we have seen in the last chapter, we need bounds on the Hamiltonians and their derivatives.
We will derive them now. We have ‖Φ(Z; θx, φx, θy, φy)‖ = ‖Φ(Z)‖ and therefore the trivial
bound

‖H(θx, φx, θy, φy)‖ ≤ L2J (3.6)

Next we bound d
dtH(t, φx, θy, φy). We note that the only contributing entries come from Z which

lie in Bx(0, R). For such a Z we have

d

dt
Φ(Z; t, φx, θy, φy) = d

dt
RX(t,Φ(Z; 0, 0, θy, φy) =

= i[QX∩Z ,Φ(Z; t, 0, θy, φy)] = −i[QXc∩Z ,Φ(Z; t, 0, θy, φy)] (3.7)

where Xc is the complement of X in T . This gives a norm bound of

‖ d
dt

Φ(Z; t, φx, θy, φy)‖ ≤ min{|X ∩ Z|, |Xc ∩ Z|}qmax‖Φ(Z)‖ ≤ Qmax
2R ‖Φ(Z)‖ (3.8)

where we set Qmax := Rkmaxqmax and used ‖[A,B]‖ ≤ ‖A‖‖B‖ if A ≥ 0. Since the strip only
contains 2RL sites, we get the norm bounds

‖∂jH(θx, φx, θy, φy)‖ ≤ QmaxJL for j ∈ {1, 2, 3, 4} (3.9)

To bound the higher derivatives, we note the following: d
dtΦ(Z; t, φx, θy, φy) is independent of

φx, therefore higher derivatives of H(θx, φx, θy, φy) are zero whenever we include ∂1 and ∂2 or ∂3
and ∂4. Since the charges commute with each other, if we take another derivative in (3.7), we
simply get another commutator with a charge and the following bound holds, where ∂k stands
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for a combination of k derivatives:

‖∂kΦ(Z; θx, φx, θy, φy)‖ ≤
(
Qmax
2R

)k
‖Φ(Z)‖ (3.10)

If all derivatives apply to a flux Rx, then the Z above are supported in some strip of width 2R,
but if there are derivatives that apply onto RX and some that apply onto RY , then the only Z
which contribute have to be supported in some square of length 2R, so that we get for example
the following bounds for k-th derivatives:

‖∂k1H(θx, φx, θy, φy)‖ ≤
(
Qmax
2R

)k
2RJL (3.11)

‖∂l1∂k−l3 H(θx, φx, θy, φy)‖ ≤
(
Qmax
2R

)k
4R2J for l ∈ {1, ..., k − 1} (3.12)

In particular are all bounds at most O(L).

3.3 Introducing the Hall conductance

We want to show that a certain value t is close to an integer. For this it is enough to show that
e2πit is close to 1, which can be seen as follows:
Let n be the integer closest to t. Then |e2πit− 1| ≤ 1 implies |t− n| ≤ π/3 and we can conclude
from some simple geometrics that |t− n| ≤

√
2/(2π)|e2πit − 1|.

As stated in [10], to compute the Hall conductance we use Kubo’s formula from linear response
theory applied to the setting of a torus pierced by two solenoids carrying magnetic fluxes θx and
θy in the x and y directions. See also [17].
Therefore we look at the two-parameter family H(θx, 0, θy, 0) of Hamiltonians, whose ground-
states we denote by |Ψ0(θx, θy)〉. Then the Hall conductance for H0 is given by

σ = 2 Im 〈∂2Ψ0(θx, θy)|∂1Ψ0(θx, θy)〉 |θx=θy=0 ·
(

2πe
2

h

)
(3.13)

Here we already see the familiarity with Lemma 2.2. We can now formulate the first estimate:
Consider V∆,	 the loop operator corresponding to the quasi-adiabatic evolution of the family
{H(s, 0, t, 0)}s,t∈[0,2π] with threshold ∆ = γ/2. Then we have

Lemma 3.2. For 0 < r < (8QmaxJL/γ)−1 we have for some numerical constant C:

∣∣∣〈Ψ0|V∆,	(0, 0, r) |Ψ0〉(
2π
r

)2
− e2πiσ(e2/h)−1

∣∣∣ ≤ C (QmaxJ
γ
L

)3
· r (3.14)

Proof. According to Lemma 2.5 and the assumption on r, our family of Hamiltonians is uniformly
gapped by ∆ on Λ(0, 0, r), since we have the norm estimate (3.9) and we need at most two paths
of length r to reach every point on Λ(0, 0, r) from the origin. Therefore we can use Lemma 2.2
to see

〈Ψ0|V∆,	(0, 0, r) |Ψ0〉(
2π
r

)2
= eiΦ(0,0,r)( 2π

r
)2
. (3.15)
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If we use the notation of Remark 2.3, then we see g(0, 0) = σ
(
2π e2h

)−1
, so we get

∣∣∣eiΦ(0,0,r)( 2π
r

)2 − e4π2ig(0,0)
∣∣∣ ≤ 4π2

∣∣∣∣Φ(0, 0, r)
r2 − g(0, 0)

∣∣∣∣ . (3.16)

Therefore we only need to bound the rhs of (2.23). Using Remark 2.4 and the bounds given in
(3.11),we see that we get bounds of the form |∂kg(s, t)| = O((QmaxJL/γ)k+2). So we have an
upper bound of the form

r ·
(
O((QmaxJL/γ)3) + rO((QmaxJL/γ)4)

)
(3.17)

and the claim follows since r = O(QmaxJL/γ)−1).
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4 The Big Loop

In this chapter we will show the second estimate, namely that the phase around a big loop is
trivial up to an subexponential error. We will continue with the notation from before.

Lemma 4.1. For some numerical constant C the following holds for L large enough:

| 〈Ψ0|V∆,	(0, 0, 2π) |Ψ0〉 − 1| ≤ CQmax
J2

γ
L3 · g∆(L/4− 2R) (4.1)

Here g∆ is the function from Lemma 2.7.

Remark 4.2. If we assume, that the family {H(s, 0, t, 0)}s,t∈[0,2π] is uniformly gapped with lower
bound ∆, then the lemma above holds with the trivial bound 0 since we can use Lemma 2.2 and
Φ(0, 0, 2π) is given by a Chern number, in particular it is an integer. This assumption leads to
the usual proofs of quantization of an averaged Hall conductance.
Since we don’t assume this, we have to put some more work into this.

4.1 Partial Traces

If we split up the path Λ(0, 0, 2π) into the four sides, then each side alone defines a closed loop
in flux space since RX and RY and therefore H(s, 0, t, 0) is 2π-periodical. So we only need to
consider one-dimensional paths in this case.
With the notations from chapter 2 in mind we define the unitaries U∆,x(r) and U∆,y(r) to be
the quasi-adiabatic evolutions with threshold ∆ corresponding to the Hamiltonians H(s, 0, 0, 0)
and H(0, 0, s, 0). Then we define the quasi-adiabatic evolved states

|Ψx(r)〉 = U∆,x(r) |Ψ0〉 , |Ψy(r)〉 = U∆,y(r) |Ψ0〉 (4.2)

and the corresponding density matrices

ρx(r) = |Ψx(r)〉〈Ψx(r)| , ρy(r) = |Ψy(r)〉〈Ψy(r)| . (4.3)

It is important to note that |Ψx(r)〉 will in general not be a groundstate for H(r, 0, 0, 0) since
without a gap quasi-adiabatic evolution fails to simulate the true one. But later we will give an
energy estimate how the energy of |Ψx(r)〉 relates to that of |Ψ0〉.
Since H(s, s, 0, 0) is unitarily equivalent to H0 via RX(s, ·), and therefore uniformly gapped by
γ, we know on the other hand from Lemma 2.1 that the density matrix for the ground state of
H(s, s, 0, 0), namely RX(s, P0), is generated by the quasi-adiabatic evolution with threshold ∆.

The idea behind the proof is that H(s, 0, 0, 0) looks away from x = 0 like H0, and away from
x = L/2 like H(s, s, 0, 0) which is unitarily equivalent to H0. So we want to restrict us to those
regions where we have good approximations. In particular, we want to be able to distinguish
between the fluxes at x = 0 and x = L/2. For this we denote the strips Ωx := Bx(0, L/4) and
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Ωy := By(0, L/4) which separate the fluxes.
For some Z ⊆ T we define Z := Zc(R), in particular for strips we have Bx(a, d) = Bx(a +
L/2, L/2 − d + R). The reason behind this definition is that if an interaction is not supported
in Z, it has to be supported in Z and therefore, we have for any Z ⊆ T that HZ is supported
in Z and H0 −HZ is supported in Z.
With this notation we now define the following restricted Hamiltonians:

HΩx(r) =
∑
Z⊆Ωx

Φ(Z; r, 0, 0, 0), HΩx(r) =
∑
Z*Ωx

Φ(Z; 0, r, 0, 0) (4.4)

HΩy(r) =
∑
Z⊆Ωy

Φ(Z; 0, 0, r, 0), HΩy(r) =
∑
Z*Ωy

Φ(Z; 0, 0, 0, r) (4.5)

Then the considerations above show that any of the HA above is supported in A. As interpre-
tation one could say that HΩx measures how strong the flux is at x = 0 and HΩx measures the
strength of the flux at x = L/2. We have for example the following decompositions:

H(r, 0, 0, 0) = HΩx(r) +HΩx(0), H(r, r, 0, 0) = HΩx(r) +HΩx(r) (4.6)
H(0, 0, r, 0) = HΩy(r) +HΩy(0), H(0, 0, r, r) = HΩy(r) +HΩy(r) (4.7)

From the definition we can also see that HA(r) = RX/Y (r,HA(0)) for any of the HA above since
we include into HA only those interactions that actually see the corresponding flux twist. So
from the decompositions in (4.6) we can see again that H(r, r, 0, 0) is unitarily equivalent to H0
but furthermore we can see how H(r, 0, 0, 0) fails to be so.
From the remarks above one could now suppose that ρx(r) should look away from x = 0 similar
to P0 and away from x = L/2 similar to RX(r, P0). In which sense this is in fact true, states
the following

Lemma 4.3. With the definitions above we have the following partial-trace norm bounds:

‖TrΩx
c(ρx(r)− P0)‖ ≤ 2r QmaxJL · g∆(L/4− 2R) (4.8)

‖TrΩcx(ρx(r)−RX(r, P0))‖ ≤ 6r QmaxJL · g∆(L/4− 2R) (4.9)

The same bounds hold for Y instead of X.

To prove this we bound the partial-trace norm of the derivatives of ρ, i.e. commutators with
the generator of the quasi-adiabatic evolution. We use Lemma 2.7 to switch to the localized
versions of those because we know their support.

Proof. To shorten notation we set H(1)(s) = H(s, 0, 0, 0) and H(2)(s) = H(s, s, 0, 0). Then from
(4.6) and the remark before the Lemma, we have the following:

∂sρx(s) = i[S∆
(
H(1)(s), ∂sHΩx(s)

)
, ρx(s)] (4.10)

∂sRX(s, P0) = i[S∆
(
H(2)(s), ∂sH(2)(s)

)
, RX(s, P0)] =

= i[S∆
(
H(2)(s), ∂sHΩx(s)

)
, RX(s, P0)] + i[S∆

(
H(2)(s), ∂sHΩx(s)

)
, RX(s, P0)]

(4.11)

Now we recall that supp(∂sHΩx(s)) ⊆ Bx(0, R) and we get from Lemma 2.7 that

S
(n)
∆ (H(1)(s), ∂sHΩx(s)) = S

(n)
∆ (H(2)(s), ∂sHΩx(s)) ∈ AΩx

c (4.12)
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as long as H(1)
Bx(0,R+n)(s) = H

(2)
Bx(0,R+n)(s) and Bx(0, R+n) ⊆ Ωx

c = Bx(0, L/4−R), i.e. as long
as R+ n ≤ L/2−R and R+ n ≤ L/4−R. In particular this holds for n := L/4− 2R.
From Lemma 2.7 and (3.9) we conclude that S(j, A)(s) := S∆(H(j)(s), ∂sHA(s)) and their
localized version differ in norm by at most QmaxJL · g∆(n), for j ∈ {1, 2} and A ∈ {Ωx,Ωx}.
Since ∂sHΩx(s) has support on Bx(L/2, R), we note that the support of S(n)

∆ (H(2)(s), ∂sHΩx(s))
lies in Bx(L/2, L/4−R) ⊂ Ωc

x.
With this we get:

‖TrΩx
c [S(1,Ωx)(s), ρx(s)]‖ = sup

A∈AΩx
,‖A‖=1

|Tr(A[S(1,Ωx)(s), ρx(s)])| =

= sup
A∈AΩx

,‖A‖=1
|Tr([A,S(1,Ωx)(s)]ρx(s))| ≤

≤ sup
A∈AΩx

,‖A‖=1
‖[A,S(1,Ωx)(s)]‖ =

= sup
A∈AΩx

,‖A‖=1
‖[A,S(1,Ωx)(s)− S(n)(1,Ωx)(s)]‖ ≤

≤ 2QmaxJL · g∆(n), (4.13)

where the last equality holds because the supports of A and S(n)(1,Ωx)(s) are disjoint. The first
claim of the lemma follows simply by integrating this relation.

The second bound is more tedious. The term with S(2,Ωx) in (4.10) can be dealt with as in
the first bound. But for the ones with Ωx we can’t insert the localizations via the commutator.
So we have to find another way. Therefore let U(s) be the unitary generated by S(n)(1,Ωx) =
S(n)(2,Ωx). Then U is supported in Ωx

c and since on Ωx H
(1)(s) and H(2)(s) coincide, we have

ρx(s)−RX(s, P0) = U∗(s)(ρx(s)−RX(s, P0))U(s) (4.14)

and differentiating and rearranging this gives us the three summands

iU∗(s)[S(1,Ωx)(s)− S(n)(1,Ωx)(s), ρx(s)]U(s) (4.15)
−iU∗(s)[S(2,Ωx)(s)− S(n)(2,Ωx)(s), RX(s, P0)]U(s) (4.16)
−iU∗(s)[S(2,Ωx)(s), RX(s, P0)]U(s) (4.17)

From there on we can for each of the three summands conclude as in the first bound to get the
claim.
For Y instead of X one argues in the exact same way.

4.2 Energy Estimates

The Lemma 4.3 will be used again in the next chapter. Here we need it to prove the aforemen-
tioned energy estimates.

Lemma 4.4. Denote E0 the groundstate energy of H0. Then with the notations from above we
have the following bound:

| 〈Ψx(r)|H(r, 0, 0, 0) |Ψx(r)〉 − E0| ≤ 8r QmaxJ2L3 · g∆(L/4− 2R) (4.18)

The same bound holds for y instead of x.
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As mentioned before, we cannot say that |Ψx(r)〉 is still a groundstate for H(r, 0, 0, 0) but we
can at least estimate its energy. One should also note that E0 need not be the groundstate
energy for H(r, 0, 0, 0) since we have no unitary equivalence with H0.
What this Lemma says is that quasi-adiabatically evolving the groundstate of H0 gives us a
state which energy is subexponentially close to the groundstate energy E0.

Proof. From the unitary equivalence, the decompositions in (4.6) and HΩx(r) = RX(r,HΩx(0))
we get:

〈Ψx(r)|H(r, 0, 0, 0) |Ψx(r)〉 = Tr(HΩx(r)ρx(r)) + Tr(HΩx(0)ρx(r)) (4.19)
E0 = Tr(H(r, r, 0, 0)RX(r, P0)) = Tr(HΩx(r)RX(r, P0)) + Tr(HΩx(0)P0) (4.20)

Therefore, we can bound the difference by

|Tr(HΩx(r)(ρx(r)−RX(r, P0))|+ Tr(HΩx(0)(ρx(r)− P0)| ≤
≤ ‖HΩx(r)‖‖TrΩcx(ρx(r)−RX(r, P0))‖+ ‖HΩx(0)‖‖TrΩx

c(ρx(r)− P0)‖ (4.21)

and the claim follows with (3.6) and Lemma 4.3. For y one argues in the same way.

We can now proof the second estimate, given at the beginning of this chapter.

Proof of Lemma 4.1. As said before, we split Λ(0, 0, 2π) into the four components. Since each
one gives a closed loop in flux space, we can see with the notation of this chapter:

V∆,	(0, 0, 2π) = U∗∆,y(2π)U∗∆,x(2π)U∆,y(2π)U∆,x(2π) (4.22)

For the rest of this proof we will suppress the ∆ and 2π in the notation, since this is the only
point where the unitaries are evaluated. Denoting I = P0 +Q0, we define further

|Ψx〉 = Ux |Ψ0〉 , |δx〉 = Q0 |Ψx〉∣∣Ψ′x〉 = U∗x |Ψ0〉 ,
∣∣δ′x〉 = Q0

∣∣Ψ′x〉 (4.23)

and similarly for Y . Since we expect |Ψx〉 to be a state close to |Ψ0〉, we expect |δx〉 to be small.
And in fact, we get the following bound from the gap Q0 ≤ (H0 − E0)/γ:

〈δx|δx〉 = 〈Ψx|Q0 |Ψx〉 ≤ γ−1 〈Ψx| (H0 − E0) |Ψx〉 (4.24)

which is bounded from above by δ := 16πQmaxJ2L3γ−1 · g∆(L/4 − 2R) by 2π-periodicity of
H(s, 0, 0, 0) and Lemma 4.4. The same bound holds for |δ′x〉 and x replaced by y.
Furthermore, we have the relation |〈Ψx|Ψ0〉|2 = 1− 〈δx|δx〉 which follows from P0 = I−Q0.
Then we can expand by inserting P0 +Q0 three times:

〈Ψ0|U∗yU∗xUyUx |Ψ〉 = 〈Ψy|U∗xUy |Ψx〉 =
= 〈Ψy|Ψ0〉〈Ψx|Ψy〉〈Ψ0|Ψx〉+ 〈Ψy|Ψ0〉〈Ψx|Uy |δx〉+ 〈δy|U∗x |Ψy〉〈Ψ0|Ψx〉+ 〈δy|U∗xUy |δx〉 =
=|〈Ψy|Ψ0〉|2|〈Ψx|Ψ0〉|2 + 〈Ψy|Ψ0〉 〈δx|δy〉 〈Ψ0|Ψx〉+ 〈δy|U∗xUy |δx〉+

+ 〈Ψy|Ψ0〉〈Ψx|Uy |δx〉+ 〈δy|U∗x |Ψy〉〈Ψ0|Ψx〉 (4.25)
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Inserting again P0 +Q0 and using Q0 = Q2
0 we see

〈Ψx|Uy |δx〉 = 〈Ψx|Ψ0〉〈Ψ′y|δx〉+ 〈δx|Uy |δy〉 = 〈Ψx|Ψ0〉〈δ′y|δx〉+ 〈δx|Uy |δy〉 (4.26)
〈δy|U∗x |Ψy〉 = 〈δy|Ψ′x〉〈Ψ0|Ψy〉+ 〈δy|U∗x |δy〉 = 〈δy|δ′x〉〈Ψ0|Ψy〉+ 〈δy|U∗x |δy〉 (4.27)

If we now extract the 1 which sits inside the first summand of (5.26), then we readily get the
bound

| 〈Ψ0|U∗yU∗xUyUx |Ψ〉 − 1| ≤ 8δ, (4.28)

from which the claim follows.
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5 Uniformity

The last and most difficult part of the proof is to show that the phase picked up by small
quasi-adiabatic loops around (s, t) in flux space is independent of s, t up to some subexponential
error. From here on we will only use the two-parameter family H(s, t) = H(s, 0, t, 0) of twisted
Hamiltonians. And all unitaries of quasi-adiabatic evolutions will be generated by those. We
needed to introduce the Hamiltonians with twist in the middle only to show the bounds in the
last chapter, although we will be using those bounds in this chapter again.

5.1 Splitting the Loop

Let us first show how we decompose the big loop into small ones. To this we define the unitary

V∆(s, t) := U∆,x(0, t, s)U∆,y(0, 0, t) (5.1)

which evolves quasi-adiabatically from (0, 0) to (s, t) by going first into the y-direction. Let now
r > 0 be the size of a small loop and N = 2π/r. Then we will decompose the big loop into N2

small loops in the following way: Define

UnN+N−m = V ∗∆(mr, nr)V∆,	(mr, nr, r)V∆(mr, nr) for m, n ∈ {0, ..., N − 1}. (5.2)

Those all define closed paths starting at the origin which go to some point, make there a small
loop and then return their way back to the origin. The index j of Uj is chosen in such a way
that bj/Nc gives the row of the loop and j (mod N) gives the column of the loop. One sees that
the indexing is defined s.t. we start counting at the lower right and when the index increases,
we go to the left end of the row and then start the row above again from the right.
By doing this in this order we build succesively bigger loops, e.g. gives UN · · ·U2U1 the loop
(0, 0)→ (0, 2π)→ (r, 2π)→ (r, 0)→ (0, 0). Therfore we have the identity

V∆,	(0, 0, 2π) = UN2UN2−1 · · ·U2U1. (5.3)

We will now prove that it is enough to show uniformity of the phase picked up by the small
loops to show the third and last estimate needed for the Theorem.

Lemma 5.1. Let r be as in Lemma 3.2. Given the definitions above let

δ := maxj=1,...,N2 | 〈Ψ0|Uj |Ψ0〉 − 〈Ψ0|V∆,	(0, 0, r) |Ψ0〉 |. (5.4)

Then we have the bound∣∣∣〈Ψ0|V∆,	(0, 0, 2π) |Ψ0〉 − 〈Ψ0|V∆,	(0, 0, r) |Ψ0〉(
2π
r

)2 ∣∣∣ ≤ 4π2
(√

2δr−4 + e4π2δr−2
δr−2

)
(5.5)

From this form we already see what kind of bound we will have to show for δ. For the assumption
on r in 3.2 to hold, we know that r → 0 for L→∞. Then the given bound will be subexponential
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small in L if and only if δr−4 is subexponential in L. Therefore any term in a bound for δ will
need to contain either some subexponential function in L by itself, or at least a fifth power of r,
so that we can choose that to be small enough. This explains why we will later have to consider
Taylor expansions up to the fifth order.

Proof. To shorten notation we introduce the following notations for a ≤ b ∈ {1, ..., N2}:

p[a,b] = 〈Ψ0|Ub · · ·Ua+1Ua |Ψ0〉 and q[a,b] = 〈Ψ0|Ub · · ·Ua+1Q0Ua |Ψ0〉 (5.6)

Further, we set pa = p[a,a]. Then by definition δ = maxj=1,...,N2 |pj − pN | and we want to bound

|p[1,N2] − (pN )N2 | ≤ |p[1,N2] − p1p2 · · · pN2 |+ |p1p2 · · · pN2 − (pN )N2 |. (5.7)

Using P0 + Q0 = I one sees that p[j,N2] = pjp[j+1,N2] + q[j,N2] so that we get by iteration the
formula

p[1,N2] −
N2∏
j=1

pj =
N2−1∑
j=1

p1 · · · pj−1 q[j,N2] (5.8)

We know |pj | ≤ 1 and |pN | = 1 by Lemma 2.2 since by assumption on r near the origin we are
uniformly gapped by ∆. Therefore we have

|q[j,N2]|2 ≤ ‖Q0Uj |Ψ0〉 ‖2 = 1− |pj |2 ≤ 2(|pj | − |pN |) ≤ 2δ (5.9)

For the other term we have∣∣∣∣∣∣
N2∏
j=1

pj − (pN )N2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N2∏
j=1

(pN + (pj − pN ))− (pN )N2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N2∑
k=1

(pN )N2−k ∑
α1<...<αk

k∏
j=1

(pαj − pαN )

∣∣∣∣∣∣ ≤
≤

N2∑
k=1

∑
α1<...<αk

δk = (1 + δ)N2 − 1 ≤ eδN2 − 1 ≤ eδN2
δN2. (5.10)

Putting those two together and recalling N = 2π/r we get the claim.

5.2 Lieb-Robinson

In this section we will use Lieb-Robinson bounds which were shown in [6]. Therefore we will give
a short presentation of facts and properties which we will use from that paper. Also it should
be noted that until now we were able in all our given bounds to make the dependency of J , ∆,
Qmax and R explicit. In this chapter we won’t any longer be always capable of that. Therefore
the constants appearing here will always depend on those parameters but not on the size L of
the system. The reason for this is that those constants involve Lieb-Robinson velocities of the
quasi-adiabatic evolution for our twisted Hamiltonians derived in [14].
The main ingredient from [6] we want to use is Theorem 4.5 therein. For this theorem one
assumes a family of HamiltoniansHΛ(s) on Λ ⊆ T uniformly gapped by γ0 which fulfill a uniform
exponential Lieb-Robinson bound. Then the unitaries UΛ(s) corresponding to the adiabatic
evolution of H(s) define an operator called by the authors the spectral flow, namely

αΛ
s (A) = UΛ(s)∗AUΛ(s) for A ∈ AΛ. (5.11)
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This operator is shown to fulfill again a Lieb-Robinson bound, namely let A ∈ AX and B ∈ AY .
Then we have

‖[αΛ
s (A), B]‖ ≤ ‖A‖‖B‖g(s)

∑
x∈X,y∈Y

F (d(x, y)) (5.12)

Here the function g(s) is independent of the size L, but depends (exponentially) on the Lieb-
Robinson velocity of H(s). F is monotonically decreasing and can be chosen in such a way that
F (r) ≤ C(1 + r)−3exp(−c r

ln2r ) for constants C, c again depending only on properties of H, in
particular also the spectral gap.

We want to apply this Lieb-Robinson bound in our situation. The problem is that we don’t
assume uniformly gapped Hamiltonians. But if one looks at the proof of (5.12) in [6], then one
sees that the authors use the existence of the gap to conclude as in Lemma 2.1 that the unitaries
defining the spectral flow are actually generated by the quasi-adiabatic evolution with threshold
γ0. Then they proceed to show the Lieb-Robinson bound for this evolution with fixed threshold.
Since we are already only looking at the quasi-adiabatic evolution with threshold ∆, we see that
we can indeed apply Theorem 4.5 of [6].

We also want to bound the sum given in (5.12). This can be easily done if we assume that
d := dist(X,Y ) > 0. Then we get the following bound.

Proposition 5.2. Given A, B and d as above. Then∑
x∈X,y∈Y

F (d(x, y)) ≤ min{|X|, |Y |} · h(d) (5.13)

for some subexponential function h fulfilling h(r) ≤ C ′ exp(−c′ r
ln2r ), where C ′, c′ are constants

derived from the constants C, c guaranteed by the properties of F .

Proof. In Z2 with the usual metric we have for fixed x ∈ Z2 and r > 0:

|{y ∈ Z2 | d(x, y) = r}| = 4r, (5.14)

where it would even suffice to have simply a linear bound in r. This bound then clearly also
holds on the Torus.
Since dist(X,Y ) = d and F is monotonously decreasing, we can write:∑

x∈X,y∈Y
F (d(x, y)) =

∑
x∈X

∑
r≥d

∑
y∈Y

d(x,y)=r

F (r) ≤
∑
x∈X

∑
r≥d

4rC(1 + r)−3e−c
r

ln2r ≤

≤ 4C|X|d−2 ∑
r≥d

e−c
r

ln2r ≤ C ′|X|e−c
d

ln2d . (5.15)

In the last step we used Lemma 2.5 from [6], which proves certain properties of this subexpo-
nential function. The claim follows from the symmetry of the Proposition in X and Y .

5.3 Localizing Operators

In the following Lemmas, f always denotes a subexponential function and C̃ a constant depend-
ing on J ,R,∆ and Qmax, but not on L.
f can be bounded by C̃exp(−c̃ ·

ln2(·)) for such C̃, c̃.
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To use (5.12) we see that we need to be able to bound the support of our operators in question. To
reach this, for the rest of the chapter we will make extensive use of localized unitaries which are
generated by localizations given by Lemma 2.7. To keep track of supports we call rect(x,y)(s, t) ⊆
T the rectangle centered at (x, y) in real-space with half-sides s, t in x- and y-direction. In this
notation, our strips can for example be expressed as Bx(0, R) = rect(0,0)(R,L/2).
We want to reduce our operators such that they are localized near the origin, where they feel the
flux-twists, since if they are supported away from the mid-lines, we have unitary equivalences.
To measure this we define the set Ω0 := rect(0,0)(L/8 − R,L/8 − R) ⊆ T , a square of half-side
L/8−R around the origin.

From here on, our fixed threshold ∆ for the quasi-adiabatic evolutions will be kept implicit in the
unitaries. We recall the definition of Ux(s, t, r) as evolving from (s, t) to (s+ r, t) in flux-space.
We want to replace this with a unitary which is supported away from y = L/2. In more detail,
we set Ω1 := By(0, 5

24L−R) and for fixed s, t we let UΩ1(s, t, r) be the unitary generated by

S
(L/24)
∆ (H(s+ r, t), ∂1HΩ1(s+ r, t)). (5.16)

We note that since HΩ1 is supported on Ω1, ∂1HΩ1(s + r, t) is supported on Ω1 ∩ Bx(0, R) =
rect(0,0)(R, (5/24)L − R). In total we see by Lemma 2.7 that UΩ1(s, t, r) is supported on
rect(0,0)(R, (5/24)L−R)(L/24) ⊆ rect(0,0)(R+ L/24, L/4−R) ⊂ Ωx ∩ Ωy.
So we see that it is supported away from y = L/2 and therefore we have the unitary equivalence

UΩ1(s, t, r) = RY (t, UΩ1(s, 0, r)). (5.17)

Evolving from (0, t) over (r, t) to (s, t), we conclude from the composition rule (2.12) the following
relation:

U∗Ω1(r, t, s− r) = UΩ1(0, t, r)U∗Ω1(0, t, s), (5.18)

so that we can see with (5.16) that for fixed s, t, U∗Ω1
(r, t, s− r) is generated by

S
(L/24)
∆ (H(r, t), ∂1HΩ1(r, t)). (5.19)

As done before we make the decomposition H(s, t) = HΩ1(s, t) +HΩ1
(s, t).

With these preliminaries done, we can now state the following approximation Lemma:

Lemma 5.3. For any s, t ∈ [0, 2π] and any A ∈ AΩ0 we have the following bound:

‖U∗x(0, t, s)AUx(0, t, s)− U∗Ω1(0, t, s)AUΩ1(0, t, s)‖ ≤ C̃s‖A‖f(L) (5.20)

Proof. We call δU (s, t) := U∗x(0, t, s)AUx(0, t, s) − U∗Ω1
(0, t, s)AUΩ1(0, t, s) what we want to

bound. Then we can compute with (5.16) and (5.19):

δU (s, t) =
∫ s

0
dr ∂r

(
U∗x(0, t, r)U∗Ω1(r, t, s− r)AUΩ1(r, t, s− r)Ux(0, t, r)

)
=

= i

∫ s

0
dr U∗x(0, t, r)

[
U∗Ω1(r, t, s− r)AUΩ1(r, t, s− r), δS(r, t)

]
Ux(0, t, r) (5.21)

where we have defined

δS(r, t) = S∆(H(r, t), ∂1H(r, t))− S(L/24)
∆ (H(r, t), ∂1HΩ1(r, t)). (5.22)
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If we denote with αΩ1
r the spectral flow corresponding to UΩ1(r, t, s− r), we can bound

‖δU (s, t)‖ ≤ s sup
r∈[0,s]

‖[αΩ1
r (A), δS(r, t)]‖. (5.23)

Here we want to use the Lieb-Robinson bound from (5.12). Therefore we need to separate the
supports of the operators. δS(r, t) has arbitrary support, so let us look instead at the localization
S

(L/24)
∆ (H(r, t), ∂1HΩ1

(r, t)). ∂1HΩ1
has support within

Bx(0, R) ∩ Ω1 = Bx(0, R) ∩By(0, (5/24)L−R) =
= Bx(0, R) ∩By(L/2, (7/24)L+ 2R) = rect(0,L/2)(R, (7/24)L+ 2R) (5.24)

Therefore the support of S(L/24)
∆ (H(r, t), ∂1HΩ1

(r, t)) lies within rect(0,L/2)(R+L/24, L/3 + 2R)
and this is separated from Ω0 = rect(0,0)(L/8−R,L/8−R) by

L/2− (L/3 + 2R)− (L/8−R) = L/24−R. (5.25)

So for this we know a good Lieb-Robinson bound. Furthermore, we see

δS(r, t) = δΩ1(r, t) + δΩ1
(r, t) + S

(L/24)
∆ (H(r, t), ∂1HΩ1

(r, t)) , where (5.26)

δΩ1(r, t) = S∆(H(r, t), ∂1HΩ1(r, t))− S(L/24)
∆ (H(r, t), ∂1HΩ1(r, t)) , and (5.27)

δΩ1
(r, t) = S∆(H(r, t), ∂1HΩ1

(r, t))− S(L/24)
∆ (H(r, t), ∂1HΩ1

(r, t)) (5.28)

and the first two summands in (5.26) we can bound by Lemma 2.7. In total we get

‖δU (s, t)‖ ≤ 4s‖A‖(QmaxJL) · g∆(L/24) + s‖A‖(QmaxJL)|Ω0| · h(L/24−R) (5.29)

with the subexponential function h from Proposition 5.2. From this we readily get the claim.

In the next Lemma we show what happens when we evolve and twist an operator that’s supported
near the origin to an arbitrary place by the unitaries V (s, t) defined in (5.1) (suppressing the
∆).

Lemma 5.4. Let A ∈ AΩ0. Then for all s, t ∈ [0, 2π] we have the following bound:

| 〈Ψ0|V ∗(s, t)RY (t, RX(s,A))V (s, t) |Ψ0〉 − 〈Ψ0|A |Ψ0〉 | ≤ C̃‖A‖(s+ t)f(L) (5.30)

Proof. Recalling the notation from section 4.1 we recognize the expectation values above as the
following traces:

Tr(ρy(t)U∗x(0, t, s)RY (t, RX(s,A))Ux(0, t, s))− Tr(P0A) (5.31)

This we can expand into the following four summands:

Tr
(
ρy(t)

[
U∗x(0, t, s)RY (t, RX(s,A))Ux(0, t, s)− U∗Ω1(0, t, s)RY (t, RX(s,A))UΩ1(0, t, s)

])
Tr
(
[ρy(t)−RY (t, P0)]U∗Ω1(0, t, s)RY (t, RX(s,A))UΩ1(0, t, s)

)
Tr
(
P0
[
U∗Ω1(0, 0, s)RX(s,A)UΩ1(0, 0, s)− U∗x(0, 0, s)RX(s,A)Ux(0, 0, s)

])
Tr ([ρx(s)−RX(s, P0)]RX(s,A))

where we used (5.17) and Tr(RY (t, B)) = Tr(B) for any operator B by the cyclicity of the trace
for the third summand and Tr(P0A) = Tr(RX(s, P0A)) for the last one.
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Since RX(s,A) and RY (t, RX(s,A)) are also supported within AΩ0 , we can use Lemma 5.3 to
bound the first and the third summand. Since UΩ1 is supported within Ωx ∩ Ωy we can use
partial traces for the second and last summand to get the following bound in norm:

2C̃s‖A‖f(L) + ‖A‖‖TrΩcy(ρy(t)−RY (t, P0))‖+ ‖A‖‖TrΩcx(ρx(s)−Rx(s, P0))‖ (5.32)

From Lemma 4.3 we get the claim with a new subexponential function f .

The following Lemma will provide us with the remaining tool we need to prove the last estimate
for the main theorem. In this Lemma the aforementioned Talor expansion will be done. We will
show that V	(s, t, r) is up to a small error a twisted version of V	(0, 0, r), which can further be
approximated by an operator supported in Ω0. More precisely, we have the following:

Lemma 5.5. For any s, t ∈ [0, 2π] we have the following bound for a numerical constant C and
sufficiently large L:

‖V	(s, t, r)−RY (t, RX(s, V	(0, 0, r)))‖ ≤ C
(
QmaxJLr · g∆(L/48) + (Qmax

J

∆Lr)5
)

(5.33)

Further, there is an operator V0(r) supported in AΩ0 such that for V	(0, 0, r) − V0(r) the same
bound holds and we have

‖V0(r)− I‖ ≤ CQmax
J

∆Lr (5.34)

Proof. If we denote for the unitaries Ux, Uy their localized versions defined by S(n)
∆ as Ux,n resp.

Uy,n, then from Proposition 2.6, Lemma 2.7 and (3.9) we get the following bounds for all s, t, r:

‖Ux(s, t, r)− Ux,n(s, t, r)‖ ≤ r(QmaxJL) · g∆(n) (5.35)
‖Uy(s, t, r)− Uy,n(s, t, r)‖ ≤ r(QmaxJL) · g∆(n) (5.36)

So if we denote with V	,n(s, t, r) the corresponding product of localized unitaries, we get the
bound

‖V	(s, t, r)− V	,n(s, t, r)‖ ≤ 4r(QmaxJL) · g∆(n) (5.37)

So going to the localizations gives us the first summand of the bound in the lemma. For the
second summand we consider the Taylor expansion of V	,n(s, t, r) in r. At r = 0 we have the
identity. Since differentiating can be executed by computing commutators, each time we take a
derivative we increase the support of the operator in terms of n and R. As long as we stay away
from the mid-lines, the resulting operator at s, t is simply the twisted version of the operator
at s = t = 0. So it is clear that as long as we choose n small enough, the fourth order Taylor
approximation V (4)(s, t, r) of V	,n(s, t, r) fulfills

V (4)(s, t, r) = RY (t, RX(s, V (4)(0, 0, r))) and (5.38)

‖V	,n(s, t, r)− V (4)(s, t, r)‖ ≤ C(Qmax
J

∆L)5 · r5 (5.39)

where the prefactor Qmax J∆L comes from the norm-bounds in (3.9). With this we get the first
part of the Lemma for n small enough and setting V0(r) := V (4)(0, 0, r) gives the second part
since V0(0) = I and for n small enough V0(r) is still supported in AΩ0 .
It is shown in Appendix D of [10] that choosing n = L/48 suffices to get the claim. If one wants
V0(r) to be supported in an even smaller region around the origin, or wants higher polynomial
bounds in r, one simply has to take some smaller n.
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Now we can finally bound the δ defined in Lemma 5.1. For that let

|Ψ	(s, t, r)〉 := V ∗(s, t)V	(s, t, r)V (s, t) |Ψ0〉 . (5.40)

Then the following holds:

Theorem 5.6. For sufficiently large L, we have for all s, t ∈ [0, 2π]

| 〈Ψ0|Ψ	(s, t, r)〉 − 〈Ψ0|Ψ	(0, 0, r)〉 | ≤ C̃ ·
(
L5r5 + rLf(L)

)
. (5.41)

Proof. We expand into the following summands:

〈Ψ0|V ∗(s, t) [V	(s, t, r)−RY (t, RX(s, V 	 (0, 0, r)))]V (s, t) |Ψ0〉 (5.42)
〈Ψ0|V ∗(s, t)RY (t, RX(s, [V 	 (0, 0, r)− V0(r)]))V (s, t) |Ψ0〉 (5.43)
〈Ψ0|V ∗(s, t)RY (t, RX(s, V0(r)))V (s, t) |Ψ0〉 − 〈Ψ0|V0(r) |Ψ0〉 (5.44)
〈Ψ0| [V0(r)− V	(0, 0, r)] |Ψ0〉 (5.45)

For the first, second and last summand we get a bound from Lemma 5.5. In the third summand
we subtract the Identity from both terms and then get a bound from Lemma 5.4 using A =
V0(r)− I ∈ AΩ0 and again Lemma 5.5.
Putting this together we get the bound

| 〈Ψ0|Ψ	(s, t, r)〉 − 〈Ψ0|Ψ	(0, 0, r)〉 | ≤

≤ C
(
QmaxJLr · g∆(L/48) + (Qmax

J

∆Lr)5
)

+ C̃Qmax
J

∆Lr · f(L) (5.46)

From here the claim readily follows.

Now that we have proven uniformity of the phase we can go back to Lemma 5.1 to get the last
estimate:

Lemma 5.7. Let f be the subexponential decreasing function from Lemma 5.6. Then for

r := 2π

2π
(

L4

3f(L)

)1/4
−1

(5.47)

we have: ∣∣∣〈Ψ0|V	(0, 0, 2π) |Ψ0〉 − 〈Ψ0|V	(0, 0, r) |Ψ0〉(
2π
r

)2∣∣∣ ≤ C̃L2f(L)1/8 (5.48)

The r is chosen in such a way that 2π
r is sure to be a integer. The bound given here is again

subexponential in L.

Proof. We note that this r is indeed subexponential in L. Therefore we can apply Lemma 5.1
and therein the first term dominates, as stated in the remark after that Lemma. So we get with
the bound on δ from Lemma 5.6 the following:∣∣∣〈Ψ0|V	(0, 0, 2π) |Ψ0〉 − 〈Ψ0|V	(0, 0, r) |Ψ0〉(

2π
r

)2∣∣∣ ≤ C̃√L5r + r−3Lf(L) (5.49)

If we minimize the term under the square root we get the r stated above. Inserting this yields
the claim.
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Therefore, we can now conclude the main Theorem:

Proof of Theorem 3.1. Taking the r from Lemma 5.7, this r is subexponential in L, so for L large
enough, the assumption of Lemma 3.2 holds, so 3.2, 4.1 and 5.7 together give us a subexponential
bound for ∣∣∣e2πiσ(e2/h)−1 − 1

∣∣∣ (5.50)

and the claim follows by the remark at the beginning of section 3.3
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6 Conclusion

We have now proven the quantization of the Hall conductance for our given system. This system
applies for example to a system of finitely many electrons on a torus under the assumption of
finite-range interactions. In reality this is not exactly true but due to screening effects of the
Coulomb force this is a valid approximation.
Hopefully the motivation and especially the technical details of this proof can be seen more
clearly than in the original work by M. Hastings and S. Michalakis. It was also a big concern
to keep the notations more consistent and less redundant. In particular the last chapter about
uniformity of the phase has considerably altered bounds since the original work for example
still had explicit dependencies on J , R, ∆ and Qmax although the same bound contained some
constants that were only implicitly dependent. To get a more explicit bound in terms of these
parameters, one needs to get explicit bounds on the Lieb-Robinson velocity from [14]. If we
have such bounds, then one could chase the constants appearing in [6] and [14] throughout the
proof to get explicit descriptions for the dependency of the bound in the main theorem. For our
purposes, however, it is enough to show existence of a bound subexponential in the size of the
system.
The authors themselves mention at the end of their paper also possible extensions and general-
izations. On the one hand, one could consider the fractional quantum Hall effect, where there is
not a unique, but a degenerated groundstate. The authors say that under some assumption of
topological order, one could give a proof along the same line but with more work. This was not
elaborated upon in this work for lack of time, therefore I won’t make any statement about the
correctness of this claim. On the other hand they mention systems not with a spectral gap but
a mobility gap or on an annulus instead of the torus. Since for those cases even the assumptions
are still not defined satisfactory, this will be left for future work.
Another obvious question would be how the integer closest to the Hall conductance depends on
the size of the system. It would be especially interesting to know whether the limit for L→∞
exists. But it is not clear if such a statement is possible to show with the techniques appearing
in this proof.
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