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Abstract

One-loop contributions to the Einstein-Hilbert term in toroidal minimally supersymmetric
type-IIB ZN orientifolds play an important role in the quantum correction to the metric of the
scalars, which might improve our understanding of the low energy effective theory of String
Orientifold models. The main purpose of this thesis is to evaluate string one-loop contributions
to the Einstein-Hilbert term in all tadpole-free toroidal minimally supersymmetric type-IIB
ZN orientifolds with D-branes based on the work of [16]. The construction of the partition
function of the theory is reviewed. The classification and calculation of the contributions from
the one-loop surfaces are discussed in details as well. Moreover, the concept and procedure
of the calculation of the corrections to the Einstein-Hilbert term are recapped. Last but not
least, a new type of integral in app.B.3 is evaluated.
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1 Introduction

1.1 String Perturbation Theory

In string perturbation theory, as an example, general closed bosonic string n-point amplitudes can
be computed as the following path integral1:

An =

∞∑
g=0

A(g)
n

=

∞∑
g=0

CΣg

∫
DhDXµ

∫
d2z1 . . . d

2znV1(z1, z̄1) . . . Vn(zn, z̄n)e−S[X,h], (1)

where we sum over all topologies of the world-sheet and integrate over the insertion points of the
vertex operators. CΣg is a weight factor which depends only on the topology of the world-sheet.

A
(g)
0 is called the genus g partition function.

The generalization to the open oriented string is straightforward: we simply have to allow for
surfaces with boundaries. Two-dimensional surfaces with boundary can be obtained from surfaces
without boundary by removing disks. The scattering amplitude of open and closed strings is
associated with Riemann surfaces with boundaries where the asymptotic open strings are realized
as vertex operator insertions at a boundary component and closed strings are realized as vertex
operator insertions in the bulk of the surfaces.

For the perturbation theory of unoriented strings we also need to consider non-orientable
world-sheets. On a non-orientable world-sheet there are closed noncontractible paths such that if
one parallel transports a pair of vectors around they change their relative orientation. A simple
example with boundary is the Möbius strip. It arises if we consider the propagation of an open
string. We can glue the two ends of the strip to form a annulus or we can glue up to an orientation
reversal Ω transformation which results in a Möbius strip. Non-orientable world-sheets can be
obtained from orientable world-sheets by adding crosscaps. A crosscap is obtained if one removes
a disk and identifies opposite points on the boundary.

The Euler number of a non-orientable surface with g handles, b holes and c crosscaps is

χ = 2− 2g − b− c. (2)

The Euler number is a topological invariant. The Euler number, the number of boundaries and
orientability completely specify the topology of a two-dimensional (connected) manifold.

The Gauss-Bonnet theorem states that

χ(Σ) =
1

4π

∫
Σ

√
hRd2σ +

1

2π

∫
∂Σ

kds, (3)

where R is the curvature scalar of h and k the trace of the extrinsic curvature on the boundary
which, in general, consists of several components. But these are precisely the terms which we can
add to the Polyakov action without changing the equations of motion. If we include in SP the
term −λχ and define gs = eλ, then each term in the perturbation series (1) will be weighted by

g
−2+2g+b+c+nc+

1
2no

s = g
−χ+nc+

1
2no

s , (4)

where nc(no) is the number of closed (open) string vertex operator insertions. The dependence
on χ is clear. The factors arising from the vertex operator insertions are also easily understood as
follows. Consider any world-sheet and add a handle to it, changing g → g + 1. This corresponds
to the emission and reabsorption of a closed string, i.e. to the insertion of two closed string vertex
operators, each of which contributes gs. Consider now a world-sheet with boundary and add a
handle to the boundary. This changes b → b + 1 and is equivalent to the insertion of two open

1This subsection is cited from [8]
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string vertex operators. In other words, we attach to each closed string vertex operator a factor

gs and to each open string vertex operator a factor g
1/2
s .

In this thesis, we will focus on χ = 0 surfaces, i.e. Torus, Annulus, Klein bottle and Möbius
strip, because they are of the first order in the perturbation theory (1).

1.2 Orientifold

The approach of this part of introduction is to illustrate the main ingredients of the general
procedure.2

1.2.1 Motivation of Orientifold

We have two main motivations for studying orientifolds.
1) New dualities: Orientifolds are particularly useful tools to establish dualities with less

Supersymmetry. This is because orientifolds are built based on theories with more supersymmetry,
and orientifold action can decrease the number of supersymmetry in the theory.

2) New Compactifications: Orientifolds have been proved to be useful for exploring different
parts of the compactified moduli space that were not accessible before as perturbative string vacua.
These new compactifications are often nonperturbatively connected with known compactifications
and have interesting duals in M and F theory.

1.2.2 Type-IIB String

The world-sheet action of the Type-II String in the light cone(l.c) gauge is given by

Sl.c. = − 1

2π

∫
dσdτ(∂+X

i∂−X
i − iψi∂−ψi − iψ̄i∂+ψ̄

i). (5)

The bosons satisfy periodic boundary condition. Fermions can be either periodic(Ramond sector)
or antiperiodic(Neveu-Schwarz sector) on the left and on the right. In each sector one has to
perform the GSO projection to obtain the superstring. A state with oscillator number N has mass
M which satisfies the mass-shell condition

α′M2 = 4(N − 1

2
). (6)

The fermionic oscillators are defined by
√

2bm = ψ2m−1 + iψ2m, m = 1, . . . , 4, which satisfy the
usual anticommutation relations

{bm, b†n} = δmn, {bm, bn} = 0, {b†m, b†n} = 0. (7)

There is a NS and R sector for both of the left and right-movers. GSO projection in the R sector
keeps only one of the two spinors. The relative choice of the GSO projection for the right-movers
and for the left-movers is significant: we can keep either fermions of the same chirality or of
opposite chirality in the two sectors. Depending on the choice, we get either Type-IIA theory or
Type-IIB theory:

Type-IIA : (8v ⊕ 8s)⊗ (8v ⊕ 8c)

Type-IIB : (8v ⊕ 8c)⊗ (8v ⊕ 8c). (8)

1.2.3 D-Branes

To describe a p-dimensional soliton, consider a p-dimensional hyperplane (Dp-brane) along the
directions X1,. . . ,Xp. Take the longitudinal coordinates Xµ, µ = 0, . . . , p to satisfy NN boundary
conditions, and the transverse coordinatesXm, m = p+1, . . . , 9 to satisfy DD boundary conditions.

2This whole subsection was cited from [10].
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Open strings are allowed to end on the p-dimensional hyperplane which can be viewed as a p-brane
at a location determined by the zero mode of the coordinates Xm. This configuration, called a
Dirichlet p-brane, behaves in every respect like a BPS soliton.

If there are n identical parallel D-branes, then the open string can begin on a D-brane labeled
by i and end on one labeled by j. The label of the D-brane is called the Chan-Paton index at
each end. Let us denote a general state in the open string sector by |ψ, ij〉λij . Here i, j are
Chan-Paton indices, λij is the Chan-Paton factor, ψ is the state of the world-sheet fields, and by
reality of the string wave function, λ† = λ. The massless excitations of the open string give rise
to a supersymmetric U(n) gauge theory on the worldvolume.

1.2.4 Orbifolds

Given a manifold M with a discrete symmetry G, one can construct an orbifold M′ =M/G. If
the symmetry acts freely onM, i.e. without any fixed points, thenM′ is also a smooth manifold.
If there are fixed points then M′ is singular near the fixed points. If we now consider strings
moving on a target space M, then we are naturally led to the concept of orbifolds in conformal
field theory.

Consider a theory A with a discrete symmetry group G. One can construct a new theory A′ =
orbifold of A by G, A′ = A/G.

In point particle theory, we simply take Hilbert space of A and keep only those states that are
invariant under G to obtain the Hilbert space of A′. However, the particle propagation would be
singular near the fixed points of G. In closed string theory, we must also add the ”twisted sectors”
that are localized near the fixed points. In twisted sectors, the string is closed only up to an action
by an element of the group G. What is surprising is that after the inclusion of twisted sectors,
string propagation on the orbifold is nonsingular even near the fixed points.

1.2.5 General Remarks about Orientifolds

In general, a symmetry operation of a string theory A can be a combination of target spacetime
symmetry and orientation-reversal on the world-sheet. The group of symmetry can then be written
as a union

G = G1 ∪ ΩG2. (9)

Given such a symmetry of A, one can construct a new theory A′ = A/G. If G2 is non-empty, the
resulting theory A′ is called an ”orientifold” of A. In most examples discussed recently, one starts
typically with a ZN orbifold of toroidally compactified Type-IIB theory and then orientifolds it
further by a symmetry Z2 = {1,Ω}. If the orbifold group ZN is generated by the element θ,
then the total orientifold symmetry is G = {1, θ, . . . , θN−1,Ω,Ωθ, . . . ,ΩθN−1} or symbolically,
G = ZN ∪ΩZN , cf. (60). We describe below some general features of the orientifold construction.

(1) Unoriented Surfaces:
An orientifold is obtained, like an orbifold, by gauging the symmetry G. A non-empty ΩG2 means
that orientation reversal, accompanied by an element of G2, is a local gauge symmetry; a string
and its orientation reversed image are gauge equivalent and must be identified. Therefore, the
string perturbation theory of the orientifold includes unoriented surfaces like the Klein bottle.

(2) Closed String Sector:
The closed string sector of the theory A consists of states in the Hilbert space of A that are
invariant under G and which survive the orientifold projection. It is completely analogous to
the untwisted sector of an orbifold after the projection. Typically, starting with oriented closed
strings, one gets unoriented closed strings after the projection.

Besides, orbifolds also give rise the the so called twisted sector: twisted sector states are closed
on the quotient manifold but not on the original manifold.

(3) Tadpole Cancellation and Orientifold Planes:
Orientifolds often but not always have open strings in addition to the closed strings. The open
string sector in orientifolds is analogous to, but not exactly the same as, the twisted sectors in
orbifolds. In the case of orbifolds, twisted sectors are necessitated by the requirement of modular
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invariance. In the case of orientifolds, the one-loop diagrams in string perturbation theory include
unoriented and open surfaces for which there is no analog of the modular group. There is, however,
a consistency requirement for these surfaces that is analogous to the requirement of modular
invariance for the torus. This is the requirement of tadpole cancellation. These loop diagrams can
have a divergence in the tree channel corresponding to a tadpole of a massless particle. Cancellation
of all tadpoles is necessary for obtaining a stable string vacuum. This requirement is very restrictive
and it more or less completely determines when and how the open string should be added.

Physically, nonzero tadpoles imply that the equations of motion of some massless fields are not
satisfied. They occur for the following reason. The planes that are left invariant by an order 2
symmetry is called the orientifold plane. Like a D-brane, an orientifold plane is a p-dimensional
hyperplane which couples to an R-R (p+1)-form which we generically refer to as Ap+1. The charge
of the orientifold plane can be calculated by looking at the R-R tadpole, i.e. emission of an R-R
closed string state in the zero momentum limit. If the orientifold plane has a nonzero charge then
it acts as a source term in the equations of motion for the (p+1)-form field Ap+1:

dHp+2 = ∗J7−p d ∗Hp+2 = ∗Jp+1, (10)

whereHp+2 is the (p+2)-form field strength ofAp+1, Jp+1 and J7−p are the ’electric’ and ’magnetic’
sources.

Consistency of the field equations requires that
∫
σk
∗J10−k = 0, for all surfaces σk without

a boundary. In particular, there can be no net charge on a compact space. This is the analog
of Gauss law in electrodynamics. The field lines emanating from a charge must either escape to
infinity or end on an opposite charge. In a compact space, the field lines have nowhere to go to
and hence must end on an equal and opposite charge. The only way the negative charge of a
p-dimensional orientifold plane in a compact transverse space can be neutralized is by adding the
right-number of Dirichlet p-branes so that Gauss law is satisfied and all tadpoles cancel.

(4) Open String Sector and Surfaces with Boundaries:
D-branes are hyperplanes where open strings can end. Inclusion of D-branes introduces the open
string sector in the theory. The action of the group G is represented in the D-brane sector by
some matrices, which we denote by γ. The γ matrices act on the Chan-Paton indices:

g : |ψ, ij〉λij → |ĝ(ψ), ij〉λ′ij ; λ→ λ′ = γ−1
g λγg (11)

Ωh : |ψ, ij〉λij → |Ω̂h(ψ), i′j′〉λ′ij ; → λ′ = γ−1
ΩhλγΩh. (12)

Tadpole cancellation together with the requirement that the matrices furnish a representation of
the symmetry G in the D-brane sector determine not only the number of D-branes but also the
form of the γ matrices. When n D-branes coincide, the worldvolume gauge group is U(n). After
the projection onto G-invariant states, we are left with a subgroup of U(n). The group as well
as the representations are usually uniquely determined by the consistency requirements discussed
above.

1.2.6 Orientifold Group and Spectrum of Type-I

Type-I theory is an orientifold of Type-IIB theory with orientifold symmetry group

Z2 = {1,Ω}. (13)

Closed String Sector:
The closed string sector of Type-I theory contains unoriented strings that are invariant under

orientation-reversal. The massless states are simply the states of Type-IIB that are invariant under
Ω. We know that only gij , φ, B′ij(R-R 2-form), and a symmetric combination of the two gravitini
survive the projection. We should notice that
Open String Sector:

Open string sector arises from the addition of D-branes that are required to cancel the charge of
the orientifold plane. Orientation reversal is a purely world-sheet symmetry, so it leaves the entire
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nine-dimensional space invariant. Thus, the orientifold plane is a 9-plane. It turns out to have -32
units of charge with respect to the 10-form non-propagating field from the R-R sector. This charge
can be canceled by adding 32 Dirichlet 9-branes which each have unit charge. The world-volume
theory of the D9-branes gives rise to gauge group U(32) but only an SO(32) subgroup is invariant
under the action of Ω.

Type-I supergravity super Yang-Mills theory is anomaly free only if the gauge group is SO(32)
or E8×E8. It is satisfying that the spectrum determined by the requiring world-sheet consistency
is automatically anomaly free.

1.2.7 Loop Channel and Tree Channel

A massless tadpole leads to a divergence in tree channel. For calculating tadpoles it is useful
to keep a field theory example in mind. Let us consider a very massive charged particle in field
theory with charge Q. At low momentum, the charge acts as a stationary source for a massless
photon. One can calculate the charge Q of the particle by calculating the amplitude for vacuum
going into a single photon in the background of this charge. Alternatively, one can calculate the
interaction between two particles each of charge Q at zero momentum exchange. The Feynman
diagram has 1/q2 where q is momentum exchange and the residue is proportional to Q2. If we
write 1/q2 as

∫∞
0
dl exp(−q2l), then the zero momentum divergence corresponds to the divergence

of this integral coming from very long propagation times l.
D-branes and orientifold planes can be treated similarly. A D-brane is like a very massive

charged particle. The interaction between the i-th D-brane and the j-th D-brane due to closed
string exchanges between the two branes can be computed by evaluating a annulus diagram with
one boundary on the i-th brane and the other boundary on the j-th brane. In string theory, unlike
in particle theory, because of conformal invariance the tree channel and loop channel diagrams
are related. For example, the tree channel annulus diagram can also be viewed as a loop-channel
diagram that evaluates the loop of an open string with one end stuck at the i-th brane and the
other end at the j-th brane. Similarly, the interaction between an orientifold plane and the i-th
D-brane is given by the Möbius strip diagram which has one boundary stuck at the i-th brane
and one crosscap stuck at the orientifold plane. Recall that a crosscap is a circular boundary with
opposite points on the boundary identified. Because some of the elements of the orientifold group
leave the orientifold plane invariant, the closed string that emanates from the plane has further
identifications under the symmetry and it looks like a crosscap.

To summarize, we can imagine that a crosscap is stuck at the orientifold plane and the boundary
is stuck at a D-brane. With an orientifold with charge Q and with N D-branes of unit charge, the
total charge is (Q+N)2, which can be written as Q2 +N2 + 2QN . The term N2 is proportional
to the interaction between the D-branes and is computed by the annulus diagram, the interaction
2QN between the D-branes and orientifold planes is computed by the Möbius strip diagram and
the interaction between orientifold planes Q2 is computed by the Klein bottle diagram. An efficient
way to evaluate these diagrams is to compute them in loop channel and then factorize them in
tree channel.

The loop-counting parameter in string theory is the Euler character. A k-th order term in
string perturbation theory which goes as the k-th power of λ corresponds to Riemann surfaces
with Euler character k − 1, where eλ = gs.

A surface with no crosscaps is orientable, otherwise it is nonorientable. We are interested in
the first quantum correction, i.e. Riemann surfaces with χ = 0. There are four surfaces that
contribute: a torus (one handle), a Klein Bottle (two crosscaps), a Möbius strip (one boundary,
one crosscap), and a Annulus (two boundaries) and we follow the convention3 of [2]. These surfaces
can be defined as quotients of tori under different involutions (cf. fig. 1)

IA(z) = IM(z) = 1− z̄, IK(z) = 1− z̄ + τ/2, (14)

where τ = τ1 + iτ2 is the modular parameter of the defining torus. The fundamental cells of the

3The following paragraph is also cited from [2]
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involutions can be chosen as follows:

A : z ∈ [0,
1

2
]× [0, τ2] M : z ∈ [

1

2
, 1]× [0, τ2] K : z ∈ [0, 1]× [0, τ2/2]. (15)

The open string boundaries, corresponding to the loci of fixed points, are drawn as thick lines in
fig.1. There are no fixed points for the Klein bottle representing the evolution and orientation flip
of a closed string. Notice also that the three covering tori plus the torus case are characterized by
different modular parameters:

τT = it, τK = 2it, τA =
it

2
, τM =

1

2
+
it

2
. (16)

Figure 1: Covering tori and fundamental cells for the three one-loop surfaces σ = A,M,K.
Cited from figs. 1 of [2]

For now, if we transform the tree channel to loop channel according to fig.1, we can easily get
the relations

Annulus : t =
1

l

Klein bottle : t =
1

4l

Möbius : t =
1

4l
(17)
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1.3 Minimal Supersymmetry

Minimal supersymmetry in 4D means supersymmetry withN = 1 in 4D, i.e. only one supercharge.
The D = 4 supersymmetry algebra must be N = 1 because the gauge-couplings in the Standard
Model are chiral. Otherwise it will lead to non-chiral theory which is in contrast to Standard
Model Phenomenology. This is the phenomenological reason for us to be interested in models
with minimal supersymmetry.

Therefore the phenomenological requirement of 4D N = 1 minimal supersymmetry gives us
another important reason for studying orientifold. String theories compactified on Calabi-Yau
manifolds can preserve 1/4 of the original supersymmetry. To further reduce the number of
supersymmetry to N = 1, orientifold is a very good tool, thus makes it particular important.

1.4 Motivation of the corrections to the Einstein-Hilbert term

This section is cited from app. B of [19].
In the string low energy approximation, the low energy effective action depends on three

functions: the superpotential W (Φ); an arbitrary holomorphic function fab(Φ) replacing the gauge
coupling g−2

a ; the Kähler potential K(Φ,Φ∗) which is a general function of the superfields. The
purely bosonic part of the Lagrangian density is

Lbos
(−G)

1
2

=
1

2κ2
R−K,̄ijDµφ

i∗Dµφj − 1

4
<(fab(φ))F aµνF

bµν

−1

8
=(fab(φ))εµνσρF aµνF

b
σρ − V (φ, φ∗). (18)

The potential is

V (φ, φ∗) = exp(κ2K)(K ījW ∗;iW;j − 3κ2W ∗W ) +
1

2
fabD

aDb. (19)

Here K īj is the inverse matrix to ∂ī∂jK and

W;i = ∂iW + κ2∂iKW (20)

<(fab(φ))Db = −2ξa −K,it
a
ijφ

j . (21)

The negative term proportional to κ2 in V (φ, φ∗) is a supergravity effect.
The kinetic term for the scalars is field-dependent. The second derivative

K,̄ij =
∂2K(φ, φ∗)

∂φi∗∂φj
(22)

plays the role of a metric for the space of scalar fields.
We know that the one-loop contributions to the Einstein-Hilbert term in toroidal minimally

supersymmetric type-IIB orientifolds with D-branes have potential applications to the determi-
nation of quantum corrections to the moduli Kähler metric in these models. We can directly see
this through (116) in sec. 4.1. And we can see from above that the Kähler metric and Kähler
potential show up in most terms of the low energy effective Lagrangian. Thus we can conclude that
the correction to the Einstein-Hilbert term may play a potential role in the low energy effective
action, which might be phenomenologically important. This is the motivation of this thesis: Try
to complete the calculations of the correction in all tadpole-free ZN models.
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2 General Structure

All the notations and main calculations follow [8]. For Γ orbifolds, we have SO(D) generators θ
and twist vector ~v. We always use the light-cone gauge.

First we directly give the general partition function for the world-sheet σ:

〈1-loop〉σ = Zσ = TrU+T orD−branes
NS,R [

1 + Ω

2
· P · 1 + (−1)F

2
e−2πt(L0+L̄0−c/12)]

=
V10−D

2 · (10−D)N(4π2α′)(10−D)/2

∫ ∞
0

dt

tD/2

∑
k,`

∑
s=even

Zσ[θk, θ`](τ, s) (23)

with

P =
1

N

N−1∑
`=0

θ`, (24)

ZA[θ`](τA, s) = Z99[θ`](τA, s) + Z55[θ`](τA, s) + Z95[θ`](τA, s), (25)

ZM[θ`](τM, s) = Z9[θ`](τM, s) + Z5[θ`](τM, s), (26)

ZK[θ`](τA, s) = Zuntwisted[1, θ`](τK, s) +

N−1∑
k=1

Ztwisted[θk, θ`](τK, s), (27)

ZT [θ`](τA, s) = Zuntwisted[1, θ`](τT , s) +

N−1∑
k=1

Ztwisted[θk, θ`](τT , s). (28)

Here τσ is defined in (16). 1+Ω
2 is the orientifold projection and P is the ZN symmetry projection.

Spin structures can be expressed in (α, β) or s, cf. table 1. And we should also notice that there
is no twisted sectors for A and M, because both of the two surfaces can be considered as open
string in loop-channel, thus have no twisted sector.

We are considering here 1-loop amplitudes, i.e. Euler Number χ = 0 surfaces. Thus we need
to consider σ as Torus, Annulus, Klein bottle and Möbius strip. For the Torus and Klein bottle,
we use U + T to label the untwisted/twisted sectors. As we know, while Annulus and Möbius
strip are the propagators of the closed strings propagating between two D-branes, they are also
equivalent to closed 1-loop amplitudes of open strings with end-points on the two D-branes. In
this sense, we can calculate the amplitude using open string theory. We use D-branes to label
where the open strings are attached.

2.1 Bosonic partition function

We will compute the bosonic partition function of type-II string compactified on a toroidal ZN
orbifold first.

2.1.1 Non-compact dimension

For non-compact dimension, the computation is standard. We have the partition function

Z =
1

√
τ2ηη̄

for each non-compact dimension.
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2.1.2 Compact dimension

Mode expansion We use the complexified coordinates

Zj =
1√
2

(X2j−1 + iX2j)

Z∗j =
1√
2

(X2j−1 − iX2j)

and we have:

θ`Zjθ−` = e2πi`vjZj

θ`Z∗jθ−` = e−2πi`vjZj (29)

vj is the twist vector which is determined by the crystallographical structure.
The mode expansions are

Zj(σ0, σ1) = zj0 + α′
M j

R
σ0 +N jRσ1 + i

√
α′

2

∑
s

αjs
s
e−is(σ

0−σ1) + i

√
α′

2

∑
t

ᾱjt
t
e−it(σ

0+σ1). (30)

M j and N j are complexified internal momenta and winding numbers respectively. W.l.o.g. we
consider the right-mover. We can find that

θ`αjnθ
−` = e2πi`vjαjn

θ`ᾱjnθ
−` = e2πi`vj ᾱjn (31)

for Zj and

θ`α∗jn θ
−` = e−2πi`vjα∗jn ,

θ`ᾱ∗jn θ
−` = e−2πi`vj ᾱ∗jn (32)

for Z∗j .
Imposing

Zj(σ0, σ1 + 2π) = e2πikvjZj(σ0, σ1), (33)

which is valid for a complex boson in the k-th twisted sector, fixes the frequencies of the mode
expansion to s = n + kvj and t = n − kvj with n integer. Furthermore, zj0 must satisfy

(1 − e2πikvj )zj0 = 0 mod 2πΛ (Λ is the torus coordinates lattice), i.e. it must be a fixed
point of the orbifold action and, therefore, states in the twisted sectors are localized at the fixed
points.
For the complex conjugate Z∗j there is an analogous expansion with coefficients α∗jn−kvj = (αj−n+kvj

)†

for the right-movers, ᾱ∗jn+kvj
= (ᾱj−n−kvj )

† for the left-movers and z∗j0 = (zj0)† for the center-
of-mass position. Canonical quantization results in the following commutator relations for the
oscillators

[αim+kvi , α
∗j
n−kvj ] = (m+ kvi)δ

ijδm+n,0,

[ᾱim−kvi , ᾱ
∗j
n+kvj

] = (m− kvi)δijδm+n,0. (34)

The creation operators are αj−n+kvj
, n > 0 and α∗j−n−kvj , n ≥ 0 for the right-movers and ᾱj−n−kvj ,

n > 0 and ᾱ∗j−n+kvj
, n ≥ 0 for the left-movers. Here we consider the case where 0 < kvj < 1. The

occupation number operators are

N j
R =

∞∑
n=−∞

: αjn+kvj
α∗j−n−kvj :,

N j
L =

∞∑
n=−∞

: ᾱjn+kvj
ᾱ∗j−n−kvj :,

with normal ordering : :. Note that the eigenvalues of NL and NR in the twisted sectors are
multiples of 1/N .
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ZB [1,1] untwisted sector For untwisted sector (k = 0)

Lj0(1) =
1

2
(pjR)2 +N j

R(k = 0)

L̄j0(1) =
1

2
(pjL)2 +N j

L(k = 0),

pjL and pjR are the Kaluza-Klein momenta for the left and right movers on the (compact) j-th

dimensions. L0 without j is just the sum of Lj0 over j.
The bosonic partition function is

Zuntwisted
bosonic = ZB [1,1] = Tr(qL0− 1

12 q̄L̄0− 1
12 )

=
1

|η(τ)|2D
∑

mR,mL∈Λ∗

∑
nR,nL∈Λ

q
1
2 (m+ 1

2n)2

q̄
1
2 (m− 1

2n)2

,

m is quantized momentum and n is winding number. Λ∗ is the dual lattice of the torus coordinates
lattice.

ZN projection For ` 6= 0 twisted sectors, i.e. for complex bosons which satisfy the boundary
conditions

Zj(σ0 + 2πτ2, σ
1 + 2πτ1) = e2πilvjZj(σ0, σ1), (35)

we need to evaluate the trace with an θ` insertion. Since we assume that θ` leaves no directions
unrotated, thus neither quantized momenta nor windings survive the trace. θ` is ZN group element
insertion. We only need to consider states obtained from the Fock vacuum by acting with creation
operators for which the complex coordinates are eigenvectors of θl. The Fock vacuum is defined
to be invariant under θ

|nj1, n
j
2, . . . , n

∗j
1 , n

∗j
2 , . . . 〉 := (αj−1)n1(αj−2)n2 . . . (α∗j−1)n

∗
1 (α∗j−2)n

∗
2 . . . |0〉.

Z[1, θ`] sector Then, for instance, for the right movers in Zj , using (31) and (32), we find the
contribution

Tr(θ`qL
j
0(1)− 1

12 )) = q−
1
12

∑
njm,n

∗j
m

〈nj1, n
j
2, . . . , n

∗j
1 , n

∗j
2 , . . . |θ`qL

j
0(1)|nj1, n

j
2, . . . , n

∗j
1 , n

∗j
2 , . . . 〉

= q−
1
12 (1 + qe2πi`vj + qe−2πi`vj + . . . ) (36)

where the first term is the contribution from the vacuum, the second and third terms from states
obtained by acting with αj−1 and α∗j−1 on the vacuum, and so on. It is not hard to see that the
whole expansion can be cast into the form

Tr(θ`qL
j
0(1)− 1

12 )) = q−
1
12

∑
all nm,n∗m

(∏
m

(qme2πi`vj )nm(qme−2πi`vj )n
∗
m

)
= q−

1
12

∏
m

(∑
a

(qme2πi`vj )a
∑
b

(qme−2πi`vj )b
)

= q−
1
12

∞∏
m=1

(1− qme2πi`vj )−1(1− qme−2πi`vj )−1

= −2 sin(`πvj)
η(τ)

ϑ

[
1
2

− 1
2 − `vj

]
(τ)

. (37)

The last step is derived by using the definitions of ϑ and η functions, cf. (189) and(193).
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Taking into account left and right-movers for all compact coordinates we obtain

Z[1, θ`] = TrU (θ`qL0− 1
12 q̄L̄0− 1

12 ) = χ(θ`)

∣∣∣∣∣
D/2∏
j=1

η(τ)

ϑ

[
1
2

− 1
2 − `vj

]
(τ)

∣∣∣∣∣
2

1 means untwisted and θl means ZN element inserted.
Since P defined in (24) must act crystallographically on the torus lattice and since L = niei

with integer coefficients ni, in the lattice basis θ must be a matrix of integers. Hence the quantities

Trθ` =

D/2∑
j=1

2 cos(2π`vj) and χ(θl) =

D/2∏
j=1

4 sin2(π`vj) (38)

must be integers. In fact, by the Lefschetz fixed point theorem, χ(θ`) is the number of fixed points
of θ`, and this can be explained as the result of the crystallographical structure.

General Bosonic Partition Function Use modular transformations of ϑ and η functions, we
can get the partition functions of twisted sectors

S : τ → −1

τ
, (39)

S
(
Z[1, θk]

)
= χ(θk)

∣∣∣∣∣
D/2∏
j=1

η(− 1
τ )

ϑ

[
1
2

− 1
2 − kvj

]
(− 1

τ )

∣∣∣∣∣
2

= χ(θk)

∣∣∣∣∣
D/2∏
j=1

η(τ)

ϑ

[
1
2 + kvj

1
2

]
(τ)

∣∣∣∣∣
2

= χ(θk)(qq̄)−
D
24 +Ek

∣∣∣∣∣
D/2∏
j=1

∞∏
n=1

(1− qn−1+{kvj})−1(1− qn−{kvj})−1

∣∣∣∣∣
2

= Z[θk,1],

where Z[θk,1] means θk twisted sector and no ZN element inserted, and (cf. (10.166) in [8])

Ejk =
1

2
{kvj}(1− {kvj}), (40)

Ek =

D/2∑
j=1

1

2
{kvj}(1− {kvj}) (41)

is the vacuum expectation value of L0 in the twisted Fock vacuum which is annihilated by all
positive oscillator modes. We define 0 ≤ {x} < 1 as the fractional value of x : {x} = x− bxc. (cf.
p.304-305 of [8])

We can continue generating pieces of the partition function by employing modular transfor-
mations (198)-(201). The general result can be easily found to be

Z[θk, θ`] = χ(θk, θ`)

∣∣∣∣∣
D/2∏
j=1

η(τ)

ϑ

[
1
2 + kvj
1
2 + `vj

]
(τ)

∣∣∣∣∣
2

, (k`vj /∈ Z or Z +
1

2
) (42)
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χ(θk, θ`) is the number of simultaneous fixed points of θk and θ`. This formula is valid when
θk leaves no fixed directions, otherwise a sum over momenta and windings could appear. In
addition, χ(θk, θl) should be replaced by χ̃(θk, θl), the number of fixed points in the sub-lattice

effectively rotated by θk. χ and χ̃ differ because when kvj=integer, the expansion of ϑ[
1
2 +kvj
1
2−lvj

]/η

has a prefactor (2 sinπ`vj), as follows from the product representation of the ϑ-function. Thus
the actual coefficient in the expansion of (42) is χ̃(θk, θl) = χ(θk, θ`)/

∏
j,kvj∈Z 4 sin2 π`vj .

Summary The bosonic piece of the partition function of the type-II string compactified on a
symmetric ZN orbifold is:

ZB [θk, θ`] =

(
1

√
τ2ηη̄

)8−D

χ̃(θk, θ`)

∣∣∣∣∣
D/2∏
j=1

η(τ)

ϑ

[
1
2 + kvj
1
2 + `vj

]
(τ)

∣∣∣∣∣
2

, (k`vj /∈ Z or Z +
1

2
) (43)

D is the number of compact dimension.

2.1.3 Number of Fixed points χ and χ̃

From (A.4) of [13] we know

χ̃(1, θn) = 1, χ̃(θm, θn) = χ(θm, θn) if χ(θm) 6= 0,

χ̃(θm, θn) = χ̂(θm, θn) = χ(θm, θn)/
∏

j,mvj∈Z

4 sin2 πnvj if χ(θm) = 0, (44)

where χ(θm, θn) is the number of simultaneous fixed points of θm and θn. If θm leaves fixed tori,
i.e. χ(θm) = 0, we must use χ̂(θm, θn) which is the number of simultaneous fixed points in the
subspace actually rotated by θm. This is the same as we discussed above.

As we will see in sec. 2.3, only θN/2-twisted sector will survive, thus we are only interested in
χ(θN/2, θn) cases.

From p.4 in [15], we see that the ZN orbifold group action is generated by

θ : zj → e2πivjzj , (45)

with twist vector ~v (cf. app. C).
From p.301 on [11], we can conclude that (using χg,h to represent arbitrary χ(θm, θn)) if e is

the identity element of ZN ,

χe,g = χ(Fg) = det(1− g) = χ(θ`) =

D/2∏
j=1

4 sin2(π`vj). (46)

Since x is a fixed point of gh, if it is a fixed point of g and a fixed point of h, one sees that

χg,h = χg,gh. (47)

Similarly,
χg,h = χg−1,h (48)

since the fixed point sets of g and g−1 are identical. This is also true for h and h−1, thus we have

χg,h = χg,h−1 . (49)

Moreover, the number is symmetric under exchanging g and h, so we have

χg,h = χh,g. (50)

Using all these facts we can evaluate all terms of the form χθm,θn .
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2.2 Fermionic partition function

Now we come to the fermionic part. Since the Torus compactification has no action on fermionic
degrees of freedom, we don’t have to distinguish compact or non-compact dimensions. Also be
aware that the twist vectors of fermion vi is different from the twist vectors of compactified bosons
vj , because fermions are not compactified thus they are in different dimension than the bosonic
case. However, the twist vectors of fermions won’t change the uncompactified dimensions of
fermions, therefore we take those components of the twist vectors to be 0.

2.2.1 Fermion

We now compute the one-loop partition function of a complex fermion with twisted boundary
conditions.

We define ψ = 1√
2
(ψ1 + iψ2) and ψ̄ = 1√

2
(ψ1 − iψ2). W.l.o.g, we observe the action of the

right-mover

S =
i

π

∫
d2σψ̄∂+ψ (51)

with energy-momentum tensor

T =
i

2
(ψ̄∂−ψ + ψ∂−ψ̄). (52)

Again, using mode expansion and canonical quantization, we can get the Hamiltonian H =
L0 − c

24 with

L0 =

∞∑
m=1

{(
m+ α− 1

2

)
b̄−m−α+ 1

2
bm+α− 1

2
+

(
m− α− 1

2

)
b−m+α+ 1

2
b̄m−α− 1

2

}
+
α2

2
(53)

and c = 1 for one complex fermion. α is the parameter of the twisted boundary condition defined
in below.

Then we impose the twisted boundary conditions. For torus spatial direction

ψ(σ0, σ1 + 2π) = −e+2πiαψ(σ0, σ1),

ψ̄(σ0, σ1 + 2π) = −e−2πiαψ(σ0, σ1).

For torus time direction

ψ(σ0 + 2πτ2, σ
1 + 2πτ1) = −e+2πiβψ(σ0, σ1),

ψ̄(σ0 + 2πτ2, σ
1 + 2πτ1) = −e−2πiβψ(σ0, σ1).

The minus signs correspond to path-integral with anti-periodic boundary conditions. If we want
periodic boundary conditions we have to insert (−1)F . α, β ∈ {0, 1

2} are spin structures, namely α
stands for NS or R sectors, and β stands for (−1)F inserted or not. But we still need to implement
the β-twist (i.e. GSO projection) on operators, i.e. we look for an operator PGSO which satisfies

PGSObn+α+ 1
2
P−1

GSO = e2πiβbn+α+ 1
2
,

PGSOb̄n+α+ 1
2
P−1

GSO = e−2πiβ b̄n+α+ 1
2
,

and thus the GSO projection is implemented by PGSO.
This operator is easily found to be

PGSO = e2πiβ(N−N̄),

where N, N̄ are the number operators

N =
∑
η>0

b−η b̄η, N̄ =
∑
η>0

b̄−ηbη. (54)
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The partition function in the α, β sector is

Z[αβ ](τ) = Tr(PGSOq
L0− 1

24 )

= Tr(e2πiβ(N−N̄)qL0− 1
24 )

= q
α2

2 −
1
24

∞∏
n=1

(1 + qn+α− 1
2 e−2πiβ)(1 + qn−α−

1
2 e+2πiβ)

= e2πiαβ

ϑ
[ α
−β

]
(τ)

η(τ)
, (55)

cf. (187) for the definition of q. We can get the full result by adding the left-mover part.

2.2.2 Partition function

Now we consider the orbifold symmetry, which imposes additional boundary conditions

ψj(σ0, σ1 + 2π) = −e+2πiαe2πikviψj(σ0, σ1),

ψj(σ0 + 2πτ2, σ
1 + 2πτ1) = −e+2πiβe2πi`viψj(σ0, σ1). (56)

And the partition function on the j-th complex compact dimension is

ZjF [θk, θ`] = Tr(NS⊕R)⊗(NS⊕R)

(
PGSOθ

`qL
j
0(θk)− 1

24 q̄L̄
j
0(θk)− 1

24

)
. (57)

The trace is over the left and right NS and R sectors for the fermions. This is equivalent to
summing over α ∈ {0, 1

2}. Similarly, the GSO projection amounts to summing over β ∈ {0, 1
2}.

Using the result from 2.2.1, we get the partition function of fermion

ZF [θk, θ`] =
1

4

∣∣∣∣∣∑
α,β

sαβ(k, `)

4∏
j=1

ϑ
[ α+ kvj
−β − `vj

]
η

∣∣∣∣∣
2

, (58)

sαβ(k, `) is the spin structure coefficients. By convention we take s00(k, `) = 1. Imposing modular
invariance, notice that

∑
vi = 0, we check

s00(k, `) = −s 1
2 0(k, `) = 1, s0 1

2
(k, `) = −eiπk

∑
vi = −1 = ∓s 1

2
1
2
(k, `) (59)

leads to a modular invariant partition function.
Note that k = N should give the same solution as k = 0. This gives, once more, the condition∑
vi = 0. Note further that the sign of s 1

2
1
2
(k, `) is not fixed by modular invariance. Choosing

opposite(equal) signs in the left and right-movers corresponds to orbifold compactifications of
Type-IIA(B) strings (as one can see by looking at the k = ` = 0 sector).

2.3 Orientifold Ω symmetry

There are two distinct orientifold groups possible:

YN = {1,Ω, θk,Ωk}, k = 1, 2, . . . , N, θk ≡ e2πik/N , Ωk ≡ e2πik/NΩ (60)

and

WN = {1, θ2k−2,Ω2k−1}, k = 1, 2, . . . ,
N

2
, N even. (61)
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Ω action and CP factors All conventions follow sec.2 of [1]. We now elaborate the action of
the orientifold groups on the states in the open string sector, on D-branes. A generic state can be
written as λij |X, ij〉 where i, j label the end points of the open strings, λ is a CP matrix, and X
collectively labels the world-sheet oscillators that are involved in that state.

The orientifold elements have two possible actions on a generic D-brane state. In addition
to the obvious action on the oscillator states, they also act on the CP indices with a matrix
representation of the orientifold group. It is generated via matrices γθ

θk : |X, ij〉 → εk(γk)ii′ |θk ·X, i′j′〉(γ−1
k )j′j , (62)

Ωk : |X, ij〉 → εΩk(γΩk)ii′ |θk ·X, j′i′〉(γ−1
Ωk

)j′j , (63)

where εk, εΩk are signs. Note that the Ωk elements interchange also the string end points. The
group property θk = (θ1)k and θN = 1 implies

γk = ±(γ1)k, (γk)N = ±1. (64)

Furthermore, the condition that Ω2

Ω2 : |X, ij〉 → ε2Ω(γΩ(γTΩ)−1)ii′ |X, i′j′〉(γTΩγ−1
Ω )j′j , (65)

is equal to the identity requires that

γΩ = ζγTΩ , ζ2 = 1. (66)

Note that the adjoint action on the CP indices implies that the representation of the orientifold
group on the CP sector is defined up to a sign.

To evaluate the trace of partition functions under Ω, we require the action of the orientation
reversal on the bosonic oscillators

ΩαµkΩ−1 = ᾱµk , ΩᾱµkΩ−1 = αµk , (Closed String) (67)

ΩαµkΩ−1 = (−1)kαµk , ΩᾱµkΩ−1 = (−1)kᾱµk , (NN boundary condition for Open String)
(68)

ΩαµkΩ−1 = (−1)k+1αµk , ΩᾱµkΩ−1 = (−1)k+1ᾱµk , (DD boundary condition for Open String),
(69)

and Ω also transforms ND boundary conditions to DN ones.
For the fermionic ones, we have

ΩψrΩ
−1 = ψ̄r, Ωψ̄rΩ

−1 = −ψr, (Closed String) (70)

ΩψrΩ
−1 = (−1)rψr, Ωψ̄rΩ

−1 = (−1)rψ̄r, (NN boundary condition for Open String)
(71)

ΩψrΩ
−1 = (−1)r+1ψr, Ωψ̄rΩ

−1 = (−1)r+1ψ̄r, (DD boundary condition for Open String).
(72)

The extra minus sign in (70) is inserted in order for the product ψrψ̄r to be orientation invariant.
This choice does not affect the GSO-invariant states.

Moreover, we should notice that only the left-right symmetric sectors (NS-NS and R-R) survive
the Ω projection.

Lattice Sum on TD under Ω We only have the lattice sum in the case of that there is fixed
tori, i.e. χ(θm) = 0, or equivalently, `vj is integer or half-integer. Otherwise there is no windings
nor momenta in the compactified dimensions. And we need to compute the traces of the lattice
states, which is what we are going to do to here: Lattice Sum. We use complex torus coordinates
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to represent the coordinates of the compact dimensions, thus we complexify the momenta and
windings

Mj = m2j−1 + im2j j = 1 . . .
D

2
, (73)

Nj = n2j−1 + in2j j = 1 . . .
D

2
. (74)

This is allowed because if we observe the mode expansion of Xi

Xi(σ, τ) = xi + α′piτ + LRσ + i

√
α′

2

∑
n 6=0

1

n
(αine

−in(τ−σ) + ᾱine
−in(τ+σ)), (75)

we see that the momenta mi = pi · R and windings ni = L follow the same θ` transformation as
Xi. Thus there will be no problem to complexify those parameters.

The orientation reversal acts on momenta and windings as

Ω|Mj , Nj〉 = |Mj ,−Nj〉, (76)

then only momenta survive the trace when no ZN element θ` is inserted

〈Mj , Nj |Ω|Mj , Nj〉 =

D∏
i=1

δNj ,0. (77)

On the other hand, due to (31) and (32), we can get

θ`|Mj , Nj〉 = |e2πi`vjMj , e
2πi`vjNj〉, (78)

we observe that the state survives the θ` action after trace only when `vj is integer, because mi

and ni have to be integers.
Furthermore,

Ωθ`|Mj , Nj〉 = |e2πi`vjMi, e
2πi(`vj− 1

2 )Ni〉. (79)

We can easily see that the state survives the Ωθ` action after trace only when `vj is integer or
half-integer. However, momenta and windings will not simultaneously survive the Ωθ` action after
trace. If `vj is integer, then momentum survives. If `vj is half-integer, then winding number
survives.

Chapter 4.18.5 ”Multiple compact scalars” of [17] gives the details of the calculation. The j0
current of L0 is changed due to the toroidal compactification, which results in a lattice sum over
the internal momenta and windings, cf. section 4.2.2 [9]. The general result is

Ztorus
lattice =

√
g

`2s(
√
τ2η)2

∑
~m,~n

e[π(gij+Bij)/τ2`
2
s](m

i+niτ)(mj+nj τ̄), (80)

gij is the metric of the 2-torus in the target space, Bij is antisymmetric constant background value
of the two-index antisymmetric tensor over the 2-torus. We won’t consider B in our calculation,
thus set Bij = 0. We define Vj =

√
g to be the regularized volume of the torus. j stands for the

j-th coordinate of the torus. G is the determinant of the metric gij .
Since in the following sections, momentum and winding won’t simultaneously appear in the

partition function. After performing a Poisson re-summation, we summarize and rewrite the

momentum/winding sum along the j-th torus with volume Vj and metric g
[j]
ab from (80) as

L[j,M ] =
Vj

4π2α′t

∑
m1,m2

e−
π
tm

ambg
[j]
ab , (81)

L[j,W ] =
4π2α′

Vjt

∑
n1,n2

e−
π
t nanbg

[j]ab

. (82)

These sums are expressed in the closed string channel. Details could be found in (8.2.9) of [18].
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Twisted Sectors Here we need to consider the insertion of the Orientifold element Ω. We know
that only left-right symmetric states will survive the Ω insertion after trace. Using the results from
2.1.2, we can easily see that only when s = n+ kvj and t = n− kvj (k is the k-th twisted sector)
are the same index set, the state is left-right symmetric. This is equivalent to requiring kvj is
integer or half-integer for all j. However, this could only be possible for k = 0 or N

2 . Then we

know that for twisted sectors of Klein bottles, only the N
2 -th twisted sector survives.

2.4 D-branes on TD/ZN

Refer to 9.14.3 of [17] and Section 2.2 of [1]
The tadpole of Klein bottle amplitudes will be canceled by the insertion of D9-branes filling

all ten dimensions. Through T-duality, we can further see the existence of D5-branes because T-
duality transforms D9-branes to D5-branes. And the tadpole must be canceled by the addition of
D5-branes as well. After that, we will also see that O-planes cancel D-brane charges over compact
space.

D5-branes will be stretching in the non-compact dimensions. The orbifold now acts on the
transverse positions of the branes. Therefore, there are two main options to consider.

We may consider a group of branes sitting at a fixed point of the orbifold action. In such a
case there is no further restriction on the transverse position. We may also consider a group of
branes at a generic position xi on TD. Orbifold invariance imposes that we also include a mirror
brane group at the position −xi.

In the orientifold we are considering, the D5-branes will have vanishing twisted tadpoles and
therefore will not be fractional. Fractional means branes which are fixed to the orbifold fixed
points. This means we won’t have to worry about those fixed branes.

In order to accommodate the orbifold action on the CP factors of D9-and D5-branes we must
introduce matrices γθ/Ω,9 and γθ/Ω,5. They satisfy the constraints (64)-(66) coming from the
orbifold group property.

For the trace of the CP factors, using (63) we may evaluate the trace as in (5.3.24) of [17]∑
ij

〈i, j|Ω|i, j〉 =
∑
iji′j′

〈i, j|j′, i′〉(γΩ)ii′(γ
−1
Ω )j′j = Tr[γTΩγ

−1
Ω ]. (83)

And we have similar results for θ∑
ij

〈i, j|θk|i, j〉 =
∑
iji′j′

〈i, j|j′, i′〉(γθk)ii′(γ
−1
θk

)j′j = Tr[γTθkγ
−1
θk

]. (84)

Fixing signs According to the detailed discussion in section 7.3 of [17], in the NS sector there
is an ε phase for each of the 9-9 and 5-5 strings as follows

Ω|9− 9, p; ij〉NS = ε99(γΩ,9)ii′ |9− 9, p; j′i′〉NS(γΩ,9)−1
j′j , (85)

Ω|5− 5, p; ij〉NS = ε55(γΩ,5)ii′ |5− 5, p; j′i′〉NS(γΩ,5)−1
j′j . (86)

Similar arguments as in section 7.3 of [17] fix

ε299 = ε255 = −1, γΩ,5/9 = ζ5/9γ
T
Ω,5/9, ζ2

5 = ζ2
9 = 1. (87)

In the 5-9, 9-5 sectors, however, we may write

Ω|5− 9, p; ij〉NS = ε59(γΩ,5)ii′ |9− 5, p; j′i′〉NS(γΩ,9)−1
j′j , (88)

Ω|9− 5, p; ij〉NS = ε59(γΩ,9)ii′ |5− 9, p; j′i′〉NS(γΩ,5)−1
j′j , (89)

Imposing Ω2 = 1 we obtain
ε259ζ5ζ9 = 1. (90)
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The phase ε59 captures the transformation properties under Ω of the SO(D) twisted spinor as
well of the NS open string vacuum. If two 9-5 states interact, they may produce a 5-5 or a 9-9
state. Therefore, a nontrivial coupling of two 9-5 states to the massless 9-9 or 5-5 states should be
allowed. This implies that ε259 = −1. Thus from (90), the CP projection is opposite for D5-branes
compared to that of D9-branes,

ζ5ζ9 = −1. (91)

Boundary conditions We have to notice that in the case of effective open string surfaces of
Annulus and Möbius strips, due to the boundary conditions, we have the general properties: NN
directions have only momenta, DD directions have only windings, and DN have none of both.

D5-branes Due to tadpole cancellation, only Zeven type-IIB orbifold has D9-branes filling the
space and D5-branes transversal to 1-st and 2-nd tori and parallel to(wrapped around) 3-rd torus.
So it means D5-branes only exist for Zeven models.
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3 Analysis of the 4 Euler Number χ = 0 surfaces

Since the calculation of the partition function of the surfaces is related to the twist vector vj of a
certain ZN group, we’ll give the general idea first, then give the examples in detailed orientifolds
in the following sections.

From now on we’ll concentrate on phenomenally interesting D = 4 case.

3.1 Partition Function

This section follows closely to sec.3 of [16].
Using the results of partition functions we derived in section 2, we get the general partition

functions of the 3 different χ = 0 surfaces except torus

Z(`)
σ (τσ, s) = (−2π)CPσχ̃σ(−2 sin(πγ3))

( 2∏
j=1

f(γj)

)
Zϑs (γi, hi, gi) (92)

with Zϑs (γi, hi, gi) being the ϑ-dependent part of the partition function given by

Zϑs (γi, hi, gi) = ηαβ

ϑ
[
α
β

]
ϑ
[

α+ h1

β + γ1 + g1

]
ϑ
[

α+ h2

β + γ2 + g2

]
ϑ
[

α
β + γ3

]
ϑ′
[ 1

2
1
2

]
ϑ
[ 1

2 + h1
1
2 + γ1 + g1

]
ϑ
[ 1

2 + h2
1
2 + γ2 + g2

]
ϑ
[ 1

2
1
2 + γ3

] , (93)

where the spin structure relation between s and (α, β) can be found in Table 1. And ϑ′[ 1
2 ,

1
2 ] ≡

−2πη3, cf. (193). σ stands for the surfaces of Klein bottle K, Annulus A and Möbius strip M,
with world-sheet parameters τK = 2it, τA = it

2 , τM = 1
2 + it

2 . More details can be found in [2].
CPσ stands for the corresponding Chan-Paton factor of the open string world-sheets and CP = 1
for the Klein bottle, cf. section 2.3. Values for CPσ, χ̃σ, γi, f(γj), hi and gi can be found in
Table 2. Formula (92) holds for all tadpole-free ZN type-IIB orientifolds. Orientifolds with even
N have D5-branes wrapped around the third torus leading to the distinction of γ3 in (92). And
therefore the 3-rd torus always has NN boundary condition no matter whether it is attached to
D9 or D5-branes.

We choose
tr(γ−1

Ω`,5
γTΩ`,5) = −trγ2`,5 (94)

and
tr(γ−1

Ω`,9
γTΩ`,9) = trγ2`,9. (95)

The minus sign is due to the GP4 action of Ω, cf. sec. 2.3 and eq.(2.41) of [1].

s 1 2 3 4[ α
β

] [ 1
2
1
2

] [ 1
2
0

] [ 0
0

] [ 0
1
2

]
ηs −1 −1 +1 −1

Table 1: Spin structures

3.1.1 N ≥ 2 sectors

In these cases (−2 sin(πγ3))
∏2
j=1 f(γj) vanishes. N = 2 sectors are characterized by that along

exactly one ith-torus, hi vanishes and γi + gi is integer. N = 4 sectors are characterized by that
along all three torus, all three hi vanish and all three γi + gi are integer. In these cases, (92)

4Gimon and Polchinski
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σ CP χ̃ γi f(γi) (i=1 or 2) h1 h2 g1 g2

Ku 1 1 2`vi −2 sin(πγi) 0 0 0 0

Kt 1 χ̃(θN/2, θ`) 2`vi 1 1
2

− 1
2

0 0
A99 (trγ`,9)2 1 `vi −2 sin(πγi) 0 0 0 0
A55 (trγ`,5)2 1 `vi −2 sin(πγi) 0 0 0 0
A95 (trγ`,9)(trγ`,5) 2 `vi 1 1

2
− 1

2
0 0

M9 trγ2`,9 −1 `vi −2 sin(πγi) 0 0 0 0
M5 trγ2`,5 −1 `vi 2 cos(πγi) 0 0 1

2
− 1

2

Table 2: Refer to [16]. Ku and Kt denote the Klein bottle contributions with untwisted and θN/2-twisted closed
strings running in the loop. χ̃(θN/2, θ`) denotes the number of simultaneous fixed points of θN/2 and θ`. The CP
factors corresponding to the D5-branes assume that all D5-branes are sitting at the fixed point at the origin of the
compact transverse space, details cf. sec. 2.3 of [1]. Derivation of these constants in the table will be explained in
the following subsections.

has a well defined limit 1
η2 of singular part, but one has to include internal momenta or windings,

therefore we should substitute these singular part with momentum/winding lattice sum (81) and
(82).

For A and M the momentum sum L[j,M ] appears if the j-th torus is parallel to the branes
whereas the winding sum L[j,W ] appears if the j-th torus is transversal to the branes, and this
actually is related to the boundary conditions of the open strings attached to the D-branes. For K
the situation is as follows: If γj is even, the corresponding torus is not reflected. The orientation
reversal Ω, however, reverses the winding modes. Thus only the momentum modes survive. On
the other hand, if γj is odd, the corresponding torus is reflected (i.e. kvj is half-integer). Combined
with Ω, this leaves the winding modes along this torus invariant. The terms ”momentum” and
”winding” are used here referring to the open string channel.

3.2 Torus

Topologically Torus is the 1-loop closed string amplitude, without Orientifold symmetry Ω action.

This part is just the type-IIB orbifold thus is trivial and has no tadpole.

3.3 Klein bottle

Topologically Klein bottle is the 1-loop closed string amplitude, with Orientifold symmetry Ω
action.

In the operator form, the amplitude of Klein bottle is

ΛK =

∫ ∞
0

dt

2t
T rU+T

[
Ω

2
· 1

N

N−1∑
`=0

θ` · 1 + (−1)F

2
e−2π(2it)(L0−c/24)

]
(96)

Be aware that Ω can act on bosonic and fermionic oscillators as described in (67)-(72). Ω
projects out NS-R and R-NS sectors. The action of Ω on the bosonic and fermionic oscillators
results in a nonzero contribution in the trace only if the state has the same left and right oscillators.
This effectively sets L0 + L̄0 → 2L0 for such symmetric states and causes the final amplitude to
have a modular parameter 2τ instead of τ .

Also, since Ω exchanges θk with θN−k, we only have twisted strings with k = 0 and k = N
2 , N

even.

CP factors Since Klein bottle is not attached to D-branes, thus the CP factor is 1.
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γi Due to the Ω action, L0 + L̄0 → 2L0 will also double the γi. This can be easily seen from the
calculation of (37).

3.3.1 Untwisted sector

χ̃ and f(γi) Since Ω action leaves only left-right symmetric states, from (37) we can see that we
no longer have 4 sin2(π`vj) for f(γi), but only have −2 sin(2π`vj).

Lattice sum cf. para. 2 in sec. 3.1.1

γi = even-integer, i = 1, 2, 3 :
−2 sinπγi

ϑ
[ 1

2
1
2 + γi

] → 1

η3
L[j,M ] (97)

γi = odd-integer, i = 1, 2, 3 :
−2 sinπγi

ϑ
[ 1

2
1
2 + γi

] → 1

η3
L[j,W ] (98)

3.3.2 Twisted sector

From the para. ”Twisted Sectors” in sec. 2.3 we know that only N
2 -twisted sector is allowed.

hi Kt is θN/2-twisted, thus kvj = half integer. And this is equivalent to shifting the α of ϑ
functions in the T 4 direction(1-st and 2-nd tori) by hi, cf. (42).

χ̃ and f(γi) As we discussed after (42), here N
2 · vj is integer, thus we have χ̃(θN/2, θ`) for χ̃.

Lattice sum cf. para. 2 in sec. 3.1.1

γ3 = even-integer :
−2 sinπγ3

ϑ
[ 1

2
1
2 + γ3

] → 1

η3
L[i,M ] (99)

γ3 = odd-integer :
−2 sinπγ3

ϑ
[ 1

2
1
2 + γ3

] → 1

η3
L[i,W ] (100)

3.4 Annulus

Annulus surface represents closed string propagates between two D-branes, without Orientifold
symmetry Ω action. Topologically and effectively we can consider it as the 1-loop open string
amplitude, without Orientifold symmetry Ω action.

In the operator form, the amplitude is

ΛA =

∫ ∞
0

dt

2t
T r99+55+95+59

NS,R

[
1

2
· 1

N

N−1∑
`=0

·1 + (−1)F

2
e−2π( it2 )(L0−c/24)

]
(101)

Now we need to consider D-branes. According to earlier discussion about tadpole cancellation
in section 2.4, we know that we would only consider D9 and D5-branes. Follow the discussion in
section 2.4 and section 9.14.3 of [17], we have non-trivial CP factors in the partition function for
Annulus.

Recall that open string boundary conditions on compactified dimensions have the results: NN
directions have only momenta. DD only windings, and DN none of the above.
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3.4.1 A99

CP factors A99 is attached to two D9-branes. Therefore we have the CP factor as square of
trγ9,k.

Lattice sum Here we have NN boundary conditions in the T 4 directions of A99, and also NN
boundary conditions in the 3-rd torus. Then the compact directions have only momenta. And we
need to substitute

γi = integer, i = 1, 2, 3 :
−2 sin(πγi)η

ϑ
[ 1

2
1
2 + γi

] → 1

η2
L[i,M ] (102)

3.4.2 A55

CP factors A55 is attached to two D5-branes. Therefore we have the CP factor as square of
trγ5,k.

Lattice sum Here we have DD boundary conditions in the T 4 directions of A55, and NN bound-
ary conditions in the 3-rd torus. Then the T 4 compact directions have only windings. And we
need to substitute

γi = integer, i = 1, 2 :
−2 sin(πγi)η

ϑ
[ 1

2
1
2 + γi

] → 1

η2
L[i,W ] (103)

γ3 = integer :
−2 sin(πγ3)η

ϑ
[ 1

2
1
2 + γ3

] → 1

η2
L[3,M ] (104)

3.4.3 A95

CP factors A95 is attached to one D5-brane and one D9-brane. Therefore we have the CP
factor as the product of trγ5,k and trγ9,k.

hi and f(γi) A95 has Dirichlet-Neumann boundary conditions along 1-st and 2-nd torus. And
the presence of 4 DN directions effectively Z2-twist the T 4 space(1-st and 2-nd torus), cf. sec.
13.4 in [19]. This is equivalent to the θN/2-twisted sector in 3.3.2. Therefore we have the same hi
and f(γi) as in 3.3.2.

χ̃ A95 actually has two orientation, which are A95 and A59. Thus this contribute a factor of 2
to the partition function.

Lattice sum Here we have ND boundary conditions in the T 4 directions of A55, and NN bound-
ary conditions in the 3-rd torus. Then the T 4 compact directions have no momentum or windings.
And we need to substitute

γ3 = integer :
−2 sin(πγ3)η

ϑ
[ 1

2
1
2 + γ3

] → 1

η2
L[3,M ] (105)
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3.5 Möbius strip

Möbius strip surface represents closed string propagates between D-brane and orientifold plane,
with Orientifold symmetry Ω action. Topologically and effectively we can consider it as the 1-loop
open string amplitude, with Orientifold symmetry Ω action.

In the operator form, the amplitude is

ΛM =

∫ ∞
0

dt

2t
T r9+5

NS,R

[
Ω

2
· 1

N

N−1∑
`=0

·1 + (−1)F

2
e−2π( 1

2 + it
2 )(L0−c/24)

]
. (106)

Be aware that Ω in the Tr[ΩqL0−c/24] is equivalent to adding a minus sign to q because of the
action of Ω on L0, cf. (67)-(72). This is equivalent to substitute the torus parameter τ in the
partition functions with the half-shifted torus parameter

τM =
1

2
+
it

2
, (107)

as we have mentioned before about world-sheet parameters, cf. (16).
Since Ω changes the orientation of the string, 9-5 strings do not contribute to the trace. For the

same reason, only strings starting and ending on the same D5-brane contribute after Z2 projection.

3.5.1 M9

Lattice sum Open strings onM9 has NN boundary condition, thus only K-K momentum states
survive.

γi = integer, i = 1, 2, 3 :
−2 sinπγi

ϑ
[ 1

2
1
2 + γi

] → 1

η3
L[i,M ] (108)

CP factors M9 is attached toD9-branes, and it has Ω action, thus we have CPM9
= tr(γ−1

Ω`,9
γTΩ`,9) =

trγ2`,9, cf. (2.36) of [1].

χ̃ Due to the Ω action on the fermionic state for NN boundary condition(cf. (71)) and the Ω
action on the vacuum states(cf. (7.3.10) and (7.3.16) in [17]), we have Ω(ψµ1

2

|0〉) ∝ −ψµ1
2

|0〉, i.e. we

have an extra minus sign in χ̃, also cf. (3.11) and (3.12) [14].

3.5.2 M5

Lattice sum Open strings onM5 has DD boundary condition, thus only winding states survive.

γi = half-integer, i = 1, 2 :
2 cosπγi

ϑ
[ 1

2
1
2 + γi + gi

] → (−1)i

η3
L[i,W ] (109)

γ3 = integer :
−2 sinπγ3

ϑ
[ 1

2
1
2 + γ3

] → 1

η3
L[3,M ] (110)

gi Because now we have DD boundary conditions for T 4 directions, according to (72), the T 4

directions have an extra minus sign. This is equivalent to an insertion of θN/2 element in the trace,
and thus equivalent to shifting the β in ϑ functions in the T 4 direction(1-st and 2-nd tori) by gi.

f(γi) Due to the insertion of θN/2, this will shift the sin(πγj) in f(γj) for π/2, or equivalently
shift γj to γj + gj , and thus turns − sin into cos function for each of the 1-st and 2-nd tori.
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CP factors and χ̃ M5 is attached to D5-branes, and it has Ω action, thus we have CPM5 =
tr(γ−1

Ω`,5
γTΩ`,5) = −trγ2`,5, cf. (2.41) of [1]. But here we take CPM5

= trγ2`,5, thus we move the
minus sign to χ̃, which means we get χ̃ = −1.
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4 One-loop corrections to Einstein-Hilbert term

This section follows very closely to [16].

4.1 Effective field theory

In this section we review how the quantum corrections to the Einstein-Hilbert term influence the
form of the low energy effective action of string compactifications. cf. sec. 2 in [4].

The quantum corrected kinetic term of tree level modulus τ (0) coupled to gravity in string
frame and up to 1-loop order is given by

S4 =
1

κ2
4

∫
d4x
√
−g

[
(e−2Φ4 + δE)

1

2
R+

(
G̃(0) + G̃(1)

)
∂µτ

(0)∂µτ (0)

]
+ . . . , (111)

where δE denotes the correction to the Einstein-Hilbert term, including tree level α′ corrections
and corrections from 1-loop. G̃(0) stands for the tree level metric including α′ corrections and G̃(1)

stands for the contributions to the string frame metric arising at 1-loop level. Here we choose τ
as an example for concreteness. Furthermore,

κ−2
4 = (2π

√
α′)6κ−2

10 = (πα′)−1 (112)

and

e−2Φ4 ≡ e−2Φ10t1t2t3 =

√
σ(0)τ

(0)
1 τ

(0)
2 τ

(0)
3 , (113)

where e−2Φ10 is the ten dimensional dilaton and

σ(0) = e−Φ10t1t2t3 , τ
(0)
i = e−Φ10ti. (114)

Here the ti are the dimensionless torus volumes measured with the string frame metric. The
definition of the Kähler variables in general gets quantum corrected

τ = τ (0) + δτ, (115)

where δτ is a moduli dependent function.
Starting from (111) and performing a Weyl transformation to go to the Einstein frame, we

see that the quantum correction to the metric of the quantum corrected Kähler modulus T (with
imaginary part τ), is given, up to 1-loop order, by

G
(1)

T T̄
(T ) =e2Φ4G̃(1)(τ) + 12

(
∂Φ4

∂τ (0)

)2

δEe2Φ4 + 6
∂Φ4

∂τ (0)

∂δE

∂τ (0)
e2Φ4

− δEe4Φ4G̃(0)(τ) +
1

2τ3
δτ − 1

2τ2

∂δτ

∂τ
+ . . . . (116)

We can see that δE showed up in different terms. Therefore we can conclude that δE does play
an important role to the quantum correction to the metric.

4.2 General Analysis of Graviton 1-loop 2-point function

In this section we derive some general formulas needed for computing the 1-loop correction to the
Planck mass in N = 1 type-IIB toroidal orientifolds. And these will be applied to tadpole-free Z6,
Z7 and Z12 models (tadpole-free condition is discussed in [1]). Here we follow closely to the sec.
3 in [16].

Begin with the amplitude of two gravitons(with momenta pi and polarization tensors εi)

〈Vg(p1, ε1)Vg(p2, ε2)〉 =
∑

σ∈{T ,K,A,M}

〈Vg(p1, ε1)Vg(p2, ε2)〉σ, (117)
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where the vertex operators are given by

Vg(p, ε) = −2gc
α′
εµν

(
i∂Xµ +

α′

2
p · ψψµ

)(
i∂̄Xν +

α′

2
p · ψ̃ψ̃ν

)
eip·X (118)

with εµνε
µν = 1. Using the on-shell, transversality and tracelessness conditions

p2
1 = p2

2 = p1 · p2 = p1µε
µν
1 = p2µε

µν
2 = ηµνε

µν
1 = ηµνε

µν
2 = 0, (119)

the amplitude (117) has to be proportional to the only remaining contraction, i.e.

〈Vg(p1, ε1)Vg(p2, ε2)〉 = AiV4g
2
cp
µ
2ε1µνη

νλε2λρp
ρ
1 +O(p4). (120)

We have to compare this to the relevant term in the action which leads to the linearized Einstein
equations. We read off

S =
M2
P

2

∫
d4x
(
− 1

2
hµν,ρh

νρ,µ
)
, (121)

where
Gµν = ηµν + hµν , (122)

for a symmetric fluctuation hµν . hµν and εµν have the relation in momentum space showed by
the vertex operator (118)

hµν = −4πgcεµνe
ip·X . (123)

Using (111), we have

M2
P =

1

κ2
4

(e−2Φ4 + δE). (124)

Thus we compare (120) with

− 1

4
κ2

4

∫
d4xδEhµν,ρh

νρ,µ. (125)

And we get

δE =
κ2

4

8π2
A =

α′

8π
A. (126)

The amplitude A gets contributions from all 1-loop surfaces, i.e. T , K, A, M.

4.3 Torus and Sphere contribution

We read off the torus contribution from eq. (5.3) in [3]. Including also the α′ correction to the
Planck mass from the sphere it gives

(δE)S2+T =
χ

(2π)3

(
2ζ(3)

e−2Φ4

V
+
π2

3

)
, (127)

where V is the overall volume (in units of (2π
√
α′)6) and, due to the orientifold projection, we

added a factor of 1/2.
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4.4 Contributions from K, A and M
Here we closely follow the calculation in [12]. Neglecting the momentum conservation δ function
arising from the bosonic zero mode integration we have

Aσ = − 1

8N(4π2α′)2

∑
s=even

∫ ∞
0

dt

t3

N−1∑
k=0

Z(`)
σ (τσ, s)

∫
σ

d2ν1

∫
σ

d2ν2(
〈∂̄X1∂̄X2〉σ(〈ψ2ψ1〉sσ)2 + 〈∂X1∂̄X2〉σ(〈ψ2ψ̃1〉sσ)2

+〈∂̄X1∂X2〉σ(〈ψ̃2ψ1〉sσ)2 + 〈∂X1∂X2〉σ(〈ψ̃2ψ̃1〉sσ)2
)

(128)

where σ stands for the different world-sheet topologies K, A andM, with world-sheet parameters

τK = 2it, τA = it
2 , τM = 1

2 + it
2 . Z

(`)
σ (τσ, s) is the contribution (92) to the partition function from

the θ` element inserted sector. The spin structure sum only runs over the even spin structures s.
Note that there is no contribution to Aσ from eight fermion terms, cf. sec. 3.4 in [4].

From [12], we use

(〈ψ2(ν)ψ1(0)〉sσ)2 = −∂2
ν lnϑ1(ν, τ) + ∂2

v

ϑs(v, τ)

ϑs(0, τ)

∣∣∣∣
v=0

. (129)

It is the sum of a spin structure independent term with a spin structure dependent term. The
contribution to Aσ involving the first term in (129) (the spin structure independent term) does
not survive the sum over spin structures in the super-symmetric case. On the other hand, the
spin structure dependent term does not depend on the vertex operator position and, thus can be
taken out of the ν integrals. Besides, provided that it does depend on the vertex operator position,
this is the same for (〈ψ2ψ1〉sσ)2, (〈ψ2ψ̃1〉sσ)2, (〈ψ̃2ψ1〉sσ)2 and (〈ψ̃2ψ̃1〉sσ)2. Take care of the relative
minus signs arising from conventions, the resulting ν integral can be solved using [2]∫

σ

d2ν1

∫
σ

d2ν2

(
〈∂̄X1∂̄X2〉σ − 〈∂X1∂̄X2〉σ − 〈∂̄X1∂X2〉σ + 〈∂X1∂X2〉σ

)
=
α′π=(τσ)

2
. (130)

Taking into account (126), we finally achieve

(δE)σ = − α
′

8π

1

8N(4π2α′)2
∂2
v

∑
s=even

∫ ∞
0

dt

t3

N−1∑
`=0

Z(`)
σ (τσ, s)

ϑs(v, τσ)

ϑs(0, τσ)

α′π=(τσ)

2

∣∣∣∣∣
v=0

= − (α′)2

8π

1

8N(4π2α′)2

∫ ∞
0

dt

t3
π=(τσ)

2

N−1∑
`=0

∂2
v

∑
s=even

Z(`)
σ (τσ, s)

ϑs(v, τσ)

ϑs(0, τσ)

∣∣∣∣∣
v=0

= − (α′)2

8π

1

8N(4π2α′)2

∫ ∞
0

dt

t3
π=(τσ)

2

N−1∑
`=0

∑
s=even

Z(`)
σ (τσ, s)

ϑ′′s (0, τσ)

ϑs(0, τσ)
. (131)

The lattice sums can be done after performing the spin-structure summation. Thus the sum
over spin-structure in (131) can be performed using (92) and (93) for the partition function. Then
we need the formula (cf. eq.(130) in [5])

∑
s=even

Z(`)
s

ϑ′′s (0)

ϑs(0)
=

3∑
i=1

ϑ′
[

1
2 + hi

1
2 + γi + gi

]
(0)

ϑ

[
1
2 + hi

1
2 + γi + gi

]
(0)

. (132)



4.4 Contributions from K, A and M 33

With this, (131) reads

(δE)σ = − π(α′)2

32N(4π2α′)2

∫ ∞
0

dt

t2
=(τσ)

t

N−1∑
`=0

CPσχ̃σ sin(πγ3)

·

(
2∏
j=1

f(γj)

)
3∑
i=1

ϑ′
[

1
2 + hi

1
2 + γi + gi

]
(0)

ϑ

[
1
2 + hi

1
2 + γi + gi

]
(0)

. (133)
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4.5 N = 1 sectors

Following secs. 3.8-3.11 of [4], N = 1 sectors contribution to the Planck mass is

(δE)(N=1) =
∑
σ

(δE)(N=1)
σ = − π(α′)2

64N(4π2α′)2

∫ ∞
0

dt

t2

∑
σ

∑
`∈{N=1}

CPσσ
(`). (134)

Here

σ(`) = ẽσχ̃σ sin(πγ3)

(
2∏
j=1

f(γj)

)
σ̂(`) for ` ∈ {N = 1} (135)

with

ẽσ =

{
1 for A,M
4 for K

(136)

and

σ̂(`) =

3∑
i=1

ϑ′
[

1
2 + hi

1
2 + γi + gi

]
(0)

ϑ

[
1
2 + hi

1
2 + γi + gi

]
(0)

. (137)

For later use, we also introduce

eσ =

{
1 for A
4 for M,K

, (138)

From (136)-(138) and table 2, we have

K(`)
u = 16 sin(2π`v3) sin(2π`v1) sin(2π`v2)K̂(`)

u ,

K(`)
t = 4χ̃(θN/2, θ`) sin(2π`v3)K̂(`)

t ,

A(`)
99 = 4 sin(π`v3) sin(π`v1) sin(π`v2)Â(`)

99 ,

A(`)
55 = 4 sin(π`v3) sin(π`v1) sin(π`v2)Â(`)

55 ,

A(`)
95 = 2 sin(π`v3)Â(`)

95 ,

M(`)
9 = −4 sin(π`v3) sin(π`v1) sin(π`v2)M̂(`)

9 ,

M(`)
5 = −4 sin(π`v3) cos(π`v1) cos(π`v2)M̂(`)

5 . (139)

Note that for odd N there is no contribution from Kt, A55, A95 and M5.
Making use of (202) and the fact that the even/odd spin structure ϑ functions are even/odd

functions of their argument, together with the super-symmetry condition
∑
i vi = 0, we can get

σ̂(qN±`) = ±σ̂(`) for all σ, σ̂( qN2 ±`) = ±σ̂(`) for K,

σ(qN±`) = σ(`) for all σ, σ( qN2 ±`) = σ(`) for K. (140)

q is an arbitrary integer. These identities allow the individual sectors to be related to each other.
For N = 1 sectors with hi = 0, the t-integral in (134) can be performed using (115)-(117) of

[4], i.e.(assuming 0 < γ < 1 for A and K, and 0 < γ < 1/2 for M)

IA/K(γ) =

∫ ∞
1
eσΛ

dt

t2
ϑ′1(γ, τσ)

ϑ1(γ, τσ)

= eσπ(1− 2γ)Λ2 + eσ
π

24
[ψ′(γ)− ψ′(1− γ)], (141)

IM(γ) =

∫ ∞
1

4Λ

dt

t2
ϑ′1(γ, 1

2 + it
2 )

ϑ1(γ, 1
2 + it

2 )

= 8π(1− 4γ)Λ2 +
π

12
[ψ′(γ)− ψ′(1− γ)− 1

2
ψ′(

1

2
+ γ) +

1

2
ψ′(

1

2
− γ)]. (142)
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Here ψ′(x) denotes the trigamma function, i.e. the derivative of the digamma function ψ(x) =
Γ′(x)/Γ(x).

The t-integral of terms with hi = ±1/2, appearing in Kt and A95, is computed in app.B.1
where we find (for 0 < γ < 1)

ĨA/K(γ) =

∫ ∞
1
eσΛ

dt

t2
ϑ′4(γ, τσ)

ϑ4(γ, τσ)
= eσπ(1− 2γ)Λ2 − eσ

π

48
[ψ′(γ)− ψ′(1− γ)]. (143)

Furthermore, the t-integral for M when γ > 1
2 is computed in app.B.3 where we find (for

1
2 < γ < 1)

ĨM(γ) =

∫ ∞
1

4Λ

dt

t2
ϑ′1(γ, 1

2 + it
2 )

ϑ1(γ, 1
2 + it

2 )

= 8π(3− 4γ)Λ2 − π

24

[
ψ′(γ − 1

2
)− ψ′(3

2
− γ) + 2ψ′(1− γ)− 2ψ′(γ)

]
. (144)
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4.6 N ≥ 2 sectors

N = 2 sectors are characterized by the fact that along exactly one torus (say the n-th torus) hn
vanishes and γn + gn is integer. Thus we need to take the limit of (133)

(−2 sinπ(γn + gn))

ϑ′
[

1
2

1
2 + γn + gn

]
(0)

ϑ

[
1
2

1
2 + γn + gn

]
(0)

→
ϑ′
[

1
2

1
2 + γn + gn

]
(0)

η3
L[n,M/W ]

= (−2π)(−1)γn+gnL[n,M/W ]. (145)

To summarize, the N = 2 sector contribution is given by

(δE)(N=2) =
∑
σ

(δE)(N=2)
σ = − π(α′)2

64N(4π2α′)2

∫ ∞
0

dt

t2

∑
σ

∑
`∈{N=2}

CPσσ
(`). (146)

Here
σ(`) = πẽσχ̃σD

(`)
σ L[n,M/W ] for k ∈ {N = 2}, (147)

and the constant factor D
(`)
σ is given by

D(`)
σ = (−1)γn+gn

3∏
i 6=n

f(γi) (148)

with f(γ3) = −2 sinπγ3. n depends on ` and σ.
Let us express (81) and (82) collectively as

L[n,M/W ] =
C [n,M/W ]

t

∑
m1,m2

e−
π
tm

ambg
[n,M/W ]
ab , (149)

where

C [n,M/W ] =

{
Vn

4π2α′ for M (momentum sum)
4π2α′

Vn
for W (winding sum)

(150)

and

g
[n,M/W ]
ab =

{
g

[n]
ab for M (momentum sum)

g[n]ab for W (winding sum)
, (151)

i.e. g
[n,W ]
ab is the inverse matrix of g

[n,M ]
ab .

Now we split L[n,M/W ] as

L[n,M/W ] =
C [n,M/W ]

t

(
1 +

∑
~m∈Z2\~0

e−
π
tm

ambg
[n,M/W ]
ab

)

=
C [n,M/W ]

t
+ L′[n,M/W ] (152)

with

L′[n,M/W ] =
C [n,M/W ]

t

∑
~m∈Z2\~0

e−
π
tm

ambg
[n,M/W ]
ab . (153)

Then we have ∫ ∞
1
eσΛ

dt

t2
L[n,M/W ] =

C [n,M/W ]e2
σΛ2

2
+

∫ ∞
0

dt

t2
L′[n,M/W ]. (154)
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Here we set Λ =∞ in the second term on the right hand side since it is finite in the limit Λ =∞.
It can be evaluated using (see app. B.2)

Γ[n,M/W ] ≡
∫ ∞

0

dt

t3

∑
~m∈Z2\~0

e−
π
tm

ambg
[n,M/W ]
ab

=


(4π2α′)2

π2V 2
n
E2(U [n]) for M (momentum sum)

V 2
n

π2(4π2α′)2E2

(
− 1

U [n]

)
for W (winding sum)

, (155)

where U [n] is the complex structure of the n-th torus and E2 is a non-holomorphic Eisenstein
series, cf. (216).

For N = 4 sectors hi vanish and γi + gi are integer along all three tori. Thus, the numerator
of (133) has a triple zero which can not be balanced by the simple zero in the denominator.
Consequently the N = 4 sectors do not contribute.

Now we collected all the relevant formulas to evaluate the 1-loop correction to the Planck mass
in explicit models. We will do the calculation for 3 specific models in the next section.



38

5 Examples

Here we use the techniques and methods from above sections to calculate 3 specific models Z6, Z7

and Z12.

5.1 Z6

The twist vector5 of Z6 is v = 1
6 (1, 1,−2). Since the torus lattice has to be invariant under the

orbifold action, the complex structures of all the three tori are fixed. The model has both D9 and
D5-branes wrapped around the third torus. For simplicity we assume that all the D5-branes are
sitting at the fixed point at the origin of the compact transverse space as in [16]. In the table 3
we present the volume factors of different N sectors of the model.

5.1.1 N = 1 sectors

The N = 1 sector sum is∑
σ

∑
`∈{N=1}

CPσσ
(`) =

∑
`=1,2,4,5

(
K(`)
u +K(`)

t + (trγ`9)2A(`)
99 + (trγ`5)2A(`)

55

+ (trγ`9)(trγ`5)A(`)
95 + (trγ2`

9 )M(`)
9 + (trγ2`

5 )M(`)
5

)
(156)

Using (139), (140), Chan-Paton traces [1]

trγ`9 = trγ`5 = 0; ` = 1, 3, 5,

trγ2
9 = trγ2

5 = 4,

trγ4
9 = trγ4

5 = −4,

γ6
9 = γ6

5 = −1,

trγ6
9 = trγ6

5 = −32,

trγ0
9 = trγ0

5 = 32 (157)

and

χ̃(θ3, θ1) = χ̃(θ3, θ2) = χ̃(θ3, θ4) = χ̃(θ3, θ5) = 1, (158)

χ̃(θ3, θ0) = χ̃(θ3, θ3) = 16, (159)

5refers to app.C
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we obtain ∑
σ(`)∈{N=1}

CPσσ
(`) =

=
∑

`=1,2,4,5

(
K(`)
u +K(`)

t

)
+ 16

(
A(2)

99 +A(2)
55 +A(2)

95

)
+ 16

(
A(4)

99 +A(4)
55 +A(4)

95

)
+ 4
(
M(1)

9 +M(1)
5 −M

(2)
9 −M

(2)
5 −M

(4)
9 −M

(4)
5 +M(5)

9 +M(5)
5

)
= 4
(
K(1)
u +K(1)

t

)
+ 32

(
A(2)

99 +A(2)
55 +A(2)

95

)
+ 8
(
M(1)

9 +M(1)
5

)
− 8
(
M(2)

9 +M(2)
5

)
= 4
(

16

3∏
j=1

sin(2πvj)K̂(1)
u + 4 sin(2πv3)K̂(1)

t

)

+ 32
(

4

3∏
j=1

sin(2πvj)Â(2)
99 + 4

3∏
j=1

sin(2πvj)Â(2)
55 + 2 sin(2πv3)Â(2)

95

)

+ 8
(
− 4

3∏
j=1

sin(πvj)M̂(1)
9 − 4 sin(πv3) cos(πv1) cos(πv2)M̂(1)

5

)

− 8
(
− 4

3∏
j=1

sin(2πvj)M̂(2)
9 − 4 sin(2πv3) cos(2πv1) cos(2πv2)M̂(2)

5

)
= −24

√
3K̂(1)

u − 8
√

3K̂(1)
t − 48

√
3Â(2)

99 − 48
√

3Â(2)
55 − 32

√
3Â(2)

95

+ 4
√

3M̂(1)
9 + 12

√
3M̂(1)

5 − 12
√

3M̂(2)
9 − 4

√
3M̂(2)

5 (160)
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Then we do the t-integral using (141)-(144)∫ ∞
0

dt

t2

[
− 24K̂(1)

u − 8K̂(1)
t − 48Â(2)

99 − 48Â(2)
55 − 32Â(2)

95

+ 4M̂(1)
9 + 12M̂(1)

5 − 12M̂(2)
9 − 4M̂(2)

5

]
=

= −24

∫ ∞
1

4Λ

dt

t2
K̂(1)
u − 8

∫ ∞
1

4Λ

dt

t2
K̂(1)
t − 48

∫ ∞
1
Λ

dt

t2
Â(2)

99 − 48

∫ ∞
1
Λ

dt

t2
Â(2)

55 − 32

∫ ∞
1
Λ

dt

t2
Â(2)

95

+ 4

∫ ∞
1

4Λ

dt

t2
M̂(1)

9 + 12

∫ ∞
1

4Λ

dt

t2
M̂(1)

5 − 12

∫ ∞
1

4Λ

dt

t2
M̂(2)

9 − 4

∫ ∞
1

4Λ

dt

t2
M̂(2)

5

= −24 · 3IK(
1

3
)− 8

[
2 · ĨK(

1

3
) + IK(

1

3
)
]
− 2 · 48 · 3IA(

1

3
)− 32

[
2 · ĨA(

1

3
) + IA(

1

3
)
]

+ 4
[
2 · IM(

1

6
) + ĨM(

2

3
)
]

+ 12
[
3 · ĨM(

2

3
)
]
− 12

[
3 · IM(

1

3
)
]
− 4
[
2 · ĨM(

5

6
) + IM(

1

3
)
]

= πΛ2

(
− 24 · 4(1− 2 · 1

3
) · 3− 8 · 4(1− 2 · 1

3
) · 3− 2 · 48(1− 2 · 1

3
) · 3− 32(1− 2 · 1

3
) · 3

+ 4 · 8
[
(1− 4 · 1

6
) · 2 + (3− 4 · 2

3
)
]

+ 12 · 8
[
3 · (3− 4 · 2

3
)
]

− 12 · 8(1− 4 · 1

3
) · 3− 4 · 8

[
(1− 4 · 1

3
) · 2 + (1− 4 · 1

3
)
])

− 72 · π
6

[ψ′(
1

3
)− ψ′(2

3
)]− 8

[
− 2 · π

12
[ψ′(

1

3
)− ψ′(2

3
)] +

π

6
[ψ′(

1

3
)− ψ′(2

3
)]
]

− 288 · π
24

[ψ′(
1

3
)− ψ′(2

3
)]− 32

[
− 2 · π

48
[ψ′(

1

3
)− ψ′(2

3
)] +

π

24
[ψ′(

1

3
)− ψ′(2

3
)]
]

+ 4
[
2 · π

12
[ψ′(

1

6
)− ψ′(5

6
)− 1

2
ψ′(

2

3
) +

1

2
ψ′(

1

3
)]− π

24
[ψ′(

1

6
)− ψ′(5

6
) + 2ψ′(

1

3
)− 2ψ′(

2

3
)]
]

+ 36
[
− π

24
[ψ′(

1

6
)− ψ′(5

6
) + 2ψ′(

1

3
)− 2ψ′(

2

3
)]
]

− 36 · π
12

[
ψ′(

1

3
)− ψ′(2

3
)− 1

2
ψ′(

5

6
) +

1

2
ψ′(

1

6
)
]

− 4
[
2 ·
[
− π

24
[ψ′(

1

3
)− ψ′(2

3
) + 2ψ′(

1

6
)− 2ψ′(

5

6
)]
]

+
π

12

[
ψ′(

1

3
)− ψ′(2

3
)− 1

2
ψ′(

5

6
) +

1

2
ψ′(

1

6
)
]]
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σ\` 0 1 2 3 4 5

Ku V1V2V3
V3

V2V1

Kt V3 V3

A99 V1V2V3 V3

A55
V3

V1V2
V3

A95 V3 V3

M9 V1V2V3 V3

M5 V3
V3

V1V2

Table 3: Volume factors for the different N sectors of the Z6 orientifold. Fields with no entry correspond to N = 1
sectors, fields with a single volume factor correspond to N = 2 sectors and fields with three volume factors denote
N = 4 sectors. Volumes in the numerator/denominator are accompanied by momentum/winding sums.

= 0 · πΛ2 − 30πψ′(
1

3
) + 30πψ′(

2

3
)− 2πψ′(

1

6
) + 2πψ′(

5

6
)

= −60πψ′(
1

3
) + 40π3 − 4πψ′(

1

6
) + 8π3

= −80πψ′(
1

3
) +

160

3
π3

= −160
√

3πCl2(
π

3
), (161)

where we used the properties of the trigamma function

ψ′(γ + 1) = ψ′(γ)− 1

γ2
, ψ′(1− γ) + ψ′(γ) =

π2

sin2(πγ)
(162)

and the special relations (cf. (81) and (82) in [16])

ψ′(
2

3
) = −ψ′(1

3
) +

4

3
π2, ψ′(

1

6
) = 5ψ′(

1

3
)− 4

3
π2, ψ′(

5

6
) = −5ψ′(

1

3
) +

16

3
π2 (163)

and

ψ′(
1

3
) = 4 sin(

π

3
)Cl2(

π

3
) +

2

3
π2 (164)

to simplify the result of the integration. Here Cl2 is the second Clausen function and Cl2(π3 ) ≈
1.015. We see that the UV divergences (∝ Λ2) cancel and only finite constant is left.

The result of the N = 1 sector is (cf. (134))

(δE)(N=1) =
∑
σ

(δE)(N=1)
σ =

= − π(α′)2

64 · 6(4π2α′)2
·
√

3
[
− 160

√
3πCl2(

π

3
)
]

=
15

192π2
Cl2(

π

3
). (165)



5.1 Z6 42

5.1.2 N = 2 sectors

Now we consider the N = 2 sectors. Using table 2 and table 3, the contribution is∑
σ`∈{N=2}

CPσσ
(`) =

∑
`=0,3

K(`)
t + (trγ3

9)2A(3)
99 + (trγ3

5)2A(3)
55

+
∑
`=0,3

[
(trγ`9)(trγ`5)A(`)

95

]
+ (trγ6

9)M(3)
9 + (trγ0

5)M(0)
5

=
∑
`=0,3

K(`)
t + (trγ0

9)(trγ0
5)A(0)

95 + (trγ6
9)M(3)

9 + (trγ0
5)M(0)

5

=
∑
`=0,3

K(`)
t + 1024A(0)

95 − 32M(3)
9 + 32M(0)

5 . (166)

From (148) we have

πẽKχ̃
(0)
KtD

(0)
Kt = 64π,

πẽKχ̃
(3)
KtD

(3)
Kt = 64π,

πẽAχ̃
(0)
A95

D
(0)
A95

= 2π,

πẽMχ̃
(3)
M9

D
(3)
M9

= 4π,

πẽMχ̃
(0)
M5

D
(0)
M5

= −4π. (167)

Using (138), (150), (154) and (155) we can easily find that∫ ∞
1
eσΛ

dt

t2

∑
σ`∈{N=2}

CPσσ
(`) =

= 128π

∫ ∞
1

eKΛ

dt

t2
L[3,M ] + 2048π

∫ ∞
1

eAΛ

dt

t2
L[3,M ]

− 128π

∫ ∞
1

eMΛ

dt

t2
L[3,M ] − 128π

∫ ∞
1

eMΛ

dt

t2
L[3,M ]

=
C [3,M ]Λ2

2

(
128e2

Kt + 2048e2
A95
− 128e2

M9
− 128e2

M5

)
+ (128 + 2048− 128− 128)πC [3,M ]Γ[3,M ]

=
C [3,M ]Λ2

2
· 0 + 1920πC [3,M ]Γ[3,M ]

=
7680πα′

V3
E2(U [3]). (168)

We see again the UV divergences cancel as expected. Thus

(δE)(N=2) = − π(α′)2

64 · 6(4π2α′)2

∫ ∞
0

dt

t2

∑
σ`∈{N=2}

CPσσ
(`)

= −5

4

α′

π2V3
E2(U [3]). (169)

Adding the contributions from the sphere and the torus (cf. (127)), N = 1 and N = 2, the
final result is

δE = (δE)S2+T + (δE)(N=1) + (δE)(N=2)

=
χ

(2π)3

(
2ζ(3)

e−2Φ4

V
+
π2

3

)
+

15

192π2
Cl2(

π

3
)− 5

4

α′

π2V3
E2(U [3]). (170)
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The Euler number of the Z6 orientifold is χ = 2(h(1,1) − h(2,1)) = 48, cf. table 20 in [7]. And the
numerical value of the contribution from N = 1 part is 0.0080345.
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5.2 Z7

The twist vector6 of Z7 is v = 1
7 (1, 2,−3). And only D9-branes exist in odd case, cf. sec. 2.2 of

[1]. Moreover there are no N = 2 sectors nor non-trivial N = 4 sectors(i.e. ` = 0) as discussed in
sec. 2.4 and sec. 4.6.

The contribution to the Planck mass is determined by (cf. (134))∑
σ

∑
`∈{N=1}

CPσσ
(`) =

∑
`=1,...,6

[
K(`)
u + (trγ`9)2A(`)

99 + (trγ2`
9 )M(`)

9

]
=2

∑
`=1,2,3

[
K(`)
u + 16A(`)

99 + 4M(`)
9

]

=− 32

(
3∏
j=1

sinπvj

)( ∑
`=1,2

[
K̂(`)
u + 4Â(`)

99 − M̂
(`)
9

]
−
[
K̂(3)
u + 4Â(3)

99 − M̂
(3)
9

])
.

(171)

In the second equality we used (140) and the tadpole conditions trγθ ≡ trγ9 = 4 = trγ2
9 = trγ3

9 =
trγ4

9 = trγ5
9 = trγ6

9 (cf. (2.36), (2.37) and the following paragraph and sec.3.3 in [1], we choose
γ7

9 = 1). In the third equality we used (139).

6refers to app.C
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Next we have to perform the t-integral, using (141)-(144), i.e.∑
`=1,2

∫ ∞
0

dt

t2

[
K̂(`)
u + 4Â(`)

99 − M̂
(`)
9

]
−
∫ ∞

0

dt

t2

[
K̂(3)
u + 4Â(3)

99 − M̂
(3)
9

]

=
∑
`=1,2

[∫ ∞
1

4Λ

dt

t2
K̂(`)
u + 4

∫ ∞
1
Λ

dt

t2
Â(`)

99 −
∫ ∞

1
4Λ

dt

t2
M̂(`)

9

]
−

[∫ ∞
1

4Λ

dt

t2
K̂(`)
u + 4

∫ ∞
1
Λ

dt

t2
Â(`)

99 −
∫ ∞

1
4Λ

dt

t2
M̂(`)

9

]

=
∑
`=1,2

∑
j=1,2,3

(∫ ∞
1

4Λ

dt

t2
ϑ′1(b2`vjc), τK)

ϑ1(b2`vjc), τK)
+ 4

∫ ∞
1
Λ

dt

t2
ϑ′1(b`vjc), τA)

ϑ1(b`vjc, τA)
−
∫ ∞

1
4Λ

dt

t2
ϑ′1(b`vjc, τM)

ϑ1(b`vjc, τM)

)

−
∑

j=1,2,3

(∫ ∞
1

4Λ

dt

t2
ϑ′1(b6vjc), τK)

ϑ1(b6vjc), τK)
+ 4

∫ ∞
1
Λ

dt

t2
ϑ′1(b3vjc), τA)

ϑ1(b3vjc, τA)
−
∫ ∞

1
4Λ

dt

t2
ϑ′1(b3vjc, τM)

ϑ1(b3vjc, τM)

)

=
∑
`=1,2

∑
j=1,2,3

(
IK(b2`vjc) + 4IA(b`vjc)− IM(b`vjc)

)
−

∑
j=1,2,3

(
IK(b6vjc) + 4IA(b3vjc)− IM(b3vjc)

)

=
∑
`=1,2

(
4πΛ2(3− 2

∑
j=1,2,3

b2`vjc) +
π

6

∑
j=1,2,3

[ψ′(b2`vjc)− ψ′(1− b2`vjc)]

+ 4πΛ2(3− 2
∑

j=1,2,3

b`vjc) +
π

6

∑
j=1,2,3

[ψ′(b`vjc)− ψ′(1− b`vjc)]

)

−

(
4πΛ2(3− 2

∑
j=1,2,3

b6vjc) +
π

6

∑
j=1,2,3

[ψ′(b6vjc)− ψ′(1− b6vjc)]

+ 4πΛ2(3− 2
∑

j=1,2,3

b3vjc) +
π

6

∑
j=1,2,3

[ψ′(b3vjc)− ψ′(1− b3vjc)]

)

−
∑
`=1,2

∑
j=1,2,3

({
IM b`vjc < 1

2

ĨM b`vjc > 1
2

)
+

∑
j=1,2,3

({
IM b3vjc < 1

2

ĨM b3vjc > 1
2

)

= 4πΛ2
[
(3− 2 · 1) + (3− 2 · 1)− (3− 2 · 2)

]
+ 4πΛ2

[
(3− 2 · 1) + (3− 2 · 1)− (3− 2 · 2)

]
− 8πΛ2

[
(5− 4 · 1) + (5− 4 · 1)− (7− 4 · 2)

]
+
π

6

∑
`=1,2

∑
j=1,2,3

[
ψ′(b2`vjc)− ψ′(1− b2`vjc) + ψ′(b`vjc)− ψ′(1− b`vjc)

]
− π

6

∑
j=1,2,3

[
ψ′(b6vjc)− ψ′(1− b6vjc) + ψ′(b3vjc)− ψ′(1− b3vjc)

]
− π

6

[
ψ′(

1

7
)− ψ′(6

7
)− 1

2
ψ′(

9

14
) +

1

2
ψ′(

5

14
)
]
− π

6

[
ψ′(

2

7
)− ψ′(5

7
)− 1

2
ψ′(

11

14
) +

1

2
ψ′(

3

14
)
]

+
π

12

[
ψ′(

3

7
)− ψ′(4

7
)− 1

2
ψ′(

12

14
) +

1

2
ψ′(

1

14
)
]
− π

12

[
ψ′(

1

14
)− ψ′(13

14
) + 2ψ′(

3

7
)− 2ψ′(

4

7
)
]

+
π

24

[
ψ′(

3

14
)− ψ′(11

14
) + 2ψ′(

2

7
)− 2ψ′(

5

7
)
]

+
π

24

[
ψ′(

5

14
)− ψ′( 9

14
) + 2ψ′(

3

7
)− 2ψ′(

4

7
)
]
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= 0 · Λ2 +
π

6

[
4ψ′(

1

7
)− 4ψ′(

6

7
) + 5ψ′(

2

7
)− 5ψ′(

5

7
)− 5ψ′(

3

7
) + 5ψ′(

4

7
)
]

− π

24

[
2ψ′(

1

7
) + 2ψ′(

2

7
) + 2ψ′(

3

7
)− 2ψ′(

4

7
)− 2ψ′(

5

7
)− 2ψ′(

6

7
)

+ ψ′(
1

14
) + ψ′(

3

14
) + ψ′(

5

14
)− ψ′( 9

14
)− ψ′(11

14
)− ψ′(13

14
)
]

=
7

12
πψ′(

1

7
) +

3

4
πψ′(

2

7
)− 11

12
πψ′(

3

7
) +

11

12
πψ′(

4

7
)− 3

4
πψ′(

5

7
)− 7

12
πψ′(

6

7
)

− π

24

[
ψ′(

1

14
) + ψ′(

3

14
) + ψ′(

5

14
)− ψ′( 9

14
)− ψ′(11

14
)− ψ′(13

14
)
]
. (172)

Here b`vjc = `vj + N , N ∈ Z and 0 < b`vjc < 1. Moreover, we can see that all terms related to
Λ2 cancel each other, that is just the result of the requirement of tadpole cancellation. For M, it
is possible that 1

2 < γ < 1. Thus we used the new t-integral ĨM (144) for this special case which
is discussed in app. B.3.

Using (162), we can simplify the expression:∑
`=1,2,3

∫ ∞
0

dt

t2

[
K̂(`)
u + 4Â(`)

99 − M̂
(`)
9

]
=

=
7

12
πψ′(

1

7
) +

3

4
πψ′(

2

7
)− 11

12
πψ′(

3

7
) +

11

12
πψ′(

4

7
)− 3

4
πψ′(

5

7
)− 7

12
πψ′(

6

7
)

− π

24

[
ψ′(

1

14
) + ψ′(

3

14
) + ψ′(

5

14
)− ψ′( 9

14
)− ψ′(11

14
)− ψ′(13

14
)
]

=
7

6
πψ′(

1

7
) +

3

2
πψ′(

2

7
)− 11

6
πψ′(

3

7
)− 7π3

12 sin2(π7 )
− 3π3

4 sin2( 2π
7 )

+
11π3

12 sin2( 3π
7 )

− π

12

[
ψ′(

1

14
) + ψ′(

3

14
) + ψ′(

5

14
)
]

+
π3

24 sin2( π14 )
+

π3

24 sin2( 3π
14 )

+
π3

24 sin2( 5π
14 )

. (173)

Since there is no special properties for ψ′( `7 ), we have to leave the expression without further
simplification.

Putting all factors together, the contribution from the K, A and M is

(δE)K+A+M = − π(α′)2

64 · 7(4π2α′)2
32 sin(

π

7
) sin(

2π

7
) sin(

3π

7
)

∫ ∞
0

dt

t2

∑
σ(`)∈{N=1}

CPσσ
(`)

= −
sin(π7 ) sin(2π

7 ) sin( 3π
7 )

224π2
·

[
7

6
πψ′(

1

7
) +

3

2
πψ′(

2

7
)− 11

6
πψ′(

3

7
)− 7π3

12 sin2(π7 )
− 3π3

4 sin2( 2π
7 )

+
11π3

12 sin2( 3π
7 )

− π

12

[
ψ′(

1

14
) + ψ′(

3

14
) + ψ′(

5

14
)
]

+
π3

24 sin2( π14 )
+

π3

24 sin2( 3π
14 )

+
π3

24 sin2( 5π
14 )

]
. (174)

Adding the contribution from the sphere and the torus, cf. (127), the final result is

δE = (δE)S2+T + (δE)K+A+M

=
χ

(2π)3

(
2ζ(3)

e−2Φ4

V
+
π2

3

)
−

sin(π7 ) sin(2π
7 ) sin( 3π

7 )

224π2
·

[
7

6
πψ′(

1

7
) +

3

2
πψ′(

2

7
)− 11

6
πψ′(

3

7
)− 7π3

12 sin2(π7 )
− 3π3

4 sin2( 2π
7 )

+
11π3

12 sin2( 3π
7 )

− π

12

[
ψ′(

1

14
) + ψ′(

3

14
) + ψ′(

5

14
)
]

+
π3

24 sin2( π14 )
+

π3

24 sin2( 3π
14 )

+
π3

24 sin2( 5π
14 )

]
. (175)

The Euler number of the Z7 orientifold is χ = 2(h(1,1) − h(2,1)) = 48, cf. table 20 in [7]. And the
numerical value of the contribution from N = 1 part is −0.0115702.
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5.3 Z12

The twist vector7 of Z12 is v = 1
12 (1,−5, 4). Here we have the same procedure as in the Z6 case.

5.3.1 N = 1 sectors

The N = 1 sector sum is∑
σ

∑
`∈{N=1}

CPσσ
(`) =

∑
`=1,2,4,5,7,8,10,11

(
K(`)
u +K(`)

t + (trγ`9)2A(`)
99 + (trγ`5)2A(`)

55

+ (trγ`9)(trγ`5)A(`)
95 + (trγ2`

9 )M(`)
9 + (trγ2`

5 )M(`)
5

)
. (176)

Using (139), (140), Chan-Paton traces [1]

trγ`9 = trγ`5 = 0; ` 6= 0, 4, 8,

trγ4
9 = trγ4

5 = 4,

trγ8
9 = trγ8

5 = −4,

γ12
9 = γ12

5 = −1,

trγ12
9 = trγ12

5 = −32,

trγ0
9 = trγ0

5 = 32 (177)

and

χ̃(θ6, θ1) = χ̃(θ6, θ2) = χ̃(θ6, θ4) = χ̃(θ6, θ5) = χ̃(θ6, θ7) =

= χ̃(θ6, θ8) = χ̃(θ6, θ10) = χ̃(θ6, θ11) = 1,

χ̃(θ6, θ3) = χ̃(θ6, θ9) = 4,

χ̃(θ6, θ0) = χ̃(θ6, θ6) = 16. (178)

we obtain ∑
σ`∈{N=1}

CPσσ
(`) =

= 4
∑
`=1,2

(
K(`)
u +K(`)

t

)
+ 32

(
A(4)

99 +A(4)
55 +A(4)

95

)
+ 8
(
M(2)

9 +M(2)
5

)
− 8
(
M(4)

9 +M(4)
5

)
= −64 sin

π

6
sin

5π

6
sin

2π

3
K̂(1)
u − 64 sin3 π

3
K̂(2)
u + 16 sin

2π

3
K̂(1)
t

− 16 sin
2π

3
K̂(2)
t − 128 sin3 π

3
Â(4)

99 − 128 sin3 π

3
Â(4)

55 − 64 sin
π

3
Â(4)

95

+ 32 sin
π

6
sin

5π

6
sin

2π

3
M̂(2)

9 − 32 sin
2π

3
cos

π

6
cos

5π

6
M̂(2)

5

− 32 sin3 π

3
M̂(4)

9 − 32 sin
π

3
cos2 π

3
M̂(4)

5

= −8
√

3K̂(1)
u − 24

√
3K̂(2)

u + 8
√

3K̂(1)
t − 8

√
3K̂(2)

t

− 48
√

3Â(4)
99 − 48

√
3Â(4)

55 − 32
√

3Â(4)
95

+ 4
√

3M̂(2)
9 + 12

√
3M̂(2)

5 − 12
√

3M̂(4)
9 − 4

√
3M̂(4)

5 . (179)

7refers to C
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Then we do the t-integral using (141)-(144)∫ ∞
0

dt

t2

[
− 8K̂(1)

u − 24K̂(2)
u + 8K̂(1)

t − 8K̂(2)
t − 48Â(4)

99 − 48Â(4)
55 − 32Â(4)

95

+ 4M̂(2)
9 + 12M̂(2)

5 − 12M̂(4)
9 − 4M̂(4)

5

]
=

= −8
[
2IK(

1

6
) + IK(

2

3
)
]
− 24 · 3IK(

1

3
) + 8

[
2ĨK(

1

6
) + IK(

2

3
)
]
− 8
[
2ĨK(

1

3
) + IK(

1

3
)
]

− 48 · 3IA(
1

3
)− 48 · 3IA(

1

3
)− 32

[
2ĨA(

1

3
) + IA(

1

3
)
]

+ 4
[
2IM(

1

6
) + ĨM(

2

3
)
]

+ 12
[
2ĨM(

2

3
) + IM(

1

6
)
]

− 12 · 3IM(
1

3
)− 4 · 3ĨM(

5

6
)

= Λ2 ·
[
− 8[2 · 4π(1− 1

3
) + 4π(1− 4

3
)]− 72 · 4π(1− 2

3
) + 8[2 · 4π(1− 1

3
) + 4π(1− 4

3
)]

− 24 · 4π(1− 2

3
)− 144π(1− 2

3
) · 2− 96π(1− 2

3
) + 4[2 · 8π(1− 2

3
) + 8π(3− 8

3
)]

+ 12[2 · 8π(3− 8

3
) + 8π(1− 2

3
)]− 36 · 8π(1− 4

3
)− 12 · 8π(3− 10

3
)

]
− 8
[
2
(π

6
[ψ′(

1

6
)− ψ′(5

6
)]
)

+
(π

6
[ψ′(

2

3
)− ψ′(1

3
)]
)]
− 72

[π
6

[ψ′(
1

3
)− ψ′(2

3
)]
]

+ 8
[
− 2
( π

12
[ψ′(

1

6
)− ψ′(5

6
)]
)

+
(π

6
[ψ′(

2

3
)− ψ′(1

3
)]
)]

− 8
[
− 2
( π

12
[ψ′(

1

3
)− ψ′(2

3
)]
)

+
(π

6
[ψ′(

1

3
)− ψ′(2

3
)]
)]
− 288

[ π
24

[ψ′(
1

3
)− ψ′(2

3
)]
]

− 32
[
− 2
( π

48
[ψ′(

1

3
)− ψ′(2

3
)]
)

+
( π

24
[ψ′(

1

3
)− ψ′(2

3
)]
)]

+ 4
[
2
( π

12
[ψ′(

1

6
)− ψ′(5

6
)− 1

2
ψ′(

2

3
) +

1

2
ψ′(

1

3
)]
)
− π

24
[ψ′(

1

6
)− ψ′(5

6
) + 2ψ′(

1

3
)− 2ψ′(

2

3
)]
]

+ 12
[
2
(
− π

24
[ψ′(

1

6
)− ψ′(5

6
) + 2ψ′(

1

3
)− 2ψ′(

2

3
)
)

+
( π

12
[ψ′(

1

6
)− ψ′(5

6
)− 1

2
ψ′(

2

3
) +

1

2
ψ′(

1

3
)]
)]

− 36
[ π

12
[ψ′(

1

3
)− ψ′(2

3
)− 1

2
ψ′(

5

6
) +

1

2
ψ′(

1

6
)]
]

+ 12
[ π

24
[ψ′(

1

3
)− ψ′(2

3
) + 2ψ′(

1

6
)− 2ψ′(

5

6
)]
]
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σ\` 0 1 2 3 4 5 6 7 8 9 10 11

Ku V1V2V3 V3
V3

V1V2
V3

Kt V3 V3 V3 V3

A99 V1V2V3 V3 V3 V3

A55
V3

V1V2
V3 V3 V3

A95 V3 V3 V3 V3

M9 V1V2V3 V3 V3 V3

M5 V3 V3
V3

V1V2
V3

Table 4: Volume factors for the different N sectors of the Z12 orientifold.

= 0 · Λ2 − 3πψ′(
1

6
) + 3πψ′(

5

6
)− 55

2
πψ′(

1

3
) +

55

2
πψ′(

2

3
)

= −55πψ′(
1

3
) +

110

3
π3 − 6πψ′(

1

6
) + 12π3

= −55πψ′(
1

3
) +

146

3
π3 − 30πψ′(

1

3
) + 8π3

= −85πψ′(
1

3
) +

170

3
π3

= −170
√

3πCl2(
π

3
), (180)

where as for the Z6 case we used (162), (163) and (164) to simplify the result. The UV divergence
is absent as well.

The result of the N = 1 sector is

(δE)(N=1) =
∑
σ

(δE)(N=1)
σ =

= − π(α′)2

64 · 12(4π2α′)2
·
√

3
[
− 170

√
3πCl2(

π

3
)
]

=
85

2048π2
Cl2(

π

3
). (181)

5.3.2 N = 2 sectors

The contribution is∑
σ`∈{N=2}

CPσσ
(`) =

=
∑
`=3,9

K(`)
u +

∑
`=0,3,6,9

K(`)
t +

∑
`=3,6,9

(trγ`9)2A(`)
99 +

∑
`=3,6,9

(trγ`5)2A(`)
55

+
∑

`=0,3,6,9

[
(trγ`9)(trγ`5)A(`)

95

]
+

∑
`=3,6,9

(trγ2`
9 )M(`)

9 +
∑

`=0,3,9

(trγ2`
5 )M(`)

5

=
∑
`=3,9

K(`)
u +

∑
`=0,3,6,9

K(`)
t + 1024A(0)

95 − 32M(6)
9 + 32M(0)

5 .

(182)
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From (148) we have

πẽKχ̃KuD
(3)
Ku = −16π, πẽKχ̃KuD

(9)
Ku = −16π,

πẽKχ̃KtD
(0)
Kt = 64π, πẽKχ̃KtD

(3)
Kt = 16π,

πẽKχ̃KtD
(6)
Kt = 64π, πẽKχ̃KtD

(9)
Kt = 16π,

πẽAχ̃A95
D

(0)
A95

= 2π, πẽMχ̃M9
D

(6)
M9

= 4π,

πẽMχ̃M5
D

(0)
M5

= −4π. (183)

Using (138), (150), (154) and (155) we can easily get that∫ ∞
1
eσΛ

dt

t2

∑
σ`∈{N=2}

CPσσ
(`) =

= −16π

∫ ∞
1
eK

Λ

dt

t2
L[3,M ] − 16π

∫ ∞
1
eK

Λ

dt

t2
L[3,M ] + 64π

∫ ∞
1
eK

Λ

dt

t2
L[3,M ]

+ 16π

∫ ∞
1
eK

Λ

dt

t2
L[3,M ] + 64π

∫ ∞
1
eK

Λ

dt

t2
L[3,M ] + 16π

∫ ∞
1
eK

Λ

dt

t2
L[3,M ]

+ 2048π

∫ ∞
1
eA

Λ

dt

t2
L[3,M ] − 128π

∫ ∞
1
eM

Λ

dt

t2
L[3,M ] − 128π

∫ ∞
1
eM

Λ

dt

t2
L[3,M ]

=
πC [3,M ]Λ2

2

[
(−16− 16 + 64 + 16 + 64 + 16)e2

K + 2048e2
A + (−128− 128)e2

M

]
+ (−16− 16 + 64 + 16 + 64 + 16 + 2048− 128− 128)πC [3,M ]Γ[3,M ]

= 0 · πC
[3,M ]Λ2

2
+ 1920πC [3,M ]Γ[3,M ]

=
7680πα′

V3
E2(U [3]). (184)

The UV divergences cancel again as expected. Thus

(δE)(N=2) = − π(α′)2

64 · 12(4π2α′)2

∫ ∞
0

dt

t2

∑
σ`∈{N=2}

CPσσ
(`)

= −5

8

α′

π2V3
E2(U [3]). (185)

Adding the contributions from the sphere and the torus (cf. (127)), N = 1 and N = 2, the
final result is

δE = (δE)S2+T + (δE)(N=1) + (δE)(N=2)

=
χ

(2π)3

(
2ζ(3)

e−2Φ4

V
+
π2

3

)
+

85

2048π2
Cl2(

π

3
)− 5

8

α′

π2V3
E2(U [3]). (186)

The Euler number of the Z12 orientifold is χ = 2(h(1,1) − h(2,1)) = 48, cf. table 20 in [7]. And the
numerical value of the contribution from N = 1 part is 0.0042683.
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6 Conclusions

We determined the quantum corrections to the Einstein-Hilbert term in toroidal minimally super-
symmetric type-IIB orientifolds at 1-loop order. And we calculated the contribution in 3 concrete
models: Z6, Z7 and Z12. During the calculation there is a new kind of integral arising in the
case of Möbius with 1

2 < γ < 1. Also it is worth mentioning that the N = 1 contributions are
0.0080345 for Z6, −0.0115702 for Z7 and 0.0042683 for Z12, which all of them are almost of the
same order of magnitude and are much smaller than 1. We may observe that the sum of these
three N = 1 contributions is 0.0007326 which is much smaller than any one of single contribution.

Until now, the 1-loop calculation of δE is complete because we went through all tadpole-free
models. However, there are still more open questions. Observing (116), we can see that there are
still correction terms like δτ left unsolved. Therefore, further evaluation about these terms should
be fulfilled in order to finally complete the full 1-loop correction.
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A Useful formulas

Cited from [8] and [16].

q = e2πiτ (187)

ϑ functions:
ϑ[~α~β ](~ν,G) =

∑
~n∈ZN

eiπ(~n+~α)TG(~n+~α)e2πi(~ν+~β)T (~n+~α), (188)

ϑ1 = −ϑ[
1
2
1
2

](ν, τ) = 2eπiτ/4 sin(πν)

∞∏
n=1

(1− qn)(1− zqn)(1− z−1qn), (189)

ϑ2 = ϑ[
1
2
0 ](ν, τ) = 2eπiτ/4 cos(πν)

∞∏
n=1

(1− qn)(1 + zqn)(1 + z−1qn), (190)

ϑ3 = ϑ[ 0
0](ν, τ) =

∞∏
n=1

(1− qn)(1 + zqn−
1
2 )(1 + z−1qn−

1
2 ), (191)

ϑ4 = ϑ[ 0
1
2
](ν, τ) =

∞∏
n=1

(1− qn)(1− zqn− 1
2 )(1− z−1qn−

1
2 ). (192)

where z = e2πiν .
η function:

η(τ) = q1/24
∞∏
n=1

(1− qn) =

[
∂νϑ1(0, τ)

−2π

] 1
3

, (193)

and
ϑ[αβ ](0, τ)

η(τ)
= e2πiαβq

α2

2 −
1
24

∞∏
n=1

(1 + qn+α− 1
2 e2πiβ)(1 + qn−α−

1
2 e−2πiβ). (194)

Poisson re-summation:

ϑ[
~0
~0
](0, itG−1) =

√
Gt−N/2ϑ[

~0
~0
](0, it−1G) (195)

Modular transformation S for annulus and Klein bottle:

ϑ[αβ ](ν, τ) = (−iτ)−1/2e2πiαβ−πiν2/τϑ[−βα ](ν/τ,−1/τ). (196)

Modular transformation ST 2S for Möbius:

ϑ[αβ ](ν, τ) = (1− 2τ)−1/2e2πiβ2

e−πiν
2/(τ−1/2)ϑ[α+2β

β ](
ν

1− 2τ
,

τ

1− 2τ
). (197)

General Modular transformation S and T for ϑ-functions and η-function:

ϑ[αβ ](τ + 1) = e−πi(α
2−α)ϑ[ α

α+β− 1
2
](τ), (198)

ϑ[αβ ](−1

τ
) =
√
−iτe2πiαβϑ[−βα ](τ) | arg

√
−iτ | < π

2
, (199)

η(τ + 1) = eiπ/12η(τ), (200)

η(−1

τ
) =
√
−iτη(τ). (201)

Shifts in characteristics:

ϑ[α+1
β ](ν, τ) = ϑ[αβ ](ν, τ),

ϑ[ α
β+1](ν, τ) = e2πiαϑ[αβ ](ν, τ). (202)

ν-periodicity formula:

ϑ[αβ ](ν + aτ + b, τ) = e−2πiabe−πia
2τe−2πia(ν+b)ϑ[α+a

β+b ](ν, τ). (203)
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B t-integrals

App.B.1 and B.2 are cited from app. C in [16]. App.B.3 is new.

B.1 N = 1 sector t-integral

In order to evaluate the t-integral of N = 1 sectors with hi 6= 0 (i.e. for Kt and A95) we need the
integral (assuming 0 < γ < 1)

I =

∫ ∞
1
eσΛ

dt

t2
ϑ′4(γ, τσ)

ϑ4(γ, τσ)
(204)

with σ = K,A and τσ = ieσt
2 (eσ was defined in (138)). Evaluating this integral follows very

closely a similar calculation in app. M of [4]. By modular transformation of the Jacobi θ function

(using (196), ϑ4 = ϑ[01
2

] and ϑ2 = ϑ[
1
2
0 ]) we have

ϑ′4(γ, ieσt/2)

ϑ4(γ, ieσt/2)
= −4πγl − 2il

ϑ′2(−2iγl, 2il)

ϑ2(−2iγl, 2il)
, (205)

where l ≡ 1
eσt

. Using the representation from |=(z)| < =(τσ)

ϑ′2(z)

ϑ2(z)
=− π tanπz + 4π

∞∑
n=1

(−1)nqn

1− qn
sin 2πnz

=− π tanπz + 4π

∞∑
n,m=1

(−1)nqnm sin 2πnz (206)

we arrive at

I =

∫ ∞
1
eσΛ

dt

t2
ϑ′4(γ, τσ)

ϑ4(γ, τσ)

=eσ

∫ Λ

0

dl

(
− 4πγl − 2il

ϑ′2(−2iγl, 2il)

ϑ2(−2iγl, 2il)

)
=− 2πeσ

∫ Λ

0

dl l
(

2γ − tanh(2πγl) + 4

∞∑
n,m=1

(−1)ne−4πlnm sinh(4πnγl)
)
. (207)

Let us start with the last term, which is free of UV divergences (so we can set Λ =∞):

I1 =− 8πeσ

∫ ∞
0

dll

∞∑
n,m=1

(−1)ne−4πlnm sinh(4πnγl)

=− πeσ
∞∑

n,m=1

(−1)nγm

(γ2 −m2)2n2π2

=− πeσ

( ∞∑
n=1

(−1)n

n2π2

)( ∞∑
m=1

γm

(γ2 −m2)2

)
=− eσ

π

48
[ψ′(1 + γ)− ψ′(1− γ)]

=− eσ
π

48

[
ψ′(γ)− ψ′(1− γ)− 1

γ2

]
. (208)

Here ψ′(x) denotes the trigamma function as in 4.5 and in the last line we used ψ′(1 + γ) =
ψ′(γ)− 1/γ2.
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Now let us look at the first and second term in (207):

I2 = −2πeσ

∫ Λ

0

dll(2γ) = −2πeσγΛ2, (209)

I3 = 2πeσ

∫ ∞
0

dll tanh(2πγl)

= eσ

[
− π

48γ2
+ πΛ2 +

Λ log(1 + e−4γΛπ)

γ
− Li2(−e−4γΛπ)

4γ2π

]
Λ→∞

= eσ

[
− π

48γ2
+ πΛ2

]
. (210)

Here Li2(z) is the dilogarithm function. In the second equality we used that the third and last
term vanish as Λ→∞.

In total we obtain∫ ∞
1
eσΛ

dt

t2
ϑ′4(γ, ieσt/2)

ϑ4(γ, ieσt/2)
= I1 + I2 + I3 = eσπ(1− 2γ)Λ2 − eσ

π

48
[ψ′(γ)− ψ′(1− γ)]. (211)

B.2 N = 2 sector t-integral

The t-integrals appearing in N = 2 sectors are very similar to those determining the N = 2 sector
corrections to the Kähler metric calculated in [6]. Concretely, they are given by

Γ[n,M/W ] =

∫ ∞
0

dt

t3

∑
~m∈Z2\~0

e−
π
tm

ambg
[nM/W ]
ab

=
∑

~m∈Z2\~0

∫ ∞
0

dt

t3
e−

π
tm

ambg
[nM/W ]
ab

=
1

π2

∑
~m∈Z2\~0

1(
mambg

[nM/W ]
ab

)2 . (212)

The metric g
[nM/W ]
ab is given by (151). Using (151) and the expression for g

[n]
ab in terms of the

complex structure U [n] = U
[n]
1 + iU

[n]
2 of n-th torus, i.e.

g
[n]
ab =

√
det g[n]

U
[n]
2

(
21 U

[n]
1

U
[n]
1 |U [n]|2

)
, (213)

one can write

g
[n,M/W ]
ab =


√

det g[n]

U
[n]
2

(
21 U

[n]
1

U
[n]
1 |U [n]|2

)
for M (momentum sum)

1

U
[n]
2

√
det g[n]

(
21 Ũ

[n]
1

Ũ
[n]
1 |Ũ [n]|2

)
for W (winding sum)

(214)

with Ũ [n] = Ũ
[n]
1 + iŨ

[n]
2 = −(U [n])−1 (i.e. Ũ

[n]
1 = −U [n]

1 /|U [n]|2 and Ũ
[n]
2 = U

[n]
2 /|U [n]|2).

Ũ [n] = −(U [n])−1 follows from the fact that g
[n,W ]
ab is the inverse matrix of g

[n,M ]
ab .

Then we obtain∑
~m∈Z2\~0

1(
mambg

[n,M/W ]
ab

)2 =

{
1

det g[n]E2(U [n]) for M (momentum sum)

det g[n]E2(−(U [n])−1) for W (winding sum)
. (215)
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Here Es(U) is the non-holomorphic Eisenstein series

Es(U) =
∑

~m∈Z2\~0

Us2
|m1 +m2U |2s

. (216)

Therefore, from (212) and using
√

det g[n] = Vn
4π2α′ , we obtain

Γ[n,M/W ] =

{
(4π2α′)2

π2V 2
n
E2(U [n]) for M (momentum sum)

V 2
n

π2(4π2α′)2E2(−(U [n])−1) for W (winding sum)
. (217)

B.3 t-integral for M with γ > 1
2

When 1
2 < γ < 1 for M, we need to do the integral

ĨM =

∫ ∞
0

dt

t2
ϑ′1(γ, τM)

ϑ1(γ, τM)
, (218)

here τM = it
2 + 1

2 . We substitute γ′ = γ − 1
2 for γ, and this transforms the original integral to

ĨM =

∫ ∞
0

dt

t2
ϑ′2(γ′, τM)

ϑ2(γ′, τM)
. (219)

By following the similar calculation in app. M.2 of [4], we perform ST 2S modular transformations:

τM =
it

2
+

1

2
→ − 1

τM
→ − 1

τM
+ 2→

(
1

τM
− 2

)−1

= 2il − 1

2
=: lM. (220)

Here l = 1
4t . The result of ST 2S modular transformation (197) is

ϑ′2(γ′, τM)

ϑ2(γ′, τM)

l= 1
4t= −16πγ′l + 4il

ϑ′2(4iγ′l, 2il − 1
2 )

ϑ2(4iγ′l, 2il − 1
2 )
. (221)

Using the representation of ϑ′2/ϑ2 for |=(z)| < =(τσ)(cf. (206)) we get

ĨM =

∫ ∞
1

4Λ

dt

t2
ϑ′2(γ′, τM)

ϑ2(γ′, τM)

= 4

∫ Λ

0

dl

(
− 16πγ′l + 4il

ϑ′2(4iγ′l, 2il − 1
2 )

ϑ2(4iγ′l, 2il − 1
2 )

)

= −16π

∫ Λ

0

dl l
(

4γ′ − tanh(4πγ′l) + 4

∞∑
n,m=1

(−1)n(m+1)e−4πlnm sinh(8πnγ′l)
)

(222)

The integral of first and second term are the same to the term in (207). Now, let’s look at the
third term. Following the similar calculation as eq. (397) and (398) in [4]:

I1 =

∞∑
m,n=1

∫ ∞
0

dl l(−1)n(m+1)e−4πlnm sinh(8πnγ′l)

=

∞∑
m,n=1

(−1)n(m+1) mγ′

4n2π2(4γ′2 −m2)2

=

∞∑
m=1

mγ′Li2((−1)m+1)

4π2(4γ′2 −m2)2
. (223)
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Note that the integral converges provided that 2|γ′| ≤ m (which is true now because γ′ = γ − 1
2 ).

Now we split the sum into sums over even and odd m:

I1 =

∞∑
k=1

[
(2k)γ′Li2(−1)

4π2(4γ′2 − (2k)2)2

]
+

∞∑
k=0

[
(2k + 1)γ′Li2(1)

4π2(4γ′2 − (2k + 1)2)2

]
=

1

1536

[
ψ′(1 + γ′)− ψ′(1− γ′)

]
+

1

768

[
ψ′(

1

2
− γ′)− ψ′(1

2
+ γ′)

]
. (224)

All together we arrive at

= 8π(1− 4γ′)Λ2 − π

24γ′2
− π

24

[
ψ′(1 + γ′)− ψ′(1− γ′) + 2ψ′(

1

2
− γ′)− 2ψ′(

1

2
+ γ′)

]
= 8π(3− 4γ)Λ2 − π

24

[
ψ′(γ − 1

2
)− ψ′(3

2
− γ) + 2ψ′(1− γ)− 2ψ′(γ)

]
. (225)

C ZN actions in D = 4

In the table are the twist vectors for different ZN orbifold type-IIB string models on T 6 (D = 4
space-time dimensions with 6 compact dimensions).

Z3
1
3(1, 1, 2) Z′6

1
6(1,−3, 2) Z′8

1
8(1,−3, 2)

Z4
1
4(1, 1,−2) Z7

1
7(1, 2,−3) Z12

1
12(1,−5, 4)

Z6
1
6(1, 1,−2) Z8

1
8(1, 3,−4) Z′12

1
12(1, 5,−6)

Cited from Table 2 of [1]. Only Z3, Z6, Z′6, Z7, Z12 models are tadpole-free, which is discussed
in [1].
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