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0 Introduction

For a complex vector bundle E on a compact Riemann surfaceM , the theorem of Narasimhan
and Seshadri [NS64] gives a correspondence of stable holomorphic structures to irreducible
connections with constant central curvature or, equivalently, unitary representations of the
fundamental group. A generalization of constant central curvature connections, which can
e.g. be used to establish a similar correspondence for representations in GL(n,C), is the
notion of a Higgs bundle, introduced by Hitchin [Hit87b]. A Higgs bundle is a solution
(∇,Φ) of the equations

F∇ + [Φ ∧ Φ∗] = c idE ⊗ω,
d∇Φ = 0,

(1)

where ∇ is a unitary connection on E, Φ ∈ Ω1,0(End E) an End E–valued (1, 0)–form and
ω the volume form on M . Because M is a surface, the second equation is equivalent to
∂
∇

Φ = 0, so it expresses that Φ is a holomorphic form.
These equations are invariant under unitary vector bundle automorphisms, also called

gauge transformations, and the equivalence classes of solutions form a moduli space M .
When we restrict our study to the moduli space M ∗ of irreducible solutions, that is solu-
tions which cannot be decomposed into a product of solutions on lower–rank subbundles, it
becomes a finite–dimensional smooth manifold. Somewhat surprisingly, this moduli space
has an interesting geometric structure, and is therefore often studied in its own right (e.g.
[Hit87a], [Sch13], [MSWW14]). Most notably, it admits a Hyperkähler structure, consisting
of a Riemannian metric and three compatible complex structures satisfying the quaternion
relations. Each of these complex structures defines, together with the metric, an independent
symplectic structure on M ∗.
While defining this Hyperkähler structure (for the case rkE = 2), Hitchin [Hit87b] al-

ready noted that it can be formally interpreted as arising from a Hyperkähler structure on
the configuration space by a certain quotient construction, called the Hyperkähler quotient.
This is an analogue of the Marsden–Weinstein quotient for symplectic manifolds. Consider
a free group action on a Hyperkähler manifold, which is Hamiltonian with respect to all
three symplectic structures. Then the combined zero set of the associated moment maps is
invariant, and its quotient by the group action is again a smooth Hyperkähler manifold.
A goal of this thesis is to make this Hyperkähler quotient construction of the moduli space

precise. We show that, under some technical conditions, the Hyperkähler quotient generalizes
to proper actions of infinite–dimensional Lie groups on infinite–dimensional Hyperkähler
manifolds, both modeled on Hilbert spaces. Then we prove that the configuration space of
Hitchin’s equations, completed to a suitable Sobolev space, is in fact such a Hyperkähler
manifold and that the unitary gauge transformations form a proper Hamiltonian action of
a Hilbert Lie group. The moment maps are then exactly the equations (1). Furthermore,
we compute the stabilizer groups of this action and show that the irreducible solutions are
exactly the solutions where the stabilizer is minimal. After quotienting out this subgroup,
we get a free action and thus a smooth Hyperkähler quotient.
Of course we are finally interested in smooth solutions, not only Sobolev–regular ones.

By using a suitable gauge fixing condition, Hitchin’s equations become a quasilinear elliptic
system. With this property, we show that every gauge orbit of solutions contains a smooth
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solution.
One way to better understand the moduli space M is by studying the map

M →
m⊕
i=1

H0(M,K⊗i), [∇,Φ] 7→ (s1(Φ), . . . , sm(Φ)),

where H0(M,K⊗i) is the space of holomorphic sections of powers of the canonical line
bundle and si are the coefficients of the characteristic polynomial. This map is called the
Hitchin fibration. One of the interesting features about it is that (when restricted to M ∗)
it is a completely integrable system with respect to a complex symplectic structure on M ∗.
Furthermore, it is a proper map, so its fibers are compact. The combination of these two
facts implies that every regular fiber containing only irreducible solutions is biholomorphic
to a complex torus. This analysis was already carried out for the rank 2 case in Hitchin’s
original paper [Hit87b] and later extended to higher ranks (see e.g. [Wen14]). However, we
will fill in some analytical details here, in particular giving a slightly more explicit description
of the Hamiltonian vector fields than [Hit87b].
The first section reviews some basic definitions and fixes notation. It is concerned with

complex manifolds, especially Riemann surfaces, complex vector bundles and their classi-
fication on compact Riemann surfaces as well as different ways to describe holomorphic
structures on such bundles. Finally, we will state Hitchin’s equations and the class of gauge
transformations which leave it invariant.
The second section then discusses smooth group actions of infinite–dimensional Lie groups

on infinite–dimensional manifolds, both modeled on Hilbert spaces. The main part is a proof
of the slice theorem. As a consequence of this, when restricted to an open subset of points
with minimal stabilizer, the group action yields a smooth quotient. Building on this, rest of
the section exhibits the construction of the Hyperkähler quotient in the infinite–dimensional
setting.
These results are applied to the solutions of Hitchin’s equations in the third section. First

we complete the configuration space and the gauge group with respect to a Sobolev norm.
In a next step, we describe the Hyperkähler structure on the configuration space and show
that the gauge group action is Hamiltonian with respect to all three symplectic forms, with
the moment maps given by Hitchin’s equations. We then show that the action is proper
and compute its stabilizers. Next, we show that infinitesimally, Hitchin’s equations and the
gauge transformations form an elliptic complex. In particular, this allows to compute the
dimension of the moduli space using the Atiyah–Singer index theorem. Finally, we discuss
gauge fixing and the regularity theory of Hitchin’s equations.
The fourth and last section is concerned with the Hitchin fibration. We first discuss

symmetric polynomials in general and how to apply them to endomorphism–valued forms
to define the map. Then we prove that it is proper, using Uhlenbeck’s weak compactness
theorem and the regularity theory obtained above. Finally, we prove that regular fibers
have a basis consisting of certain Hamiltonian vector fields, making the Hitchin fibration a
completely integrable system over its regular values.
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1 Preliminaries

In this chapter we will review some basic definitions, particularly concerning complex and
holomorphic vector bundles, and fix notation. Then we will introduce Hitchin’s equations,
the solutions of which will be the main object of interest throughout this thesis.

1.1 Complex manifolds

Let M be a smooth manifold of even dimension, so that it is locally diffeomorphic to
R2n ∼= Cn. A complex structure on M is given by a maximal subatlas whose coordinate
changes are holomorphic. This allows to define holomorphic functions between two com-
plex manifolds. The tangent spaces TxM become C–vector spaces by requiring that the
differentials of the holomorphic charts be C–linear. This is independent of the chart since
holomorphic coordinate changes have C–linear differentials. Scalar multiplication by i ∈ C
on the tangent spaces yields a bundle automorphism j : TM → TM which is anti–involutive,
i.e. j2 = − id. A smooth map f : M → N between complex manifolds is holomorphic if
and only if its differential intertwines these complex structures, Df ◦ jM = jN ◦Df , at any
point. For M = Cm and N = Cn this identity is just the Cauchy–Riemann equations.
This provides a description of complex manifolds in more differential geometric terms. Let

M again be a smooth manifold. An almost complex structure on M is an anti–involutive
bundle homomorphism j : TM → TM . If the Nijenhuis tensor

Nj(X,Y ) = −j2[X,Y ] + j[jX, Y ] + j[X, jY ]− [jX, jY ]

vanishes, the almost complex structure is called integrable and by the Newlander–Nirenberg
theorem [NN57] there is a holomorphic subatlas so that j is given by multiplication by i as
above, so M is a complex manifold. Conversely, the almost complex structure induced by a
complex manifold is always integrable. When we speak of complex structures in this thesis,
we will usually mean an integrable almost complex structure.

1.2 Riemann surfaces

We now consider the special case thatM has real dimension two. Let j be an almost complex
structure onM . Then there is always a Riemannian metric g onM which is compatible to j
in the sense that g(jv, jw) = g(v, w) for all v, w ∈ TxM . Locally one can find such a metric
using a non–vanishing local vector field u ∈ Γ(TM |U ). Then u, ju cannot be R–linearly
dependent as ju = λu for λ ∈ R contradicts j2u = −u. So we can define g on the basis
u, ju ∈ TxM by g(u, u) = g(ju, ju) = 1 and g(u, ju) = g(ju, u) = 0. The existence of a
global metric follows using partitions of unity. It is unique up to multiplication by a smooth
positive function: If g1 and g2 are two j–compatible Riemannian metrics and 0 6= u ∈ TxM
then

gi(ju, u) = gi(u, ju) = gi(ju, j
2u) = −gi(ju, u) = 0 and gi(ju, ju) = gi(u, u)

for i = 1, 2, so we can check on the basis u, ju that

g2(v, w) =
g2(u, u)

g1(u, u)
g1(v, w) ∀v, w ∈ TxM.
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The 2–form ω(v, w) = g(jv, w) is trivially closed and non–degenerate since j is an isomor-
phism, so it is a symplectic form on M . It is also a Riemannian volume form for the metric
g which endows M with a canonical orientation. If e ∈ TxM is a unit vector, then (e, je) is
a positively oriented orthonormal basis. The dual basis of T ∗xM is (e[,−je[), so the Hodge
star operator ?g : Ω1 → Ω1 of any j–compatible metric g equals −j.
Extending e to a local vector field we can easily check that Nj(e, je) = 0. Since Nj is

C∞–linear and antisymmetric this implies Nj = 0, so every almost complex structure on a
surface is integrable.

1.3 Complex vector bundles

LetM be a complex manifold with complex structure j : TM → TM and E →M a complex
vector bundle. To simplify notation when dealing with vector bundle–valued forms, we will
often write Λk for the bundle ΛkT ∗M and Λk ⊗E for ΛkT ∗M ⊗E. The complex structure
j on M induces a complex linear anti–involution j : Λ1 ⊗ E → Λ1 ⊗ E by mapping α ⊗ e
to (α ◦ j) ⊗ e. It is easy to see that Λ1 ⊗ E = T ∗M ⊗R E then splits into two complex
subbundles called Λ1,0 ⊗ E and Λ0,1 ⊗ E, both of equal dimension, on which j acts by
multiplication with i and −i, respectively. We call the sections in Ω1,0(E) := Γ(Λ1,0 ⊗ E)
and Ω0,1(E) := Γ(Λ0,1 ⊗ E) the E–valued (1, 0)–forms and E–valued (0, 1)–forms on M
and denote the projections onto these spaces by pr1,0 and pr0,1. If we view the cotangent
spaces of M as complex vector spaces with the imaginary unit given by the endomorphism
j : T ∗M → T ∗M , then Λ1,0 ⊗E is the complex tensor product of T ∗M and E while Λ1 ⊗E
is the real tensor product of the same bundles endowed with the complex structure of E. In
particular, if E = C is the trivial complex line bundle, then Λ1,0 ⊗ C is just T ∗M with the
fiberwise complex structure given by j. It is called the holomorphic cotangent bundle or, if
M is a surface, the canonical bundle K of M . When we write Λ1,0 or Λ0,1 on their own, we
mean the the complex bundles Λ1,0 ⊗C and Λ0,1 ⊗C, respectively. This is compatible with
the notation Λ1,0 ⊗ E and Λ0,1 ⊗ E for the eigenspaces of Λ1 ⊗R E.
Starting with complex vector bundles E →M and F →M , their direct sum E⊕F , tensor

product E ⊗ F , dual E∗ and homomorphism bundle Hom(E,F ) are also complex vector
bundles. If E and F carry a Hermitian bundle metric (which by convention will always be
conjugate linear in the first argument), there is also an induced metric on E ⊕ F , E ⊗ F ,
E∗ and Hom(E,F ). A special case which will occur frequently is the endomorphism bundle
End E = Hom(E,E). The Hermitian metric defines a conjugation on this bundle which
assigns to every ϕ ∈ End E an element ϕ∗ in the same fiber which satisfies 〈v, ϕ∗w〉 = 〈ϕv,w〉
for v, w ∈ Eπ(ϕ). The important subset

uE = {ϕ ∈ End E | ϕ∗ = −ϕ}

of skew–Hermitian endomorphisms is a real subbundle of End E and the restriction of the
Hermitian metric forms a real bundle metric on uE. The subsets GL(E) of invertible
endomorphisms and UE of unitary endomorphisms are also fiber subbundles, but not vector
bundles.
There are some important (multi–)linear bundle maps on End E, namely the commutator

[ϕ,ψ] = ϕψ − ψϕ and the trace tr : End E → C mapping into the trivial line bundle C,
which is defined using the identification End E = E∗⊗E by tr(α⊗ v) = α(v). The induced
bundle metric on End E satisfies 〈ϕ,ψ〉 = tr(ϕ∗ψ) for all ϕ,ψ ∈ End E. For ψ,ϕ ∈ End E,
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α, β ∈ Λ1, ξ, ζ ∈ Λ2 and γ ∈ Λk all in a fiber over the same point x ∈ M , we further define
the following maps, which extend to multilinear bundle maps on various tensor product
bundles:

(γ ⊗ ψ)∗ = γ ⊗ ψ∗

[(α⊗ ψ), ϕ] = α⊗ [ψ,ϕ]

[ψ, (α⊗ ϕ)] = α⊗ [ψ,ϕ]

[(α⊗ ψ) ∧ (β ⊗ ϕ)] = (α ∧ β)⊗ [ψ,ϕ]

〈[(α⊗ ψ), (β ⊗ ϕ)]〉 = 〈α, β〉[ψ,ϕ]

[(α⊗ ψ) y(ξ ⊗ ϕ)] = (α] y ξ)⊗ [ψ,ϕ]

?(γ ⊗ ψ) = (? γ)⊗ ψ.

Here ? is the Hodge star and y is the inner product v y ξ = ξ(v,−). While [−,−] and 〈[−,−]〉
are antisymmetric, [− ∧−] is symmetric due to the antisymmetry of both parts.
Let ∇ : Γ(E)→ Ω1(E) = Γ(T ∗M ⊗ E) be a unitary connection on E, that is it satisfies

X〈s, t〉 = 〈∇Xs, t〉+ 〈s,∇Xt〉.

Then its curvature F∇ ∈ Ω2(End E) is skew–Hermitian, i.e. F∇ ∈ Ω2(uE). If ∇1,∇2

are both unitary connections on E, their difference α = ∇1 − ∇2 is a skew–Hermitian
endomorphism–valued 1–form, α ∈ Ω1(uE). Let A (E) be the space of all unitary connec-
tions on the complex bundle E. When ∇E ∈ A (E) and ∇F ∈ A (F ) are given, there is a
unique induced unitary connection ∇E⊗F ∈ A (E ⊗ F ) which satisfies

∇E⊗FX (v ⊗ w) = ∇EXv ⊗ w + v ⊗∇EXw ∀v ∈ Γ(E), w ∈ Γ(F ).

This also works if one of E,F is a real bundle with a symmetric connection. In particular,
using the Levi–Civita connection on T ∗M , we get induced connections on T ∗M⊗k ⊗ E.
There is also an induced differential operator d∇ : Ωk(E)→ Ωk+1(E), the covariant exterior
derivative, which is uniquely defined by

d∇(α⊗ v) = dα⊗ v + (−1)kα ∧∇v ∀α ∈ Ωk, v ∈ Γ(E).

The covariant exterior derivative can be viewed as an anti–symmetrization of ∇T ∗M⊗k⊗E
and generally contains fewer partial derivatives.

1.4 Holomorphic vector bundles

To define holomorphic sections, we additionally need a holomorphic structure on E. As
with complex manifolds, there are again different ways to describe this structure. First, we
can equip the total space E with a complex structure J and choose a compatible system of
trivializations E|U ∼= U × Cm which are holomorphic with respect to J on the left side and
the complex structures on U ⊂ M and Cm on the right side. The projection E → M is
then automatically holomorphic and holomorphic sections of E are smooth sections which
are holomorphic with respect to J and j. Alternatively to specifying J explicitly, we could
also restrict to a trivialization with holomorphic coordinate changes, which then defines a
complex structure on E.
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Now let M be a Riemann surface. A Dolbeault operator is a C–linear operator ∂ : Γ(E)→
Ω0,1(E) which satisfies the product rule ∂(fs) = pr0,1 df⊗s+f∂s for every section s ∈ Γ(E)
and complex function f on M . For a given holomorphic structure on E there is a unique
Dolbeault operator ∂ such that ∂s|U = 0 whenever a section s ∈ Γ(E) is holomorphic on an
open set U ⊂M .
Let us briefly proof its existence and uniqueness. If two such operators exist, their differ-

ence is an End E–valued (0,1)–form which vanishes on all vectors v ∈ Ex for which there
exists a local holomorphic section s : U → E|U such that s(x) = v. But these local sections
always exist, so the two Dolbeault operators are equal. To show that ∂ exists locally, let
s : U → E|U now be a smooth section on an open set U ⊂ M where E|U is trivial. A holo-
morphic trivialization induces a bundle map c : TE|E|U → TM |U⊕E|U covering π : E|U → U
which is an isomorphism on the fibers and holomorphic in the sense that c ◦ J = (j ⊕ i) ◦ c.
The composition ds = p2 ◦ c ◦ Ds : TM |U → E|U thus satisfies ds(jX) = ids(X) if and
only if s is holomorphic. If we regard ds as an E–valued 1–form, its (0,1)–part therefore
vanishes if and only if s is holomorphic. So we can set ∂s = pr0,1(ds) on U . In particular the
Dolbeault operator exists locally. By uniqueness these local realizations coincide on their
overlaps and can be combined to a global Dolbeault operator.
Conversely, for every Dolbeault operator ∂ on a complex bundle E →M there is a unique

holomorphic structure such that the kernel of ∂ are exactly the holomorphic sections [DK90,
Section 2.2]. We can therefore specify holomorphic structures by giving their associated
Dolbeault operators. This equivalence still holds for higher–dimensional M but one has to
require an additional integrability condition for Dolbeault operators.
If we fix a Hermitian bundle metric 〈−,−〉 on E, there is a third way to describe holo-

morphic structures. For every Dolbeault operator ∂ there is a unique unitary connection
∇ : Γ(E) → Ω1(E) such that ∂ = pr0,1 ◦∇. [Kob14, Proposition I.4.9]. Conversely, the
(0,1)–part of a unitary connection is a Dolbeault operator. So holomorphic structures on a
Hermitian vector bundle are in a one–to–one correspondence to unitary connections.

1.5 Tensor products and holomorphic forms

Let E → M and F → M be holomorphic vector bundles on a Riemann surface M . Then
E⊗F →M carries a natural induced holomorphic structure which is described by restricting
to local trivializations constructed from a pair of holomorphic trivializations of E and F . If
{fi}i=1,...,r is a local holomorphic frame of F over some open set U ∈M , then

∑
i ei ⊗ fi ∈

Γ(E ⊗ F |U ) is holomorphic in this structure if and only if all ei ∈ Γ(E) are holomorphic
sections of E.
If ∂E and ∂F are Dolbeault operators describing the holomorphic structures on E and F

respectively, then the Dolbeault operator ∂E⊗F corresponding to the induced holomorphic
structure on the tensor product is given by

∂
E⊗F

(e⊗ f) = ∂
E
e⊗ f + e⊗ ∂F f ∀e ∈ Γ(E), f ∈ Γ(F ).

This is clear by the above description using a holomorphic frame of F . Consequently, when
identifying unitary connections with holomorphic structures by projecting to the (0,1)–part,
the induced holomorphic structure on E⊗F corresponds to the induced unitary connection
on E ⊗ F .
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The canonical bundleK = Λ1,0 unsurprisingly also carries a natural holomorphic structure
with the holomorphic trivializations given by the differential of a holomorphic coordinate
chart forM . If dz is a local holomorphic section of K arising as differential of a holomorphic
coordinate. Then fdz ∈ Γ(K) is holomorphic if and only if ∂f = 0. But this is equivalent to
df ∈ Ω1,0C which in turn hods if and only if d(fdz) = 0. So a complex valued (1, 0)–form is
holomorphic if and only if it is closed. Given a Hermitian bundle E with unitary connection
∇, the tensor product bundle Λ1,0 ⊗ E therefore has a holomorphic structure induced by
∇ and the standard structure on Λ1,0. Then the holomorphic sections of it are exactly the
kernel of the exterior covariant derivative d∇ : Ω1,0(E)→ Ω2(E).

1.6 Degree of a vector bundle

Let E → M be a complex vector bundle on a compact surface M and ∇ an arbitrary
connection on E with curvature F∇ ∈ Ω2(End E). Its trace trF∇ is then a complex–valued
2–form on M , which can be integrated to get the degree

deg(E) =
i

2π

∫
trF∇. (2)

The degree is an integer which does not depend on the choice of connection ∇ [Bau14,
pp. 224-225; Bau14, Satz 6.1]. The degree of direct sums, tensor products and dual bundles
satisfies the identities

deg(E ⊕ F ) = deg(E) + deg(F )

deg(E ⊗ F ) = rk(F ) deg(E) + rk(E) deg(F )

deg(E∗) = −deg(E)

for all complex vector bundles E,F . This can be seen by taking connections on E and F
and calculating the curvature of the induced connections on E ⊕ F , E ⊗ F and E∗. If a
bundle admits a flat connection, in particular if it is trivial, it has degree zero. The converse
is also true. In fact, if two complex vector bundles E and F on a compact surface M have
the same rank and degree, they are isomorphic by the following proposition.

Proposition 1.1. Every complex vector bundle E →M on a compact surfaceM decomposes
as a direct sum E = T ⊕ L of a trivial bundle T and a complex line bundle L.

Proof. If E has a nowhere vanishing section s, the image of s defines a trivial subbundle
and we can find a complement using an arbitrary bundle metric. Iterating this gives the
proposition. So we have to show that a nonvanishing section exists if r = rkE ≥ 2.
Let ϕi : E|Ui → Ui × Cr for i = 1, . . . , k be a family of trivializations and ψi : M → R a

partition of unity with suppψi ⊂ Ui. Then define

s : Crk ×M → E, s(v1, . . . , vk, x) =

k∑
i=1

ψi(x)ϕ−1
i (x, vi).

This map is clearly a smooth submersion. The parametric transversality theorem [Mro04,
Theorem 18.3] then states that for almost every v ∈ Crk the section sv = s(v,−) : M → E
is transversal to the zero section Z ⊂ E, that is Ts(v,x)E = Ts(v,x)Z + Dsv(TxM) for every
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x ∈ s−1
v (Z). But dimTs(v,x)E = 2 + 2r, dimTs(v,x)Z = 2 and dimDsv(TxM) = 2, so this is

impossible for r ≥ 2. So for almost every v ∈ Crk, the image sv(M) does not intersect with
Z, i.e. sv is a nonvanishing section.

Corollary 1.2. All complex vector bundles on a compact connected surface M of same rank
and degree are isomorphic.

Proof. Let E1 → M and E2 → M be complex vector bundles with rk(E1) = rk(E2) and
deg(E1) = deg(E2). By Proposition 1.1 there are splittings E1 = T1⊕L1 and E2 = T2⊕L2

with T1, T2 trivial and L1, L2 one–dimensional. The bundles T1 and T2 are clearly isomorphic.
To show that L1 and L2 are also isomorphic, note that they have equal degree. By [Hat09,
Proposition 3.10] complex line bundles are classified by their first integral Chern class, of
which [KN09, Theorem 3.1] shows that it equals i(2π)−1F∇ as a class in real cohomology.
But since H2(M,Z) ∼= Z for the oriented surface M , the map H2(M,Z) → H2(M,R) is
injective, so line bundles of equal degree have the same integral Chern class and are thus
isomorphic.

1.7 Hitchin’s equations

Let∇ be a unitary connection on a complex vector bundle E →M over a compact connected
Riemann surface M and Φ ∈ Ω1,0(End E) an End E–valued (1, 0)–form on a compact
Riemann surface M . We say that the pair (∇,Φ) is a solution of Hitchin’s equations if (see
[MSWW14])

F∇ + [Φ ∧ Φ∗] = c ω ⊗ idE (3)

d∇Φ = 0 (4)

The form Φ is called a Higgs field and the pair (∇,Φ) is a Higgs pair or a Higgs bundle when
∇ is viewed as defining a holomorphic structure on the bundle E.
Chern–Weil theory shows that c is not a dynamical variable of the equation, but a prede-

fined constant, which can be calculated from properties of E and M alone. More precisely,
as tr [Φ ∧ Φ∗] = 0, taking the trace of (3) and then integrating yields

−2πideg(E) =

∫
M

trF∇ = c rk(E) vol(M).

So solutions for (3) can only exist if

c = −2πi
µ(E)

vol(M)
,

where µ(E) = deg(E)/ rk(E) is the slope of the bundle E.
SinceM has one complex dimension, (4) just states that Φ is a holomorphic End E–valued

1-form with respect to the holomorphic structure defined by ∇. Conversely, the Higgs field
Φ restricts ∇ by specifying its curvature.
A special class of solutions are those (∇,Φ) for which Φ = 0. The connection ∇ then

satisfies the equation F∇ = c ω ⊗ idE , i.e. it is a constant central curvature connection.
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1.8 Gauge transformations

Consider the bundle
UE = {g ∈ End E | g∗g = gg∗ = id}

of unitary endomorphisms of E. Its sections Γ(UE) are the precisely the automorphisms of
E leaving its bundle metric 〈−,−〉 invariant and are called unitary gauge transformations
of E. Such a gauge transformation g ∈ Γ(UE) acts naturally on a unitary connection
∇ ∈ A (E) by conjugation, i.e. the transformed connection is given by the composition

Γ(E) g Γ(E) ∇ Ω1(E) id⊗g−1

Ω1(E).

To keep the notation simple, we will just write g∗∇ = g−1 ◦ ∇ ◦ g for this right action.
The unitary gauge transformations also act by conjugation on Γ(End E) and accordingly on
Ω1(End E) and the configuration space A (E)× Ω1(End E) of Hitchin’s equations.
One can easily see that Hitchin’s equations are invariant under these gauge transforma-

tions, i.e. if (∇,Φ) is a solution of Hitchin’s equations, then so is (g∗∇, g−1Φg). So a
single solution already implies the existence of a whole family of solutions parametrized by
Γ(UE), although they are not all different. In particular any gauge transformation of the
form g = λ id ∈ Γ(UE) with λ ∈ S1 maps (∇,Φ) to itself.

10



2 Hilbert manifolds and Lie groups

A very conceptual way of establishing a manifold structure on the moduli space of solutions
is by interpreting it as a quotient of an infinite dimensional manifold of all solutions by
an action of the infinite dimensional group of unitary automorphisms. The purpose of this
section is to find a general set of conditions for such a quotient to admit a manifold structure.
As we want to use the inverse function theorem and avoid the technical difficulties of

Fréchet manifolds, we will extend the spaces of sections involved in the Hitchin equations
to appropriate Sobolev spaces (details of this will follow in Section 3). This section will be
concerned with Hilbert manifolds. The basic theory of Hilbert (and Banach) manifolds used
here can be found in [Lan99].
As a convention, M will always denote an arbitrary smooth manifold and G a smooth

Lie group. Throughout this section, all manifolds, Lie groups, principal bundles, etc. are
considered to be modeled on possibly infinite–dimensional separable Hilbert spaces. They
are always assumed Hausdorff and second countable and are therefore metrizable using the
Riemannian distance with respect to a Riemannian metric constructed with partitions of
unity [Lan99, Sections II.3,VII.6].
For g ∈ G we denote by `g, rg, cg : G→ G the left and right multiplication and conjugation

maps defined by `g(h) = gh, rg(h) = hg and cg(h) = ghg−1. An action G ×M → M can
also be considered a form of ‘multiplication’ in this sense, so for g ∈ G and x ∈ M there
are also the maps `g : M → M,x 7→ gx and the evaluation map rx : G → M, g 7→ gx. The
unit element of a Lie group will often be called e and the Lie algebra corresponding to a Lie
group will carry the lowercase Fraktur version of the group’s name, e.g. g, h, gx, gl(n), u(n)
are the Lie algebras of the Lie groups G,H,Gx,GL(n),U(n).

2.1 Proper group actions

Of course, not every quotient of a manifold M by a Lie group G is itself a manifold, not
even in finite dimensions. A typical example is the irrational winding of the torus, where
the quotient space carries the indiscrete topology. However, if G is compact and acts freely,
it is well–known that M/G is indeed a manifold. Unfortunately, neither of these conditions
is true for the case at hand. That the action is not free is less of a problem, as it turns out
that the stabilizers behave very well (in the irreducible locus) and can be quotiented out
of the Lie group to give a free action. The issue of G not being compact can not be lifted
so easily. In fact, the infinite dimensional Lie group of unitary automorphisms is not even
locally compact. But its action on the configuration space is proper, which is a very useful
notion capturing many of the nice properties of compact group actions. A good treatment
of proper group actions in finite dimensions can be found in [GGK02, Appendix B]. This
section will generalize some of these results to infinite dimensions. In doing so, it is a bit
more general than necessary for our problem.

Definition 2.1. A Lie group G is a group which is also a manifold such that the group
multiplication G × G → G is a smooth map. An (embedded) Lie subgroup H ⊂ G is an
embedded submanifold with is also a subgroup.

Remark 2.2. Smoothness of the inversion map g 7→ g−1 is sometimes stated as another
axiom. However, this follows automatically using the inverse function theorem: Consider

11



for a Lie group G the map Φ: G × G → G × G given by Φ(g, h) = (g, gh). Its derivative
at a point is given by D(g,h)Φ(X,Y ) = (X,Dgrh(X) + Dh`g(Y )), which is inverted by
(X,Z) 7→ (X,Dgh`g−1(Z−Dgrh(X))). So Φ is a local diffeomorphism by the inverse function
theorem and, since it is bijective, a diffeomorphism. So the inversion map p◦Φ−1◦i is smooth,
where p is the projection to the second factor and i(g) = (g, e).

Lemma 2.3. Let G be a Lie group and H ⊂ G an embedded Lie subgroup. Then H is closed
as a subset of G.

Proof. Let H be the closure of H in G. If m : G × G → G is the group multiplication,
then m−1(H) is a closed subset of G×G. Since H ×H ⊂ m−1(H) ⊂ m−1(H) this implies
that H ×H = H ×H ⊂ m−1(H) and H is thus a closed subgroup of G. In particular, left
multiplication by some g ∈ H is a homeomorphism of H onto itself. Since H is locally closed,
there is an open neighbourhood U of the identity in G such that H ∩ U = H ∩ U . Hence
gH ∩ gU = H ∩ gU is an open subset of H for every g ∈ H. But gH =

⋃
g′∈gH g

′H ∩ g′U , so
gH is open in H. As H is a disjoint union of such open orbits, each of them is also closed
in H. In particular H = H.

Though many of the following statements are only stated for left group actions G×M →
M , their obvious counterparts also hold for right actions M × G → M and will sometimes
be used in this form (most prominently, the gauge group acts on the solutions of Hitchin’s
equation from the right). This can usually be seen by considering the associated left action
(g, x) 7→ xg−1.

Definition 2.4. An action G ×M → M is proper if the map G ×M → M ×M, (g, x) 7→
(gx, x) is proper, i.e. the preimage of every compact subset of M ×M is compact.

Since G and M are metrizable, there is another characterization of proper group actions:

Lemma 2.5. The action G×M →M is proper if and only if for all sequences xi ∈M and
gi ∈ G such that xi and gixi both converge in M , gi has a convergent subsequence.

Proof. Assume that xi → x and gixi → x′ and f : G × M → M × M, (g, x) 7→ (gx, x)
is a proper map. Then the set K = {(g0x0, x0), . . . , (x′, x)} ⊂ M ×M , consisting of all
elements of the sequence and its limit, is compact, so f−1(K) is compact. Therefore, the se-
quence (gi, xi) ∈ f−1(K) has a convergent subsequence and in particular gi has a convergent
subsequence.
For the converse, let K ⊂M ×M be compact and let (gi, xi) be any sequence in f−1(K).

Then (gixi, xi) ∈ K has a convergent subsequence (gijxij , xij ). If the criterion in the lemma
is satisfied, this implies that a subsequence gijk of gij converges. So (gijk , xijk ) is a convergent
subsequence of (gi, xi) and therefore f−1(K) is compact.

The most direct consequence of a proper action is that the quotient topology is Hausdorff.
This is of course very important if we want to have any hope that the quotient becomes a
manifold.

Proposition 2.6 (Infinite dimensional version of [GGK02, Proposition B.8]). If G acts
properly on M , every orbit of G is closed and M/G is Hausdorff.
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Proof. For x ∈ M let gix be any sequence in the orbit Gx converging to y ∈ M . Since the
action is proper, a subsequence of gi then converges to some g ∈ G, which satisfies gx = y
by continuity. So y ∈ Gx and therefore Gx is closed.
Next assume M/G is not Hausdorff and let x, y ∈M be such that their orbits cannot be

separated. In an arbitrary metric on M , let Un and Vn be balls of radius 1/n around x and
y. Then for every n ∈ N there exist gn ∈ G, xn ∈ Un and yn ∈ Vn such that yn = gnxn,
as otherwise G · Un and G · Vn were disjoint and their projections to M/G would therefore
separate x and y. Since xn → x and yn → y and the action is proper, a subsequence of gn
converges to some g ∈ G with y = gx, so x and y are in the same orbit.

There is another technical condition that a group action should satisfy to have a smooth
quotient. If G or M are finite dimensional, this is automatically satisfied.

Definition 2.7. A smooth map between manifolds splits if its differential has a closed image
at every point. A group action G×M →M splits if for every x ∈M the map rx : G→M
splits.

Remark 2.8. Let f : N → M be a splitting map and x ∈ im f . As we assume M to be
modeled on a Hilbert space, there is a scalar product on TxM compatible to its topology.
This induces a direct sum decomposition of TxM into imDxf and a complement, which is
however generally not unique.

The purpose of the following lemma is to clarify the technical details of the smooth struc-
ture on a quotient. Its proof is mostly straightforward.

Lemma 2.9. Consider a smooth action G×M →M such that M/G is Hausdorff. Assume
that M is covered by open subsets {Ui}i∈I which are G–equivariantly diffeomorphic to prod-
ucts Pi × Qi, where G acts transitively on Pi and trivially on Qi. Then there is a unique
smooth structure on M/G such that the projection π : M → M/G is a smooth submersion.
With this structure, M/G is locally diffeomorphic to Qi.

Proof. If {Vi}i∈I is a countable topological basis of M , then {π(Vi)}i∈I is a basis of G/M
where π : M → M/G is the canonical projection. This follows from the surjectivity of π
together with the fact that π(Vi) is open in M/G since π−1(π(Vi)) =

⋃
g∈G gVi.

To prove the existence of a smooth structure, let U ⊂ M and (omitting indices from
now on) ψ : P × Q → U be a G–equivariant diffeomorphism as in the lemma. Then for an
arbitrary p ∈ P define ψ̃ : Q→ U/G by ψ̃(q) = π(ψ(p, q)). By transitivity and equivariance
this does not depend on the choice of p. Consequently, ψ̃(prQ(ψ−1(x))) = [x] for every
[x] ∈ U/G, so ψ̃ is surjective. It is also injective, as for q1, q2 ∈ Q with ψ̃(q1) = ψ̃(q2), we
have ψ(p, q1) = gψ(p, q2) = ψ(gp, q2) for some g ∈ G, so q1 = q2 since ψ is bijective. To
show that ψ̃ is an open map, let O ⊂ Q be open. Then ψ̃(O) = π(ψ(P × O)), which is
clearly open in U/G. So ψ̃ is a homeomorphism.
To show that these maps ψ̃ are smoothly compatible and define a smooth structure,

consider two such diffeomorphisms, ψ1 : P1×Q1 → U and ψ2 : P2×Q2 → U , restricted to a
subdomain small enough that their images coincide. We have to show that ψ̃−1

2 ◦ ψ̃1 : Q1 →
U/G → Q2 is smooth. But ψ̃1(q1) = ψ̃2(q2) is equivalent to ψ1(p1, q1) = gψ2(p2, q2) =
ψ2(gp2, q2), so ψ̃−1

2 (ψ̃1(q)) = prQ2
(ψ−1

2 (ψ1(p1, q))), which is smooth. So there is a smooth
structure on M/G such that the maps ψ̃ are diffeomorphisms.
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The canonical projection π can be locally described as π|U = ψ̃◦prQ◦ψ−1 and is therefore
a smooth submersion. For the uniqueness part, assume we have two smooth structures on
M/G such that π : M → M/G is a submersion. By the inverse function theorem, there are
local charts in M and M/G in which π is just a linear projection onto a closed subspace. So
in particular there exists a smooth local section. Composing this with the projection onto
M/G equipped with the other smooth structure, we get a smooth identity function, which
shows that the smooth structures are equivalent.

Proposition 2.10 (Infinite dimensional version of [GGK02, Proposition B.18]). Let H ⊂ G
be an embedded Lie subgroup. Then the set G/H of left cosets is a smooth manifold modeled
on any complement h⊥ of h in g and G→ G/H is a smooth principal H–bundle.
The inverse of a chart of G/H around the identity is given by

U → V/H, v 7→ [exp(v)]

where 0 ∈ U ⊂ h⊥ and e ∈ V ⊂ G are open subsets and V is H–invariant. A trivialization
is in this chart given by

U ×H → V/H ×H → V, (v, g) 7→ ([exp(v)], g) 7→ exp(v)g.

Proof. The right action of H on G is clearly proper since H is closed, so G/H is Hausdorff by
Proposition 2.6. The result then follows with Lemma 2.9 if for every g ∈ G we can construct
an H–equivariant diffeomorphism Ψ: U ×H → V with U an open subset of a complement
of h in g and V an H–invariant subset of G. It suffices to assume g = e since we can always
append left multiplication by g to get a diffeomorphism around g.
The assumption that H is a submanifold implies a splitting of the Lie algebra g = h⊕ h⊥

(where h⊥ can be any complement, orthogonality is not required). Consider the map

Ψ: h⊥ ×H → G, (v, g) 7→ exp(v) · g

where exp: g → G is the exponential map in G. The differential D(0,e)Ψ: h⊥ × h → g
is clearly the identity (it is the sum of D0 exp = idh⊥ and De id = idh). Continuity then
implies the existence of an open neighborhood U of the origin in h⊥ such that D(v,e)Ψ
is an isomorphism for all v ∈ U . If we denote right multiplication by rg(h) = hg, then
rg−1 ◦ Ψ ◦ (id×rg) = Ψ and therefore D(v,g)Ψ is also an isomorphism for every g ∈ H. So
Ψ|U×H is a local diffeomorphism.
In fact, by making U smaller one can also ensure that Ψ|U×H is injective, and therefore

a diffeomorphism onto its (open) image. To see this, assume the contrary. This yields
two sequences (vn, gn) 6= (un, hn) ∈ h⊥ × H with un, vn both converging to 0, such that
exp(vn) · gn = exp(un) · hn. Then exp(vn) · gnh−1

n = exp(un) · e and gnh
−1
n converges to

e ∈ G. But Ψ is a diffeomorphism in a neighborhood of (0, e), so for large enough n, it must
hold that gnh−1

n = e and vn = un, which contradicts the assumption (vn, gn) 6= (un, hn). So
Ψ|U×H is a diffeomorphism.
We have already proved that the trivializing map in the statement of the lemma is a

H–equivariant diffeomorphism. This makes G/H a principal H–bundle.

Lemma 2.11. Let G × M → M be a smooth action and x ∈ M . Then the stabilizer
Gx = {g ∈ G | gx = x} ⊂ G is an (embedded) Lie subgroup with Lie algebra gx = kerDerx.
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Proof. Around any g ∈ Gx we want to find a chart for G which maps Gx into a linear
subspace. It is sufficient to assume g = e as we can transport this chart to every other g
by left multiplication. Consider the exponential map exp: g ⊃ U1 → V1 ⊂ G on open sets
U1, V1 small enough such that it is a diffeomorphism and U1 is star–shaped around 0. The
identity component of Gx ∩ V1 is an open subset, so it equals Gx ∩ V1 ∩ V2 for some open
subset V2 ⊂ G. Writing V = V1 ∩ V2 and U = exp−1(V ) the restriction exp: U → V is still
a diffeomorphism and Gx ∩ V is connected and contains the identity.
Let gx = kerDerx be the kernel of the evaluation map. We assert that exp(gx ∩ U) =

Gx ∩ V . This will be sufficient to prove the lemma. First, if v ∈ gx ∩ U , then the curve in
M defined by γ(t) = exp(tv)x is constant since γ̇(t) = Dx`exp(tv)(Derx(v)) = 0 for all t. So
exp(v)x = γ(1) = x and exp(v) ∈ Gx.
Conversely, let g ∈ Gx ∩ V . Since Gx ∩ V is connected, there is a curve α : I → Gx ∩ V

from e to g. Let βt(s) = exp(t exp−1(α(s)))x for all s, t ∈ I. It satisfies

β0(s) = x, βt(0) = x, β1(s) = α(s)x = x and β̇t(s) = tβ̇1(s) = 0.

So βt(s) = βt(0) = x for all s, t ∈ I and therefore Derx(exp−1(g)) = d
dt

∣∣
t=0

βt(1) = 0, i.e.
exp−1(g) ∈ gx.

Definition 2.12. Let G be a Lie group, M a manifold, F a Hilbert space, πP : P → M
a principal G–bundle and ρ : G → End (F ) a representation of G in the bounded linear
operators on F . Then define

P ×ρ F = (P × F )/∼, (pg−1, ρ(g)f) ∼ (p, f) ∀g ∈ G.

This defines P ×ρ F as a vector bundle over M with fiber F . Every local trivialization
π−1
P (U) ∼= U × G of P induces a local trivialization of P ×ρ F using the identification
F → G×ρ F, v 7→ [e, v].

π−1
P (U)×ρ F U ×G×ρ F U × F

U

∼

πP×ρF

∼

If the choice of representation ρ is clear from the context, we will also write P ×H F =
P ×ρ F . Any ρ(G)–invariant subset U ⊂ F defines a subset P ×ρ U ⊂ P ×ρ F .

The map F → G ×ρ F is a homeomorphism since it is inverted by [g, v] 7→ ρ(g)v. If we
view local trivializations of P as smooth maps ψi : U → G then the corresponding transition
maps τij : U → End (F ) are given by τij(x) = ρ(ψi(x)ψj(x)−1), so P ×ρ F indeed satisfies
the axioms of an infinite–dimensional vector bundle (as stated in [Lan99, Section III.1]).
A significant example arises from the action of the stabilizer Gx on the tangent space TxM

by
Gx × TxM → TxM, (g,X) 7→ Dx`g(X)

This defines a smooth representation ρ : Gx → End (TxM) of Gx in the bounded linear
operators on the Hilbert space TxM . It will be used together with the principal Gx–bundle
G→ G/Gx to construct vector bundles G×GxF → G/Gx for invariant subspaces F ⊂ TxM .
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Theorem 2.13 (Slice theorem). Let G×M →M be a proper splitting action and x ∈M .

1. There is a decomposition
TxM = Tx(Gx)⊕ F

where Tx(Gx) = imDerx and F are both Gx–invariant closed subspaces of TxM .

2. There are Gx–invariant open neighbourhoods U ⊂ TxM of 0 and V ⊂ M of x and a
Gx–equivariant diffeomorphism

Q : U → V

which maps 0 to x.

3. For any F,U, V,Q satisfying the above, there are open subsets 0 ∈ Ũ ⊂ U ∩ F and
x ∈ Ṽ ⊂ V , Ũ being Gx–invariant and Ṽ being G–invariant, such that the map

Ψ: G×Gx Ũ → Ṽ , [g, u] 7→ g ·Q(u)

is a G–equivariant diffeomorphism.

Proof. For the first part, let π : TxM → TxM be a linear projection to the tangent space
of the orbit, i.e. a bounded operator with imπ = imDerx and π2 = π. Its image imπ is
Gx–invariant, since Dx`g ◦ Derx = Derx ◦ Decg for all g ∈ Gx. As π|imπ is the identity,
this implies πg∗π = g∗π for any g ∈ Gx (where g∗ = Dx`g ∈ End (TxM)). Now define an
operator π by

π =

∫
Gx

g∗πg
−1
∗ dg.

Since the G–action is proper, Gx is compact and this integral is thus well–defined as a
Bochner integral with respect to the Haar measure. For all g ∈ Gx, the identities

π2 = π ππ = π ππ = π g∗π = πg∗

easily follow from πg∗π = g∗π and basic properties of the integral. These identities show that
π is a projector with imπ = imπ = imDerx and that its kernel F = kerπ is Gx–invariant.
This gives the desired splitting and proves the first part.
For the second part, let q̃ : M → TxM be a smooth map with q̃(x) = 0 and Dxq̃ = idTxM

(such a map can e.g. be constructed in local coordinates and extended by a smooth bump
function). Define the map Q̃ : M → TxM by

Q̃(y) =

∫
Gx

g−1
∗ (q̃(gy)) dg.

As above, this is to be understood as a Bochner integral on the Haar measure. The map
Q̃ is smooth, satisfies Q̃(x) = 0 as well as DxQ̃ = id, and is Gx–equivariant in the sense
that Q̃(gy) = g∗Q̃(y) for all y ∈ M and g ∈ Gx. By the inverse function theorem Q̃ is
a diffeomorphism in an open neighborhood of x. Its inverse Q is also Gx–equivariant, i.e.
Q(g∗y) = gQ(y) for all g ∈ Gx and therefore satisfies the conditions for the second part of
the theorem.
For the third part, choose any norm ‖_‖ on F compatible with the topology and let

Un =
⋃
g∈Gx g∗B1/n ⊂ F where B1/n is the ball of radius 1/n around the origin in F . The
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set Un is open, Gx–invariant, and contained in a ball of radius of 1/n · supg∈Gx ‖g∗‖ around
the origin, which is finite since Gx is compact and the function g 7→ ‖g∗‖ is continuous.
For n large enough that Un is in the domain of Q, let Vn =

⋃
g∈G gQ(Un) and consider the

function
Ψ: G×Gx Un → Vn, [g, u] 7→ g ·Q(u).

This function is clearly G–equivariant and well–defined since Ψ([gh−1, hu]) = gh−1Q(h∗u) =
gQ(u) = Ψ([g, u]) for all h ∈ Gx. To see that it is smooth, note that there are neighbourhoods
0 ∈ A ⊂ g⊥x ⊂ g (g⊥x being a complement of the finite dimensional subspace gx) and
e ∈ B ⊂ G such that the following is a chart for G×Gx Un around [e, 0]:

ϕ : A× Un B/Gx × Un B ×Gx Un
(v, u) ([exp v], u) [exp(v), u].

In this chart Ψ(ϕ(v, u)) = exp(v)Q̃(u), so Ψ is smooth around [e, 0]. Also D0(Ψ ◦ ϕ) =
Derx × id : g⊥x × F → TxM = (imDerx)× F , which is an isomorphism since gx = kerDerx.
Therefore, D[e,0]Ψ is an isomorphism and by continuity so is D[e,u]Ψ for all u ∈ B1/n for
large enough n. Then by G–equivariance and the inverse function theorem, Ψ is a local
diffeomorphism.
In a last step, we show that Ψ is bijective for some n ∈ N. Surjectivity is clear from

the definition of Vn. Assume that Ψ is not injective for any n ∈ N, then we get sequences
[gi, ui] 6= [hi, vi] ∈ G ×H F such that ui, vi → 0 and Ψ([h−1

i gi, ui]) = Ψ([e, vi]). Since Ψ is
a diffeomorphism in a neighborhood of [e, 0], this is only possible if [h−1

i gi, ui] = [e, vi] for
large i, which is a contradiction. So Ψ is a diffeomorphism for some n ∈ N.

Corollary 2.14. Consider a proper and splitting action G ×M → M as in Theorem 2.13
and let H ⊂ G be an embedded Lie subgroup. Then the G–invariant set

M(H) = {x ∈M | ∃g ∈ G : Gx = gHg−1}

of points with stabilizers conjugate to H is a (possibly empty) embedded submanifold of M .
If every stabilizer Gx for x ∈ M contains a subgroup conjugate to H, then M(H) ⊂ M is
open.
If Gx = H, F ⊂ TxM is an H–invariant finite–dimensional complement of the G–orbit as

in Theorem 2.13, and FH is the subspace of fixed points of this action, then the codimension
of M(H) in M equals dimF − dimFH .

Proof. Let x ∈M(H), so Gx = gHg−1 for some g ∈ G. Then Gg−1x = H, so by Theorem 2.13
there is a G–invariant open neighborhood V ⊂ M of g−1x (and thus also of x) with V ∼=
G ×H U equivariantly, so that M(H) ∩ V is mapped to (G ×H U)(H). Here U is an open
subset of some Hilbert space F on which H acts linearly. The fixed point set FH ⊂ F of this
action is a closed H–invariant subspace and therefore G ×H FH ⊂ G ×H F is a subbundle
over G/H and in particular G×HUH ⊂ G×HU is a submanifold. If F is finite–dimensional,
G×H FH and G×H F are vector bundles of rank dimFH and dimF , so G×H UH ⊂ G×H U
has codimension dimF − dimFH .
We assert that (G×H U)(H) = G×H UH . As these sets are both G–invariant, it suffices

to check their identity at points of the form [e, u] with u ∈ U . Clearly, the stabilizer of
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G ×H U at such a point is contained in H. So if [e, u] ∈ (G ×H U)(H), i.e. the stabilizer is
conjugate to H, then it must be equal to H, so [e, hu] = [h, u] = [e, u] for all h ∈ H and
thus [e, u] ∈ G ×H UH . Conversely, if [e, u] ∈ G ×H UH then the stabilizer at this point is
equal to H, so [e, u] ∈ (G ×H U)(H). This shows that around every x ∈ M(H) there is an
open set V such that M(H) ∩ V is a submanifold of V , which implies the first statement of
the corollary.
Now let in the above setting [g, u] ∈ G×H U and g′ ∈ G[g,u]. Then g′[g, u] = [g, u], which

means there exists h ∈ H such that g′gh−1 = g and hu = u. In particular g′ = ghg−1 ∈
gHg−1, so G[g,u] ⊂ gHg−1. But if the stabilizer at every point in M contains a subgroup
conjugate to H, then the same is true for G[g,u], i.e. there is ĝ with ĝHĝ−1 ⊂ G[g,u] ⊂
gHg−1. Since both ĝHĝ−1 and gHg−1 are closed embedded subgroups of G, they carry the
subspace topology and ĝHĝ−1 is also a closed subset of gHg−1. But these groups are also
diffeomorphic, so the inclusion is open by invariance of domain and, since they are compact,
both have the same finite number of connected components. So ĝHĝ−1 = gHg−1 and in
particular G[g,u] is conjugate to H, so the image of [g, u] and therefore all of V , which is an
open neighborhood of x in M , is contained in M(H).

Corollary 2.15. Consider a proper and splitting action G×M → M as in Theorem 2.13.
Then there exist only countably many orbit types, i.e. there are countably many subgroups
H1, H2, · · · ⊂ G such that M =

⋃
i∈NM(Hi).

Proof. By our countability assumptions on manifolds,M is covered by countably many open
subsets equivariantly diffeomorphic to G ×H U as in Theorem 2.13. All stabilizer groups
occurring at points inside G ×H U must be closed subgroups of the compact Lie group H,
of which there are only countably many conjugation classes [Pal99, Corollary 1.7.27]. This
is still true when considering them as conjugation classes in G, as two groups conjugated in
H are still conjugated in G.

Corollary 2.16. Consider a proper and splitting action G×M → M as in Corollary 2.14
and let H ⊂ G be a Lie subgroup. Then M(H)/G has a unique manifold structure such that
M(H) →M(H)/G is a smooth submersion.

Proof. The proof of Corollary 2.14 already shows that locally at a point x ∈ M(H), the
manifold M(H) is G–equivariantly diffeomorphic to G ×H FH for some closed subspace
F ⊂ TxM . But G×H FH ∼= G/H×FH G–equivariantly, so by Lemma 2.9 there is a smooth
structure on M(H)/G as claimed.

2.2 Hyperkähler quotients

Now that we have established conditions for a quotient of a manifold to admit a manifold
structure, we will apply this to Hamiltonian actions on Hyperkähler manifolds to obtain an
infinite–dimensional version of the Hyperkähler quotient construction.

Definition 2.17. A 2–form ω ∈ Ω2(M) is a symplectic form if it is closed and the map

TxM → T ∗xM, v 7→ v yωx = ωx(v,−)

is an isomorphism for every x ∈M .
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Definition 2.18. Let M be a manifold and ω a symplectic form on M . Let G ×M → M
be a group action preserving ω, i.e. ` ∗g ω = ω for all g ∈ G. A moment map µ : M → g∗ for
this action is a map satisfying

µ(gx) = c∗g−1µ(x) d〈µ, ξ〉 = ξM yω ∀x ∈M, g ∈ G, ξ ∈ g

where 〈µ, ξ〉 : M → R is given by 〈µ, ξ〉(x) = µ(x)(ξ), ξM ∈ Γ(TM) is the infinitesimal
action defined by (ξM )x = Derx(ξ) and c∗g−1µ(x) = µ(x) ◦Decg−1 is the coadjoint action. If
a moment map exists, the action is called Hamiltonian.

Lemma 2.19. Using the notation A⊥ = {f ∈ g∗ | f(ξ) = 0 ∀ξ ∈ A} ⊂ g∗ for A ⊂ g,
moment maps have the following properties:

1. The moment map for a given action is unique up to addition of some constant f ∈ g∗

with c∗gf = f for all g ∈ G on every connected component of M .

2. If the moment map µ splits, the image of its differential is imDxµ = (kerDerx)⊥.

Proof. The first part is trivial. For the second part, since 〈Dxµ(v), ξ〉 = d〈µ, ξ〉(v) =
ω(ξM , v) for every v ∈ TxM , ξ ∈ (imDxµ)⊥ is equivalent to ω(ξM , v) = 0 for every
v ∈ TxM , which in turn is equivalent to (ξM )x = Derx(ξ) = 0 by non–degeneracy. So
(imDxµ)⊥ = kerDerx. Reflexivity of the Hilbert space g and closedness of imDxµ then
imply the statement.

Definition 2.20. A Hyperkähler manifold is a manifold M together with a Riemannian
metric g and almost complex structures J1, J2, J3 which

• are compatible with g, i.e. g(JiX, JiY ) = g(X,Y ) for i = 1, 2, 3,

• satisfy the quaternion relations J2
1 = J2

2 = J2
3 = −1 and

J1J2 = −J2J1 = J3 J2J3 = −J3J2 = J1 J3J1 = −J1J3 = J2,

• and induce differential forms ωi = g(Ji_,_) which are closed for i = 1, 2, 3 and are
thus symplectic forms.

Lemma 2.21. If two Hyperkähler structures on a manifold M have the same symplectic
forms ω1, ω2, ω3, then they are equal.

Proof. We will write all parts of the Hyperkähler structure in terms of its symplectic forms.
Let Ki : TxM → T ∗xM be the isomorphism defined by Ki(X) = X yωi. Then

K1(X) = X yω1 = J1X y g = −J2J1X yω2 = J3X yω2 = K2(J3X),

for any X ∈ TxM , so J3 = K−1
2 K1. The other complex structures J1, J2 can similarly

be expressed by K1,K2,K3 and the metric is given by g(X,Y ) = −ωi(JiX,Y ) for any
i ∈ {1, 2, 3}.

Lemma 2.22 (from [Hit87b, Lemma 6.8]). Let (M, g, J1, J2, J3) be a finite–dimensional
Hyperkähler manifold. Then J1, J2, J3 are integrable.
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Proof. Applying a Lie derivative LX on the identity ωi(Y, Z) = (Y yωi)(Z) yields

(LXωi)(Y,Z) + ωi([X,Y ], Z) + ωi(Y, [X,Z]) = LX(Y yωi)(Z) + ωi(Y, [X,Z]).

Now, after eliminating and rearranging, we can apply Cartan’s formula to get

[X,Y ] yωi = LX(Y yωi)− Y yLXωi = LX(Y yωi)− Y y d(X yωi). (5)

Inserting into this (e.g. for i = 2) the identity

Z yω2 = J2Z y g = J3J1Z y g = J1Z yω3

on both sides gives

J1[X,Y ] yω3 = LX(J1Y yω3)− Y yd(J1X yω3). (6)

We want to show that the Nijenhuis tensor

NJ1(X,Y ) = [X,Y ] + J1[J1X,Y ] + J1[X, J1Y ]− [J1X, J1Y ]

vanishes. Using (5) with i = 3 on the first and fourth term of the Nijenhuis tensor and (6)
on the second an third term, we get

NJ1(X,Y ) yω3 = LX(Y yω3)− Y y d(X yω3) + LJ1X(J1Y yω3)− Y yd(J2
1X yω3)

+ LX(J2
1Y yω3)− J1Y y d(J1X yω3)− LJ1X(J1Y yω3) + J1Y y d(J1X yω3)

= 0.

So NJ1 = 0 by the non–degeneracy of ω3. The almost complex structure J1 is therefore
integrable by the Newlander–Nirenberg Theorem [NN57]. An analogous argument shows
the integrability of J2 and J3.

Remark 2.23. It is unknown if the Newlander–Nirenberg Theorem generalizes to infinite–
dimensional Hilbert manifolds [Pat00] (it is false for Banach manifolds). So for most purposes
it would be more sensible to require integrability explicitly in the definition of infinite–
dimensional Hyperkähler manifolds. But since we are only interested in finite dimensional
quotients where Lemma 2.22 holds, the above definition is sufficient.

Theorem 2.24 (Hyperkähler quotients, generalization of [HKLR87, Theorem 3.1]). Let M
be a Hyperkähler manifold with metric g, almost complex structures J1, J2, J3 and associ-
ated symplectic forms ω1, ω2, ω3. Let G ×M → M be a proper splitting action preserving
g, J1, J2, J3 which is Hamiltonian with respect to ω1, ω2 and ω3 with the splitting moment
maps µ1, µ2, µ3. Let H ⊂ G be a Lie subgroup such that M(H) is open and non–empty. Then

M(H)///G = N/G =
(
M(H) ∩ µ−1

1 (0) ∩ µ−1
2 (0) ∩ µ−1

3 (0)
)
/G

is a smooth manifold and admits a unique Hyperkähler structure ĝ, ω̂1, ω̂2, ω̂3, Ĵ1, Ĵ2, Ĵ3 such
that

p∗ω̂i = ι∗ωi, i = 1, 2, 3, (7)

where p : N → N/G and ι : N →M are the projection and injection maps.
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Proof. As all relevant structures seamlessly restrict to open subsets, we can assume M(H) =
M . The map

µ̃ : M → (g∗)3, x 7→ (µ1(x), µ2(x), µ3(x))

can be viewed as a composition of the diagonal ∆3 : M → M3 and µ̂ = µ1 × µ2 × µ3. For
any triple (x, y, z) ∈M3, Lemma 2.19 shows that

(imD(x,y,z)µ̂)⊥ = (kerDerx)⊕ (kerDery)⊕ (kerDerz).

As Gx, Gy, Gz are conjugate to H, these summands are all isomorphic to h ⊂ g, which has
finite dimension since H is compact. So µ̂ has constant corank 3 dim h and W = µ̂−1(0) ⊂
M3 is a submanifold. The map ∆3 is transversal over W : Let x ∈ M with (x, x, x) ∈ W ,
then the subspace of (TxM)3 tangent to W is given by

kerD(x,x,x)µ̂ = (kerDxµ1)⊕ (kerDxµ2)⊕ (kerDxµ3).

But v ∈ kerDxµi is equivalent to 0 = 〈Dxµi(v), ξ〉 = d〈µi(x), ξ〉(v) = ωi(ξ
M , v) = g(Jiξ

M , v)
for all ξ ∈ g, so kerDxµi = im(Ji ◦Derx)⊥. So transversality is the assertion that {(v, v, v) |
v ∈ TxM} and

im(J1 ◦Derx)⊥ ⊕ im(J2 ◦Derx)⊥ ⊕ im(J3 ◦Derx)⊥

together generate (TxM)3. This is clearly true if the spaces im(Ji ◦ Derx) are pairwise
orthogonal, which follows from e.g. µ3(x) = 0 (since (x, x, x) ∈W ) using

gx(J1ξ
M , J2ζ

M ) = −gx(J2J1ξ
M , ζM ) = (ω3)x(ξM , ζM ) = 〈µ3(x), [ξ, ζ]〉 = 0.

So N = µ̃−1(0) = (∆3)−1(W ) ⊂M is a submanifold.
Since µi(gx) = c∗g−1µi(x) = 0 for all g ∈ G and x ∈ N , the G–action restricts to N . The

restricted action is also proper and splitting and has the same stabilizers as the original
action. So by Corollary 2.16 the space N/G has a smooth structure and p : N → N/G is a
submersion.
To find the induced Hyperkähler structure on M///G, first observe that the condition

(7) determines it uniquely: Since p is a submersion, (7) completely defines the symplectic
structures ω̂1, ω̂2, ω̂3. By Lemma 2.21 these in turn define the metric and complex structures.
It is useful for constructing the Hyperkähler structure to examine the ‘horizontal subspace’

of TxN , which is the g|TxN–orthogonal complement Hx = (kerDxp)
⊥ = (imDerx)⊥ ⊂ TxN .

It is isomorphic to T[x](N/G) via Dxp and for any v ∈ Hx and ξ ∈ g we have

〈Dxµ1(J1v), ξ〉 = d〈µ1, ξ〉(J1v) = ω1(ξM , J1v) = g(ξM , v) = 0,

〈Dxµ2(J1v), ξ〉 = ω2(ξM , J1v) = ω3(ξM , v) = 〈Dxµ3(v), ξ〉 = 0,

〈Dxµ3(J1v), ξ〉 = ω3(ξM , J1v) = −ω2(ξM , v) = −〈Dxµ2(v), ξ〉 = 0,

g(ξM , J1v) = −ω1(ξM , v) = −〈Dxµ1(v), ξ〉 = 0,

where (ξM )x = Derx(ξ) is the infinitesimal action of ξ on M . This shows that J1v ∈
kerDxµ̃ = TxN and J1v ∈ (imDerx)⊥ = Hx, so Hx is J1–invariant. Analogously Hx

is invariant under J2 and J3. Thus we can define the induced almost complex structures
Ĵ1, Ĵ2, Ĵ3 on N/G by restricting J1, J2, J3 to Hx and identifying Hx with the tangent space
T[x](N/G). The independence of the choice of x ∈ [x] follows from G–invariance of Ji.
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The metric g and symplectic forms ω1, ω2, ω3 carry over to ĝ, ω̂1, ω̂2, ω̂3 on N/G in the
same way, i.e. by restricting to Hx and identifying this with T[x](N/G) via Dxp. It is easy to
see that ω̂i = ĝ(Ĵi_,_) holds, ĝ is a Riemannian metric, ω̂i is non–degenerate and Ĵ2

i = −1.
To show (7), split the tangent space TxN into its horizontal part Hx and its vertical part
Vx = kerDxp = imDerx. By the definition of ω̂i the identity (7) holds on the horizontal
component. If however at least one of X,Y ∈ TxN is in the vertical component, say X ∈ Vx,
then clearly p∗ω̂i(X,Y ) = 0 but also X = Derx(ξ) = ξM for some ξ ∈ g, so

ωi(X,Y ) = ωi(ξ
M , Y ) = 〈Dxµi(Y ), ξ〉 = 0.

This shows (7). Note however that its analogue for the metric ĝ only holds on the horizontal
subspace. Using (7) we find that p∗dω̂i = ι∗dωi = 0 and thus dω̂i = 0 since p is a submersion.
So (M///G, ĝ, Ĵ1, Ĵ2, Ĵ3) is indeed a Hyperkähler manifold.
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3 Construction of the moduli space

3.1 Sobolev sections of vector bundles

To interpret the gauge transformations as an action of a Hilbert Lie group on a Hilbert mani-
fold, we first have to find an appropriate Hilbert Lie group of unitary bundle automorphisms
of an Hermitian vector bundle E. This can be achieved by completing Γ(End E) with re-
spect to some scalar product norm and then restricting it to invertible elements preserving
the Hermitian bundle metric.
The simplest candidate for such a norm would be the L2–norm. Completing with respect

to this norm would make Γ(End E) a Hilbert space, but it would not necessarily be closed
under multiplication. As an example in Euclidean space, the real function |x|−n/4 is L2 over
a bounded n–dimensional base containing 0, but its square |x|−n/2 is not.
This problem can be solved by instead completing with respect to a Sobolev norm of

sufficiently high order, as a consequence of Hölder’s and Sobolev’s inequalities. To do this,
let us first define Sobolev spaces of sections of vector bundles. Manifolds and vector bundles
are finite–dimensional in this section and E →M always is a real or complex vector bundle
over a compact oriented Riemannian manifold (M, g) with a symmetric/Hermitian bundle
metric 〈_,_〉.
If E,F are two real or complex vector bundles both equipped with a bundle metric, there

are also induced metrics on E ⊕ F and E ⊗ F defined by

〈(v, w), (v′, w′)〉 = 〈v, v′〉+ 〈w,w′〉, 〈v ⊗ w, v′ ⊗ w′〉 = 〈v, v′〉〈w,w′〉.

There is further an induced metric on the dual bundle E∗ given by 〈α, β〉 = 〈α], β]〉, where
α] ∈ Ex is the unique vector with 〈α], v〉 = α(v) for all v ∈ Ex. The induced metric on
Hom(E,F ) = E∗ ⊗ F can alternatively be written in the form

〈A,B〉 = tr(A∗B), ∀A,B ∈ Hom(Ex, Fx)

with A∗ ∈ Hom(Fx, Ex) defined by 〈A∗v, w〉 = 〈v,Aw〉. In particular, 〈_,_〉 on E and g on
TM induce bundle metrics on a variety of derived vector bundles, e.g. on T ∗M ⊗ End E.
Furthermore, we consider the subspaces

uE = {A ∈ End E | A∗ = −A} and i uE = {A ∈ End E | A∗ = A}

of End E. If E is a complex vector bundle, these are real subbundles of the complex vector
bundle End E. As the restriction of the above metric on End E to these bundles takes only
real values, it still gives a valid scalar product on them. A slight difficulty arises however
when we consider the direct sum of a real bundle E and a complex bundle F . Then E ⊕ F
only carries the structure of a real vector bundle, so its scalar product should take on only
real values. This can e.g. be solved by just taking the real part of the complex metric, i.e.
by defining

〈(v, w), (v′, w′)〉 = 〈v, v′〉+ Re〈w,w′〉 ∀v, v′ ∈ Ex, w, w′ ∈ Fx.

Definition 3.1. The W k,p norm and the C l norm on Γ(E) are defined by

‖s‖p
Wk,p =

k∑
i=0

∫
M
|∇is|p ω, ‖s‖Cl =

l∑
i=0

sup
x∈M

|∇is(x)|,
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where ω is the Riemannian volume form on M and ∇i : Γ(E) → Γ((T ∗M)⊗i ⊗ E) is the
composition

Γ(E) ∇
E

Γ(T ∗M ⊗ E) ∇
T∗M⊗E

· · · → Γ((T ∗M)⊗i ⊗ E).

One also calls the W 0,p norm Lp and the W k,2 norm Hk. The Hk norms arise from the
scalar products

〈s, t〉Hk =

k∑
i=0

∫
M
〈∇is,∇it〉ω.

Definition 3.2.

• For all l ∈ N we denote the space of l–times differentiable sections of E by ΓCl(E).
The C l–norm can be defined on this space as in Definition 3.1 and makes it a Banach
space with Γ(E) as a dense subspace.

• The completion Γk(E) of Γ(E) with respect to the Hk–norm is called the space of
k–times weakly differentiable sections of E. The Hk–norm extends to this space by
continuity and makes it a Hilbert space with Γ(E) as a dense subspace.

Lemma 3.3 (Sobolev embedding theorem, [Weh04, Theorem B.2]). The following inequal-
ities hold for all s ∈ Γ(E):

• ‖s‖Cl ≤ C‖s‖Wk,p if l < k − n/p.

• ‖s‖W l,q ≤ C‖s‖Wk,p if l < k and l − n/q ≤ k − n/p.

where the constants C > 0 depend only on p, k, l, n and the bundle E, but not on s.
Furthermore, the first inclusion is a compact operator, and the second is also compact if
l − n/q < k − n/p.

Remark 3.4. As a consequence of Lemma 3.3, for any s ∈ Γk(E) with k > n/2, defined by
a Hk–Cauchy sequence in Γ(E), there is a unique C0–limit of this sequence in ΓC0(E). This
gives an embedding Γk(E) ↪→ ΓC0(E), which allows to evaluate Hk–sections at points. We
will use identifications of this sort, sometimes without further mentioning.

Lemma 3.5 (Hölder’s inequality). Let E,F,G be Hermitian vector bundles and B : Γ(E)×
Γ(F )→ Γ(G) a C∞(M)–bilinear map (or equivalently a section B ∈ Γ(Hom(E,F ;G))) and
let 1/r = 1/p+ 1/q. Then

‖B(s, t)‖Lr ≤ C‖s‖Lp‖t‖Lq

for some constant C > 0 and all s ∈ Γ(E) and t ∈ Γ(F ).

Proof. Since 1/(p/r) + 1/(q/r) = 1 and |Bx(sx, tx)| ≤ |Bx||sx||tx| at every point x ∈M , the
classical Hölder inequality implies∫

M
|B(s, t)|rω ≤ Cr

∫
M
|s|r|t|rω ≤ Cr‖|s|r‖Lp/r‖|t|

r‖Lq/r = ‖s‖rLp‖t‖rLq ,

where C = supx∈M |Bx|, which is finite since M is compact.
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Theorem 3.6 (Sobolev multiplication theorem). Let E1, . . . , Er, F be Hermitian vector bun-
dles and M : Γ(E1) × · · · × Γ(Er) → Γ(F ) a C∞(M)–multilinear map. Then for k > n/2
there is a unique continuous extension

Γk(E1)× · · · × Γk(Er)→ Γk(F )

of M which is in fact smooth.

Proof of Theorem 3.6. We assume that r = 2, E1 = Hom(E2, F ) and M(A, v) = Av is the
usual application of linear functions. We want to prove that

‖(∇mA)(∇`v)‖L2 ≤ C‖A‖Hk‖v‖Hk

for all m+ ` ≤ k with A ∈ Γ(Hom(E2, F )), v ∈ Γ(E2) and some constant C independent of
A and v.
If k −m > n/2, we have

‖(∇mA)(∇`v)‖L2 ≤ ‖∇mA‖C0‖∇`v‖L2 ≤ C‖∇mA‖Hk−m‖v‖H` ≤ C‖A‖Hk‖v‖Hk

from Lemma 3.3. If instead k − ` > n/2, the same argument can be used with the roles of
A and v interchanged. So assume k −m ≤ n/2 and k − ` ≤ n/2. Then p, q defined by

1

p
=

1

2
− k −m

n
+ ε,

1

q
=

1

2
− k − `

n
+ ε, ε = min

{
k

2n
− 1

4
,
1

2
+
k −m
n

,
1

2
+
k − `
n

}
are in the interval [1,∞) and 1/p+ 1/q ≤ 1/2. Also this ensures −n/p ≤ (k−m)−n/2 and
−n/q ≤ (k − `)− n/2. Using Hölder’s inequality and Sobolev embeddings,

‖(∇mA)(∇`v)‖L2 ≤ C1‖(∇mA)(∇`v)‖
L

1
1/p+1/q

≤ C1‖∇mA‖Lp‖∇`v‖Lq

≤ C2‖∇mA‖Hk−m‖∇`v‖Hk−` ≤ C2‖A‖Hk‖v‖Hk .

Since, for all i ≤ k, ∇i(Av) can be represented as a linear combination of such terms of the
form (∇mA)(∇`v) using the Leibniz rule, the inequality ‖Av‖Hk ≤ C‖A‖Hk‖v‖Hk follows.
This implies the statement for the case E1 = Hom(E2, F ) and yields a continuous map

Γk(Hom(E2, F ))× Γk(E2)→ Γk(F )

extending (A, v) 7→ Av. Applying this twice gives a continuous map

Γk(Hom(E1,Hom(E2, F )))× Γk(E1)× Γk(E2)→ Γk(Hom(E2, F ))× Γk(E2)→ Γk(F )

and by iterating we even get a continuous map

Γk(Hom(E1, . . . , Er;F ))× Γk(E1)× · · · × Γk(Er)→ Γk(F )

extending (M,v1, . . . , vr) 7→ M(v1, . . . , vr). By inserting the predefined M from the state-
ment in the first argument, we get the desired result. As a multilinear continuous function,
the resulting map is also smooth.
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Theorem 3.6 implies that Γk(End E) for k > n/2 is a Hilbert algebra with pointwise
composition of endomorphisms as multiplication. The set of its invertible elements is there-
fore an appropriate completion of the space of smooth bundle automorphisms. There will
however occur some bilinear bundle homomorphisms on Sobolev spaces of an order too low
to be covered by Theorem 3.6.

Proposition 3.7. Let M be a compact surface and B : Γ(E1) × Γ(E2) → Γ(F ) a bilinear
morphism of vector bundles E1, E2, F on M and let p > 2. Then B extends to smooth maps

Γ1(E1)× Γ1(E2)→ Γ0(F ) Γ2(E1)× Γ1(E2)→ Γ1(F ) Γ1,p(E1)× Γ1(E2)→ Γ1(F ),

where Γ1,p(E1) is the space of W 1,p–sections of E1.

Proof. The first extension uses the continuous embedding H1 ↪→ Lq for any q and Hölder’s
inequality. The second and third follow from the Sobolev embeddingsH2 ↪→ C0 andW 1,p ↪→
C0 after taking the derivative.

Corollary 3.8. For k > n/2 the set

Γk(GL(E)) = {g ∈ Γk(End E) | ∃g−1 ∈ Γk(End E) : gg−1 = g−1g = id}

of invertible Hk–endomorphisms of E is open in Γk(End E) and Γ(GL(E)) ⊂ Γk(GL(E))
is dense. With the composition of endomorphisms as multiplication, Γk(GL(E)) is a Hilbert
Lie group.

Proof. A standard argument using Neumann series shows that invertibility is an open con-
dition. That Γ(GL(E)) is dense follows easily from the fact that Γ(GL(E)) = Γk(GL(E))∩
Γ(End E). If g, h ∈ Γk(GL(E)), then gh(gh)−1 = ghh−1g−1 = id = h−1g−1gh = (gh)−1gh,
so gh ∈ Γk(GL(E)). As Γk(GL(E)) is an open subset of Γk(End E), it is a smooth manifold
and multiplication is smooth. Inverses exist by definition.

Definition 3.9. The space of smooth unitary automorphisms of E is

Γ(UE) = {g ∈ Γ(End E) | gg∗ = g∗g = id}.

For k > n/2 the space of k–times weakly differentiable unitary automorphisms of E is the
set

Γk(UE) = {g ∈ Γk(End E) | gg∗ = g∗g = id}.

Proposition 3.10. Γk(UE) is a closed Hilbert submanifold of Γk(End E).

Proof. As A 7→ (A∗ − A) is a continuous linear endomorphism of Γk(End E), the subspace
Γk(iuE) = {A ∈ Γk(End E) | A∗ = A} is closed. Consider the map

Φ: Γk(GL(E))→ Γk(iuE), A 7→ A∗A.

As Γk(GL(E)) is an open subset of Γk(End E), we have TAΓk(GL(E)) ∼= Γk(End E) and
the derivative at any A ∈ Γk(U(E)) is

DAΦ: Γk(End E)→ Γk(iuE), X 7→ X∗A+A∗X.

It is surjective (insert 1
2AY to get Y ), so Φ is transversal over {id} ∈ Γk(iuE) and therefore

Φ−1({id}) = Γk(UE) is an embedded submanifold of Γk(GL(E)).
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Definition 3.11. The space A (E) of unitary connections on E is an affine space modeled
on Ω1(uE) = Γ(Λ1 ⊗ uE). Its Hk–completion Ak(E) is therefore an affine space modeled
on Ω1

k(uE) = Γk(Λ
1 ⊗ uE) and in particular a smooth Hilbert manifold, for all k ∈ N.

The spaces Γk(UE), Γk(uE) etc. have several equivalent characterizations. They are
completions of the respective spaces of smooth sections Γ(UE), Γ(uE) in the Sobolev norm.
They can also be described as the subset of Γk(End E) given by an algebraic condition like
A∗A = AA∗ = 1 or A∗ = −A. For k > n/2, a third possibility is to describe them as
subsets of the space of continuous sections, e.g. Γk(UE) = ΓC0(UE) ∩ Γk(End E). All
these definitions coincide up to obvious isomorphisms and we will use them deliberately
without further mentioning.

Definition 3.12. We use the following shorthand notations:

C = A (E)× Ω1,0(End E), Ck = Ak(E)× Ω1,0
k (End E),

D = Ω2(uE)⊕ Ω2(End E), Dk = Ω2
k(uE)⊕ Ω2

k(End E),

G = Γ(UE), Gk = Γk(UE).

3.2 The Hyperkähler structure

Let now M be a compact connected Riemann surface (i.e. a complex manifold of real di-
mension two) with complex structure j, metric g and volume form ω and E →M a complex
vector bundle equipped with a Hermitian bundle metric. We will describe Hyperkähler struc-
tures on section spaces of some bundles which ultimately lead to the Hyperkähler structure
on the moduli space of Higgs bundles. Let k ∈ N be a fixed integer throughout this section.

3.2.1 The Hyperkähler structure on Ω1(End E)

The space Ω1(End E) has a comparatively simple Hyperkähler structure. To make it a ‘real’
Hyperkähler manifold in the sense of Section 2 we first have to complete it with respect to a
suitable Hilbert space norm. So we consider Ω1

k(End E). Since all relevant constructions will
be pointwise (at least for sufficiently regular sections), it is worthwhile examining a single
fiber Λ1 ⊗ End Ex. The natural scalar product on Λ1 ⊗ End E is defined by

〈α1 ⊗ ψ1, α2 ⊗ ψ2〉 = 〈α1, α2〉 tr(ψ∗1ψ2) ∀α1, α2 ∈ T ∗xM, ψ1, ψ2 ∈ End Ex

and extended bilinearly. We get a real scalar product (and therefore a Riemannian metric)
G by using its real part G = Re〈_,_〉.
There is an alternative expression for G. We write j for the complex structure on the

Riemann surface M , to distinguish it from the Hyperkähler structure, for which we will use
uppercase letters. The induced anti–involutions on T ∗M , Λ1 ⊗ End Ex, etc. will also be
denoted by j. Since the metric and orientation on M together already define its complex
structure, we expect j to be expressible in terms of these data. We know from Section 1.2
that j = − ?. This allows us to rewrite the scalar product of Ψ1,Ψ2 ∈ Λ1 ⊗ End Ex in the
form

〈Ψ1,Ψ2〉ω = − tr(Ψ∗1 ∧ jΨ2).
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In the decomposition Λ1⊗End Ex = (Λ0,1⊗End Ex)⊕ (Λ1,0⊗End Ex) this can be written

〈(Ψ1,Φ1), (Ψ2,Φ2)〉 = i tr(Ψ∗1 ∧Ψ2)− i tr(Φ∗1 ∧ Φ2) = i tr(Ψ∗1 ∧Ψ2)− i tr(Φ1 ∧ Φ∗2)

for Ψ1,Ψ2 ∈ Λ0,1 ⊗ End Ex and Φ1,Φ2 ∈ Λ1,0 ⊗ End Ex. Its real part is

G((Ψ1,Φ1), (Ψ2,Φ2)) = Re〈(Ψ1,Φ1), (Ψ2,Φ2)〉 = − Im tr(Ψ∗1 ∧Ψ2 + Φ1 ∧ Φ∗2).

To make G a Hyperkähler metric we need 3 compatible complex structures J1, J2, J3. One
of them is just given by scalar multiplication with i, while the other two are defined using
the decomposition into (0, 1)– and (1, 0)–parts:

J1(Ψ,Φ) = (iΨ, iΦ) J2(Ψ,Φ) = (Φ∗,−Ψ∗) J3(Ψ,Φ) = (iΦ∗,−iΨ∗)

It is easy to check that these complex structures satisfy the quaternion relations and leave
G invariant. The induced symplectic forms ωi = G(Ji_,_) are trivially closed since
G, J1, J2, J3 are constant. So Λ1 ⊗ End Ex is a (linear) Hyperkähler manifold.
Now let us return to the space Ω1

k(End E) of Sobolev sections. The complex structures
J1, J2, J3 defined above combine to complex structures on Ω1

k(End E), also denoted by
J1, J2, J3. The corresponding Hyperkähler metric, which we will again call G, is just the real
part of the natural L2–scalar product

G((Ψ1,Φ1), (Ψ2,Φ2)) = Re

∫
M
〈(Ψ1,Φ1), (Ψ2,Φ2)〉ω = − Im

∫
M

tr(Ψ∗1 ∧Ψ2 + Φ1 ∧ Φ∗2).

The above consideration of Λ1⊗End Ex shows that with this metric and complex structures,
Ω1
k(End E) is indeed an infinite–dimensional Hyperkähler manifold.

3.2.2 The Hyperkähler structure on A (E)× Ω1,0(End E)

There is a Hyperkähler structure on the space C = A (E)×Ω1,0(End E), or more precisely
its Sobolev completion Ck = Ak(E) × Ω1,0

k (End E), which is closely related to that on
Ω1(End E) described in Section 3.2.1. The tangent space to Ck at any point is naturally
identified with Ω1

k(uE)⊕Ω1,0
k (End E). The projection of 1–forms to their (0, 1)–part induces

an isomorphism
Ω1
k(uE)→ Ω0,1

k (End E), η 7→ η0,1 = 1
2η + i

2jη (8)

which is inverted by Ψ 7→ Ψ − Ψ∗. This follows easily from the fact that the complex
structure j commutes with taking the adjoint. Using this isomorphism, the tangent space of
Ck can be identified with Ω0,1

k (End E) × Ω1,0
k (End E) = Ω1

k(End E) and therefore inherits
the metric and complex structures from Ω1

k(End E). This makes Ck an infinite–dimensional
Hyperkähler manifold. Written out explicitly, the metric G and the complex structures
J1, J2, J3 are at every point in Ak(E)⊕ Ω1,0

k (End E) given by

G((η1,Φ1), (η2,Φ2)) =
1

2

∫
M

tr(η1 ∧ jη2)− Im

∫
M

tr(Φ1 ∧ Φ∗2),

J1(η,Φ) = (−jη, iΦ),

J2(η,Φ) = (Φ∗ − Φ, 1
2η −

i
2jη),

J3(η,Φ) = (iΦ∗ + iΦ, i2η + 1
2jη).
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This results in the symplectic forms

ω1((η1,Φ1), (η2,Φ2)) = −1

2

∫
M

tr(η1 ∧ η2)− Re

∫
M

tr(Φ1 ∧ Φ∗2),

ω2((η1,Φ1), (η2,Φ2)) = − Im

∫
M

tr(Φ1 ∧ η2 + η1 ∧ Φ2),

ω3((η1,Φ1), (η2,Φ2)) = Re

∫
M

tr(Φ1 ∧ η2 + η1 ∧ Φ2).

(9)

The identification (8) is motivated by the fact that it is corresponds to the bijection d 7→ ∂
identifying unitary connections with holomorphic structures. So G can be seen as the natural
metric on pairs consisting of a holomorphic structure and a Higgs field.

3.3 The gauge group action and its moment maps

In this section, we consider the right action of the gauge group

C × G → C , (∇,Φ, g) 7→ (g−1 ◦ ∇ ◦ g, g−1Φg). (10)

As it contains derivatives, we now require k ≥ 1. Fixing ∇0 ∈ A (E) we can extend this
action to the respective Sobolev completions by

Ck × Gk+1 → Ck, (∇0 + η,Φ, g) 7→ (∇0 + g−1(∇0g) + g−1ηg, g−1Φg) (11)

This is well–defined and smooth by Proposition 3.7 and the fact that g−1(∇0g) ∈ Ω1
k(uE)

and it clearly extends (10). It is also independent of the choice of ∇0 by the uniqueness of
continuous extensions. So (11) is a smooth right action of a Hilbert Lie group on a Hilbert
manifold. So we can apply the analogues of the results of Section 2 for right actions to
this action. Accordingly, we will now write `(∇,Φ) : G → C for the evaluation map and
rg : C → C for the action of g ∈ G .
The Lie algebra corresponding to Gk+1 is the space Γk+1(uE) of (k + 1)–fold weakly

differentiable fields of skew–Hermitian endomorphisms. Every ξ ∈ Γk+1(uE) generates a
vector field ξ̂ of infinitesimal actions on Ck, which is given by

ξ̂(∇,Φ) = De`(∇,Φ)(ξ) = (∇ξ, [Φ, ξ])

The metric and almost complex structures defined in Section 3.2.2 are invariant under this
action in the sense that r∗gG = G, Ji ◦ Drg = Drg ◦ Ji and r∗gωi = ωi for all g ∈ Gk+1.
This is immediately obvious when inserting Drg(η,Ψ) = (g−1ηg, g−1Ψg) into the definitions
of these structures. In particular, the action (11) is symplectic with respect to all three
symplectic structures.
In fact, the action is Hamiltonian with the moment maps µi : Ck → Γk+1(uE)∗ given by

〈µ1(∇,Φ), ξ〉 =
1

2

∫
M

tr
((
F∇ + [Φ ∧ Φ∗]

)
ξ
)
, (12)

〈µ2(∇,Φ), ξ〉 = Im

∫
M

tr
((

d∇Φ
)
ξ
)
, (13)

〈µ3(∇,Φ), ξ〉 = −Re

∫
M

tr
((

d∇Φ
)
ξ
)
. (14)
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It is easy to see that these maps are smooth and are Gk+1–equivariant, i.e. they satisfy
µi(g

∗∇, g∗Φ) = c∗gµi(∇,Φ). Using the identities

tr([Φ, ξ] ∧Ψ) = − tr([Φ ∧Ψ]ξ)

and
d tr(Ψξ) = tr(d∇(Ψξ)) = tr

(
(d∇Ψ)ξ

)
+ tr

(
Ψ ∧∇ξ

)
,

which are valid for any ξ ∈ Γ(End E) and Φ,Ψ ∈ Ω1(End E), we can calculate for the first
moment map

d(∇,Φ)〈µ1, ξ〉(η,Ψ) =
d

dt

∣∣∣
t=0

1

2

∫
M

tr
((
F∇+tη + [Φ + tΨ ∧ Φ∗+ tΦ̇∗]

)
ξ
)

=

=
1

2

∫
M

tr
((

d∇η + [Φ ∧Ψ∗] + [Ψ ∧ Φ∗]
)
ξ
)

=

=
1

2

∫
M

tr
((

d∇η
)
ξ
)

+ Re

∫
M

tr
(

[Φ ∧Ψ∗] ξ
)

=

= −1

2

∫
M

tr(∇ξ ∧ η)− Re

∫
M

tr([Φ, ξ] ∧Ψ∗) =

= (ξ̂ yω1)(η,Ψ).

So µ1 is indeed a moment map for the action (11) with respect to the symplectic structure
ω1. A similar calculation can be performed for µ2:

d(∇,Φ)〈µ2, ξ〉(η,Ψ) =
d

dt

∣∣∣
t=0

Im

∫
M

tr
((

d∇+tη(Φ + tΨ)
)
ξ
)

=

= Im

∫
M

tr
((

d∇Ψ
)
ξ +

(
[η ∧ Φ]

)
ξ
)

=

= − Im

∫
M

tr
(
∇ξ ∧Ψ + [Φ, ξ] ∧ η

)
=

= (ξ̂ yω2)(η,Ψ).

This calculation is still valid if we replace µ2 and ω2 by µ3 and ω3 and Im by −Re. So all
three µi are moment maps for their respective symplectic structures.
The common zero set µ−1

1 (0) ∩ µ−1
2 (0) ∩ µ−1

3 (0) of the moment maps (12), (13) and (14)
is given by exactly those (∇,Φ) ∈ Ck with

F∇ + [Φ ∧ Φ∗] = 0,

d∇Φ = 0

These equations look very similar to Hitchin’s self–duality equations (3), (4), but they are
missing the constant term c id⊗ω accounting for bundles E with non–zero degree. As shown
in Lemma 2.19, the moment maps (12), (13), (14) are not unique, but can be modified by a
constant element of Γ(uE)∗ fixed by the coadjoint action. Such an object can be represented
by a 2–form Ψ ∈ Ω2(uE) with values in the skew–Hermitian endomorphisms which satisfies∫

M
tr(gΨg−1ξ) =

∫
M

tr(Ψg−1ξg) =

∫
M

tr(Ψξ) ∀ξ ∈ Γ(uE).
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This is equivalent to [g,Ψ] = 0 for all Γ(UE), which is clearly true if and only if Ψ =
if idE ⊗ω for some real function f : M → R. Modifying the µi in such a way, the space
µ−1

1 (0) ∩ µ−1
2 (0) ∩ µ−1

3 (0) consists of all (∇,Φ) ∈ Ck with

F∇ + [Φ ∧ Φ∗] = if idE ⊗ω,
d∇Φ = g idE ⊗ω,

where f : M → R and g : M → C are arbitrary smooth functions. The equations (3) and (4)
are recovered by choosing f = −2πµ(E)/vol(M) and g = 0.

3.4 The proper gauge group action

The purpose of this section is to show that the action defined above is proper, so that we
can apply the results from Section 2. It turns out that only the action on the space of
connections is relevant for this, and we can ignore the Higgs field for most of this section.
The proof relies on the following technical lemma. Again, let k ≥ 1 be a fixed integer. We
write I for the closed unit interval [0, 1] and I̊ for the open interval (0, 1).

Lemma 3.13. Let R ⊂M be a coordinate rectangle trivializing E and ∇i ∈ A (E) a sequence
of connections converging in Ak(E). Then there exists a set G ⊂ R, which is the complement
of a Lebesgue null set, such that for every pair x, y ∈ G the sequence of parallel transport
operators

P∇iγ ∈ Hom(Ex, Ey)

along a rectangular path γ from x to y converges.

Proof. Every∇i is locally represented by ηi : I̊2 → Hom(R2,Cm×m) such that the∇i–parallel
lift γ̂i : I → Cm is defined by the ordinary differential equation

˙̂γi(t) = −(ηi)γ(t)(γ̇(t)) γ̂i(t).

However, we can not directly apply ODE theory, as the limit of the sequence ηi is not
necessarily a continuous function, but only H1. This can be solved by restricting it to the
image of a suitably chosen curve and then applying the Sobolev embedding theorem in one
dimension.
Note that ηi(∂x1) : I̊2 → Cm×m converges in the H1–norm to a limit η(∂x1) (choosing an

arbitrary representative). Therefore, the sequence∫ 1

0

∫ 1

0
|ηi(x1, x2)(∂x1)− η(x1, x2)(∂x1)|2 + |∇ηi(x1, x2)(∂x1)−∇η(x1, x2)(∂x1)|2 dx1 dx2

converges to 0, so in particular the innermost integral is a null sequence for almost every
value of x2 ∈ I̊. This implies that

ξi : I̊ → Cm×m, ξi(t) = ηi(t, x2)(∂x1)

is an H1–convergent sequence, so by the 1–dimensional Sobolev embedding theorem it con-
verges in C0. Let G1 ⊂ I̊2 be the set of (x1, x2) such that x2 satisfies the above.
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Now let (x1, x2), (y1, y2) ∈ G1. Assume that they only differ in the first component, i.e.
x2 = y2. Define the path γ : I → R by

γ(t) = (x1 + t(y1 − x1), x2),

then the equation for its ∇i–parallel lift becomes

˙̂γi(t) = (y1 − x1)ξi(x1 + t(y1 − x1))γ̂i(t).

Now the regularity theory of ODEs with parameters in a Banach space [Lan99, Section
IV.1] shows that P∇iγ v = γ̂i(1) for every v ∈ Ex depends continuously on the parameter
ξi ∈ C0(R;Cm×m) and therefore converges.
Repeating this procedure for the second coordinate we get a corresponding set G2 ⊂ I̊2.

Note that for (x1, x2), (y1, y2) ∈ G = G1∩G2, the point (x1, y2) is also contained in G, so the
parallel transports along the straight path from (x1, x2) to (x1, y2) as well as from (x1, y2)
to (y1, y2) converge and so does its composition.

Proposition 3.14. Let ∇i ∈ Ak(E) be a sequence of connections and gi ∈ Gk+1 a sequence of
gauge transformations, such that ∇i and g∗i∇i both converge in Ak(E). Then a subsequence
of gi converges in Gk+1.

Proof. We first argue that we can assume ∇i ∈ A (E) and gi ∈ G . Since A (E) is dense
in Ak(E) and G in Gk+1, we can approximate each ∇i by a sequence ∇i,j ∈ A (E) and
each gi by a sequence gi,j ∈ G . By continuity g∗i∇i,j then also converges to g∗i∇i for every
i. Restricting {∇i,j}j to a subsequence, we can make its convergence arbitrarily fast. In
particular we can achieve that ‖∇i,j − ∇i‖Hk ≤ 1/j and ‖g∗i∇i,j − g∗i∇i‖Hk ≤ 1/j for
all i, j. Similarly we choose a subsequence of {gi,j}j such that ‖gi,j − gi‖Hk+1 ≤ 1/j and
‖g∗i,j∇i,i−g∗i∇i,i‖Hk ≤ 1/j for all i, j. Now define ∇̃i = ∇i,i and g̃i = gi,i for all i ∈ N. Then

‖g̃i−gi‖ ≤ 1/i, ‖∇̃i−∇i‖ ≤ 1/i, ‖g̃∗i ∇̃i−g∗i∇i‖ ≤ ‖g̃∗i ∇̃i−g∗i ∇̃i‖+‖g∗i ∇̃i−g∗i∇i‖ ≤ 2/i,

so g̃i − gi, ∇̃i − ∇i and g̃∗i ∇̃i − g∗i∇i are null sequences. Now let ∇,∇′ ∈ Ak(E) be the
limits of the sequences ∇i and g∗i∇i. Then ∇̃i and g̃∗i ∇̃i also converge to ∇ and ∇′. On
the other hand, if g̃i has a convergent subsequence, the corresponding subsequence of gi also
converges. So we can assume without loss of generality that ∇i ∈ A (E) and gi ∈ G .
Let now {(Uj , ϕj)}j=1,...,N be a cover ofM by open coordinate rectangles and correspond-

ing charts. By Lemma 3.13 there is a set of good points G ⊂ Uj such that parallel transports
along rectangular paths between good points with respect to the connections ∇i converge.
Analogously, there is a set G′ ⊂ Uj of good points for the sequence ∇′i = g∗i∇i. Both
sets G and G′ have full measure in Uj and so does their intersection G ∩ G′. Choose any
xj ∈ G ∩ G′ ⊂ Uj . As UExj is a compact set, the sequence {(gi)xj}i has a convergent
subsequence for every j. Passing to a subsequence which converges at every xj , we now
want to show that gi converges pointwise almost everywhere.
To do this, let y ∈ G ∩ G′ and let γ : I → Uj be a rectangular path from xj to y. If

γ̂ : I → E is the ∇′i–parallel lift of γ, i.e. ∇′iγ̂ = 0, then the curve γ̃(t) = (gi)γ(t)γ̂(t) is
∇i–parallel. So the parallel transports are related by

P
∇′i
γ v = γ̂(1) = (gi)

−1
y γ̃(1) = (gi)

−1
y P∇iγ (gi)xv
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and thus (gi)y = P∇iγ (gi)xj (P
∇′i
γ )−1. Now by Lemma 3.13 both parallel transports converge

and by the above paragraph (gi)xj also converges. So gi converges at every point y ∈ G∩G′.
Repeating this argument for every Uj shows that gi converges almost everywhere pointwise.
Let ∇ ∈ Ak(E) be the limit of ∇i and ∇′ ∈ Ak(E) the limit of ∇′i = g∗i∇i. Choose a

reference connection ∇0 ∈ A (E) and let ηi = ∇i − ∇0 and η′i = ∇′i − ∇0. Then ηi, η
′
i ∈

Ω1(uE) satisfy
∇0gi = giη

′
i − ηigi (15)

since ∇0 + η′i = g∗i∇i = ∇0 + g−1
i (∇0gi) + g−1

i ηigi.
Since (gi)y is unitary for every y ∈M , its (Frobenius–) norm is bounded by

√
rkE, which

is 8–integrable on the compact manifold M . So the L8 dominated convergence theorem
implies that gi does in fact converge in L8. Since ηi and η′i also converge in the L8–topology
by the Sobolev embedding theorem, the right hand side of (15) then converges in L4, so gi
even converges inW 1,4. Now by Proposition 3.7 (15) converges in H1, so gi converges in H2.
From now on, we can use the Sobolev multiplication theorem to iterate further, ultimately
leading to a convergence of gi in the Hk+1–topology, which was the statement we wanted to
prove.

Corollary 3.15. The group action

Ck × Gk+1 → Ck, (∇,Φ, g) 7→ (g−1 ◦ ∇g, g−1Φg)

is proper.

Proof. This follows from Proposition 3.14 since convergence (∇i,Φi)→ (∇,Φ) in Ck implies
the convergence ∇i → ∇ in Ak(E).

3.5 The infinitesimal Hitchin equations

Take any smooth solution (∇,Φ) ∈ X of Hitchin’s equations and consider the sequence (H
being Hitchin’s equations)

TeGk+1
De`(∇,Φ) T(∇,Φ)Ck

D(∇,Φ)H T0Dk−1. (16)

This is a complex by gauge–invariance with first–order differential operators as maps. More
precisely, it arises as the Sobolev extension of the complex

0→ Γ(uE) d1 Ω1(uE)⊕ Ω1,0(End E) d2 Ω2(uE)⊕ Ω2(End E)→ 0 (17)

with the operators d1 and d2 are defined by

d1ψ = (∇ψ, [Φ, ψ]) d2(η,Ψ) = (d∇η + [Φ ∧Ψ∗] + [Ψ ∧ Φ∗], d∇Ψ + [η ∧ Φ]).

These expressions can be calculated by inserting infinitesimal curves into `(∇,Φ) and H, and
then taking the derivative at t = 0. The associated complex of symbols is

0→ uE (ξ⊗−,0) (Λ1 ⊗ uE)⊕ (Λ1,0 ⊗ End E) (ξ∧−, ξ∧−) Λ2 ⊗ uE ⊕ Λ2 ⊗ End E → 0

for every ξ ∈ T ∗M \ 0. This sequence is exact, so (17) is an elliptic complex. Elliptic
regularity theory then implies that, on the appropriate Sobolev spaces, the Dirac operators
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d1 + d∗2 and d∗1 + d2 are Fredholm. The operators d∗1 and d∗2 are the L2–adjoint operators of
d1 and d2 and therefore themselves first–order differential operators. Explicitly, d∗1 is given
by

d∗1(η,Ψ) = − trg∇η + 1
2〈[Φ

∗,Ψ]〉+ 1
2〈[Φ,Ψ

∗]〉.

where the trace in this expression comes from the Riemannian metric g on M .
Using the Atiyah–Singer index theorem, we find that the index

χ =
2∑
i=0

(−1)i dimH i, H i = ker di+1/ im di

of the complex (17) is given by χ = −4m2(γ − 1) where γ is the genus of the surface M .
Now let (∇,Φ) ∈ Xk be not necessarily smooth. Then, with η = ∇−∇0 ∈ Ω1

k(uE) and
Ψ = Φ− Φ0 ∈ Ω1,0

k (End E), we have

d1(∇,Φ) = (∇ψ, [Φ, ψ]) = (∇0ψ, [Φ0, ψ]) + ([η, ψ], [Ψ, ψ]) = d1ψ +Kψ.

The operator

K : Γl+1(uE)→ Ω1
l (uE)⊕ Ω1,0

l (End E), Kψ = ([η, ψ], [Ψ, ψ])

for any non–negative integer 0 ≤ l ≤ k can be written as a composition of the compact
Sobolev embedding H l+1 ↪→ W l,4 and a multiplication operator which is continuous as a
map Hk × W l,4 → H l by either Theorem 3.6 or Proposition 3.7. Therefore, K itself is
a compact operator. Similarly, the operators d2,d∗1 and d∗2 and therefore also the Dirac
operators d1 + d∗2 and d∗1 + d2, at non–smooth (∇,Φ) ∈Xk are just compact perturbations
of such operators at a smooth pair. As such, the operators d1 + d∗2 and d∗1 + d2 on H l+1

are still Fredholm. This implies that d1,d2,d
∗
1, d
∗
2 all have a closed image in H l, since

im d1 ⊂ ker d2 = (im d∗2)⊥.

3.6 Regularity theory

Up to now, we have only constructed a moduli space of (irreducible) weak solutions of the
Hitchin equations modulo weak gauge transformations. But what we are actually interested
in is the moduli space of smooth solutions modulo smooth gauge transformations. We
will now use elliptic regularity theory to show that these are in fact the same. We have
already seen in Section 3.5 that Hitchin’s equations are elliptic up to a non–linearity and a
gauge invariance. While the non–linearity is relatively nice and does not interfere much the
regularity theory, the gauge invariance must be eliminated before we can apply the standard
results for elliptic operators. This is done by a gauge fixing procedure which relies on a
concrete version of the slice theorem, Theorem 2.13. Figure 1 gives an overview.

Lemma 3.16. Let k ≥ 1 and d∗1(∇,Φ) : Ω1
k(uE) ⊕ Ω1,0

k (End E) → Γk−1(uE) be the L2–
adjoint of the infinitesimal gauge transformation from Section 3.5 at the point (∇,Φ) ∈ Ck.
Then

1. For all (∇1,Φ1), (∇2,Φ2) ∈ Ck,

d∗1(∇1,Φ1)(∇2 −∇1,Φ2 − Φ1) = d∗1(∇2,Φ2)(∇2 −∇1,Φ2 − Φ1).

34



(∇0,Φ0)g∗(∇,Φ)

(∇,Φ)
(∇0,Φ0) + im d1 (∇0,Φ0) + ker d∗1

orbits

Figure 1: Near a solution (∇,Φ) ∈ Xk exists a smooth pair (∇0,Φ0) ∈ C such that in
a neighborhood (gray) containing (∇,Φ) every orbit intersects (∇0,Φ0) + ker d∗1
exactly once. g∗(∇,Φ) then satisfies the gauge fixed equations around (∇0,Φ0)
and is thus smooth.

2. For all (∇,Φ) ∈ Ck and g ∈ Gk+1,

d∗1(g∗∇,g∗Φ)(g
∗η, g∗Ψ) = g−1

(
d∗1(∇,Φ)(η,Ψ)

)
g.

3. For all (∇1,Φ1), (∇2,Φ2) ∈ Ck and g ∈ Gk+1,

d∗1(∇1,Φ1)(g
∗∇2−∇1, g

∗Φ2−Φ1) = 0 ⇔ d∗1(∇2,Φ2)((g
−1)∗∇1−∇2, (g

−1)∗Φ1−Φ2) = 0.

Proof. Let ψ ∈ Γ(uE) and η = ∇2 −∇1, Ψ = Φ2 − Φ1. Then, for i ∈ {1, 2},

〈d∗1(∇i,Φi)(η,Ψ), ψ〉L2 = 〈(η,Ψ), (∇iψ, [Φi, ψ])〉L2 =

∫
〈η,∇iψ〉ω +

∫
Re〈Ψ, [Φi, ψ]〉ω

Subtracting these terms for i = 1, 2 from each other we get∫
〈η, [η, ψ]〉ω +

∫
Re〈Ψ, [Ψ, ψ]〉ω = −

∫
〈〈[η, η]〉, ψ〉ω +

∫
Re〈〈[Ψ∗,Ψ]〉, ψ〉ω

The first summand vanishes since 〈[−,−]〉 is antisymmetric and the second vanishes because

〈〈[Ψ∗,Ψ]〉, ψ〉 = 〈〈[Ψ∗,Ψ]〉∗, ψ∗〉 = −〈〈[Ψ∗,Ψ]〉, ψ〉,

so 〈〈[Ψ∗,Ψ]〉, ψ〉 is purely imaginary. This proves the first part of Lemma 3.16.
For the second part, we start with showing a similar equivariance property for d1. First

of all, for any ψ ∈ Γ(End E),

∇(gψg−1) = (∇g)ψg−1+g(∇ψ)g−1+gψ(∇g−1) = g(∇ψ+[g−1(∇g), ψ])g−1 = g((g∗∇)ψ)g−1

since ∇g−1 = −g−1(∇g)g−1. Together with the identity [Φ, gψg−1] = g[g∗Φ, ψ]g−1 we get

d1(∇,Φ)(gψg
−1) = g(d1(g∗∇,g∗Φ)ψ)g−1.
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The desired identity follows from this simply by dualizing (with ψ ∈ Γ(uE)):

〈d∗1(g∗∇,g∗Φ)(g
∗η, g∗Ψ), ψ〉 = 〈(g∗η, g∗Ψ),d1(g∗∇,g∗Φ)ψ〉 = 〈(g∗η, g∗Ψ), g−1d1(∇,Φ)(gψg

−1)g〉
= 〈(η,Ψ),d1(∇,Φ)(gψg

−1)〉 = 〈g−1
(
d∗1(∇,Φ)(η,Ψ)

)
g, ψ〉

The third part of Lemma 3.16 just follows from the first two parts.

Theorem 3.17 (Regularity). Let k ≥ 1 and (∇,Φ) ∈ Xk be a solution of Hitchin’s equa-
tions. Then there exists a gauge transformation g ∈ Gk+1 such that g∗(∇,Φ) ∈X .
If (∇i,Φi) ∈Xk is a sequence of solutions converging to (∇,Φ) ∈X in the Hk–topology,

there is a sequence of gauge transformations gi ∈ Gk+1 converging to the identity, such that
g∗i (∇i,Φi) ∈X for all i and g∗i (∇i,Φi) converges to (∇,Φ) in the C∞–topology.

Proof. We use Theorem 2.13 for the action Ck×Gk+1 → Ck at a point x = (∇,Φ) ∈Xk ⊂ Ck
with special choices for F and Q. As a complement of T(∇,Φ)(Gk+1(∇,Φ)) = im d1(∇,Φ) in
T(∇,Φ)Ck we choose F = ker d∗1(∇,Φ), where d∗1(∇,Φ) is seen as an operator from Hk to
Hk−1. Then F is the L2–orthogonal complement of Tx(Gx) and clearly closed. It is also
(Gk+1)(∇,Φ)–invariant due to part 2 of Lemma 3.16. The function Q : T(∇,Φ)Ck → Ck is just
given by the affine structure of Ck, i.e. Q(η,Ψ) = (∇ + η,Φ + Ψ). Then Theorem 2.13
tells us that there is a Gk+1–invariant neighbourhood Ṽ ⊂ Ck of (∇,Φ) such that every
(∇0,Φ0) ∈ Ṽ is of the form g∗(∇ + η,Φ + Ψ) for some (η,Ψ) ∈ ker d∗1(∇,Φ) and g ∈ Gk+1.
Since C is dense in Ck we can choose (∇0,Φ0) ∈ C ∩ Ṽ . Then

d∗1(∇,Φ)((g
−1)∗∇0 −∇, (g−1)∗Φ0 − Φ) = d∗1(∇,Φ)(η,Ψ) = 0

and therefore, using part 3 of Lemma 3.16,

d∗1(∇0,Φ0)(g
∗∇−∇0, g

∗Φ− Φ0) = 0.

Now using the abbreviations η = g∗∇−∇0 ∈ Ω1
k(uE) and Ψ = g∗Φ−Φ0 ∈ Ω1,0

k (End E) we
can write this out explicitly:

trg∇0η = 1
2〈[Φ

∗
0,Ψ]〉+ 1

2〈[Φ0,Ψ
∗]〉 (18)

Hitchin’s equations for (g∗∇, g∗Φ) = (∇0 + η,Φ0 + Ψ) take the explicit form

d∇0η = −F∇0 − η ∧ η − [Φ0 + Ψ ∧ Φ∗0 + Ψ∗] + c id⊗ω, (19)

d∇0Ψ = −d∇0Φ0 − [Φ0 ∧ η]− [Ψ ∧ η]. (20)

The operator (η,Ψ) 7→ (trg∇0η,d
∇0η,d∇0 Ψ) is elliptic. If k ≥ 2 then the right hand sides of

(18), (19) and (20) are Hk by the Sobolev multiplication theorem, so elliptic regularity shows
that η and Ψ are in fact Hk+1. Repeating this argument shows that η and Ψ are even C∞

and therefore g∗(∇,Φ) ∈ X . If however k = 1, so that η,Ψ are only H1, then the Sobolev
multiplication theorem does not apply. But both η and Ψ are L8 by the Sobolev embedding
theorem, so the right hand sides of (18), (19) and (20) are L4 by Hölder’s theorem. Now
we can apply the Lp elliptic regularity theorem [Bes87, Theorem 31, Appendix] to obtain
that η,Ψ are W 1,4, so their product is H1 again by Hölder’s theorem. Standard L2 elliptic
regularity then shows that η,Ψ are H2 and we can continue with the argument above.
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Now consider a sequence (∇i,Φi) ∈ Xk converging to (∇0,Φ0) ∈ X . Applying Theo-
rem 2.13 with the above choices for F and Q around (∇0,Φ0), and neglecting finitely many
elements of the sequence (∇i,Φi), we get a sequence of gauge transformations gi ∈ Gk+1 and
a sequence of solutions (ηi,Ψi) ∈ ker d∗1(∇0,Φ0) such that

(∇i,Φi) = g∗i (∇0 + ηi,Φ0 + Ψi) (21)

and [gi, (ηi,Ψi)] converges to [e, 0] in G×Gx F . That is, by modifying gi, ηi,Ψi by elements
of stabilizer, we can assume that gi converges to e and (ηi,Ψi) converges to 0 in Hk. Since
inversion in a Lie group is continuous, hi = g−1

i also converges to e and by (21) we have ηi =
h∗i∇i−∇0 and Ψi = h∗iΦi−Φ0. So (ηi,Ψi) is a solution of the equations (18), (19) and (20)
converging to 0 in the Hk–topology. Repeating the arguments of the last paragraph, we see
that the (ηi,Ψi) are C∞ and converge in the C∞–topology. So h∗i (∇i,Φi) = (∇0+ηi,Φ0+Ψi)
satisfies the statement of the theorem.

3.7 The stabilizers

The quotient of any group action depends heavily on the stabilizers of this action. The
simplest case is that of a free action, i.e. when all stabilizers are trivial. This leads to a
very homogeneous quotient space which is similar to a quotient of a group by one of its
subgroups. The situation for our action however is a bit more involved: For example, gauge
transformations of the form g = λ idE for some λ ∈ S1 act trivially on all Higgs pairs. It will
turn out that these are the only trivial gauge transformations for generic Higgs pairs, but
on special reducible Higgs pairs the stabilizer can be more complex. So to have a reasonable
structure on the moduli space, we will have to restrict to irreducible pairs.

Definition 3.18. The pair (∇,Φ) ∈ C is reducible if there are a nontrivial orthogonal
decomposition E = E1⊕E2, unitary connections∇1 on E1 and∇2 on E2 and endomorphism–
valued forms Φ1 ∈ Ω1,0(End E1) and Φ2 ∈ Ω1,0(End E2) such that

∇ =

(
∇1 0
0 ∇2

)
and Φ =

(
Φ1 0
0 Φ2

)
.

The space of all irreducible pairs in C is denoted by C ∗.

Proposition 3.19. If deg(E) and rk(E) are coprime, then every solution (∇,Φ) ∈ X of
Hitchin’s equations is irreducible.

Proof. Suppose (∇,Φ) on E = E1 ⊕ E2 is reducible to (∇1,Φ1) on E1 and (∇2,Φ2) on E2.
Then the first of Hitchin’s equations states that(

F∇1

F∇2

)
+

(
[Φ1 ∧ Φ∗1]

[Φ2 ∧ Φ∗2]

)
= − 2πi

vol(M)
µ(E)

(
idE1⊗ω

idE2⊗ω

)
.

Taking the trace of the E1–part and integrating, the term [Φ1 ∧ Φ∗1] vanishes and we get

−2πideg(E1) = −2πi
deg(E)

rk(E)
rk(E1),

so µ(E1) = µ(E). But this is impossible since rk(E1) < rk(E) and deg(E)/ rk(E) is already
a fully reduced fraction.
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Lemma 3.20. Let ∇ ∈ A (E) and g ∈ G be ∇–covariant constant, i.e. ∇g = 0. Then g
commutes with all ∇–parallel transport maps Pγ and E decomposes orthogonally as a direct
sum of subbundles E = Eλ1 ⊕Eλ2 ⊕ · · ·⊕Eλl on each of which g acts by multiplication with
a constant scalar λi ∈ S1.

Proof. Let γ : I → M be a smooth curve from x to y and γ̂ : I → E its parallel lift with
γ̂(0) = v ∈ Ex. Then γ̃(t) = gγ(t)γ̂(t) also defines a parallel curve with γ̃(0) = gxv, so
Pγgxv = γ̃(1) = gyγ̂(1) = gyPγv.
Choose a point x ∈M . Since gx is unitary and therefore diagonalizable it has an eigenvalue

λ, i.e. the eigenspace Eλx = {v ∈ Ex | gxv = λv} is nontrivial. For any other point y ∈ M
we define the subspace Eλy := Pγ(Eλx ) ⊂ Ey using an arbitrary curve γ : I → M from x to
y. This definition does not depend on the choice of γ: If γ′ : I → M is another such curve,
then gx(Pγ′γ−1v) = Pγ′γ−1gxv = λ(Pγ′γ−1v) for any v ∈ Eλx , so Pγ′γ−1v ∈ Eλx and thus

Pγ′(E
λ
x ) 3 Pγ′v = Pγ(P−1

γ (Pγ′(v))) = Pγ(Pγ′γ−1(v)) ∈ Pγ(Eλx ).

Applying this construction at every point y ∈ M , the spaces Eλy combine to a smooth
subbundle Eλ of E: In a bundle chart ϕ for E defined on a coordinate ball, consider the
family of curves γy connecting y to the origin in a straight line. By the theory of ordinary
differential equations their associated parallel transport maps Pγy depend smoothly on y
and they linearly transform ϕ(Eλy ) to the same subspace of Cm. So the composition of ϕ
and Pγ− is a bundle chart which maps Eλ locally to a fixed linear subspace.
Furthermore gyPγv = Pγgxv = λPγv for all Pγv ∈ Eλy , i.e. the action of g on Eλ is

just multiplication by λ. Since Eλ has nonzero rank, iterating this proof on the orthogonal
complement of Eλ yields the desired decomposition.

Lemma 3.21. Let g ∈ Gk+1 and (∇,Φ) ∈ C such that (∇,Φ) · g = (∇,Φ). Then there is
an orthogonal decomposition into subbundles E = E1 ⊕ · · · ⊕ El, connections ∇i ∈ A (Ei),
fields Φi ∈ Ω1,0(End Ei) and distinct constants λi ∈ S1 such that

∇ =

∇1

. . .
∇l

 Φ =

Φ1

. . .
Φl

 g =

λ1

. . .
λl

 .

Conversely, if ∇ ∈ A (E), Φ ∈ Ω1,0(End E) and g ∈ Gk+1 can be decomposed in the above
way, then (∇,Φ) · g = (∇,Φ).

Proof. The identity (∇,Φ) · g = (∇,Φ) implies that g commutes with Φ and ∇g = 0.
This implies in particular that g ∈ G is smooth. By Lemma 3.20 there is an orthogonal
decomposition E = E1⊕ · · · ⊕El so that g is of the desired form. We have to show that the
eigenspaces Ei are invariant under Φ and ∇. But since for v ∈ Ei, X ∈ TM we have

gΦv = Φgv = Φλiv = λiΦv g∇Xv = ∇X(gv) = ∇X(λiv) = λi∇Xv,

both Φv and ∇Xv are again in Ei. The converse is trivial.

Now the irreducible pairs are exactly those where the decomposition from Lemma 3.21
is trivial, i.e. their stabilizers consist only of gauge transformations of the form λ idE for
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λ ∈ S1. To use the results of Section 2 we now consider Sobolev spaces and identify the
open subset Ck(S1) ⊂ Ck. It can be interpreted as the set of irreducible Higgs pairs in Ck
due to the following theorem.

Proposition 3.22. The subset C ∗k = Ck(S1) ⊂ Ck of pairs with stabilizer S1 with respect to
the action Ck × Gk+1 → Ck is an invariant open submanifold and satisfies C ∗ = C ∩ C ∗k .

Proof. The subgroup S1 ⊂ Gk+1, consisting of all elements of the form λ idE , acts trivially
on Ck, so it is contained as a subgroup in every stabilizer. So by Corollary 2.14 the subset
Ck(S1) ⊂ Ck is a Gk+1–invariant open submanifold. The only thing left to show is C ∗ =
C ∩ C ∗k . If (∇,Φ) ∈ C ∗ and (∇,Φ) · g = (∇,Φ) for some g ∈ Gk+1, then ∇+ g−1(∇g) = ∇,
so ∇g = 0 and in particular g is smooth. Lemma 3.21 and the irreducibility of (∇,Φ)
then imply g ∈ S1, so (∇,Φ) ∈ C ∗k . If on the other hand (∇,Φ) ∈ C ∩ C ∗k , then it
must be irreducible, as otherwise there is a gauge transformation acting non–trivially on
its irreducible components (for example, multiplication by −1 on one component, and the
identity on all others).

Though this also shows that the irreducible solutions X ∗
k are an open set in Xk, it does

not say how common irreducible solutions are. In fact, we don’t even know yet if there exist
irreducible solutions at all, except if deg(E) and rk(E) are coprime. As irreducible solutions
correspond to stable Higgs bundles via the Kobayashi–Hitchin correspondence, one can study
this question using algebraic methods. But we can also use purely analytic arguments to
show that X ∗

k is dense in Xk, i.e. that irreducibility is the generic case. This is what will
be done in the remainder of this section.

Theorem 3.23. Let (∇,Φ) ∈ X be a smooth solution to Hitchin’s equations and let H =
(Gk+1)(∇,Φ) ⊂ Gk+1 be the stabilizer of the Gk+1–action at this point. Then Xk(H) ⊂ Xk is
a submanifold of codimension at least 4(l − 1)(lγ − l − 1) where γ is the genus of M and l
is the maximal number of irreducible components of (∇,Φ).

Proof. By Corollary 2.14 the codimension of (Xk)(H) in Xk is dimF − dimFH , where F is
a subspace of T(∇,Φ)Xk satisfying the conditions in Theorem 2.13 and H acts on it linearly
via differentials. A natural choice for F is the first cohomology of the complex (17), i.e. the
space of solutions (η,Ψ) ∈ Ω1(uE)⊕ Ω1,0(End E) of the equations

d∇η = −[Φ ∧Ψ∗]− [Ψ ∧ Φ∗],

d∇Ψ = −[η ∧ Φ],

tr∇η = 1
2〈[Φ

∗,Ψ]〉+ 1
2〈[Φ,Ψ

∗]〉.
(22)

Note that we can assume that η and Ψ are smooth since (22) is a linear elliptic system. The
action of H on this space is by conjugation:

D(∇,Φ)rg(η,Ψ) =
d

dt

∣∣∣
t=0

g∗(∇+ tη,Φ + tΨ) = (g−1ηg, g−1Φg) ∀g ∈ H

Now let E = E1 ⊕ · · · ⊕ El be an orthogonal splitting with respect to which ∇ and Φ
decompose into ∇i ∈ A (Ei) and Φi ∈ Ω1,0(End Ei). By Lemma 3.21 there is a g ∈ H which
acts on each of the Ei by multiplication with a distinct λi ∈ S1. Every (η,Ψ) ∈ FH satisfies
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gη = ηg and gΨ = Ψg, which implies that η and Ψ also decompose into ηi ∈ Ω1(uEi) and
Ψi ∈ Ω1,0(End Ei). It is clear that these solve the corresponding equations (22) for the
bundles Ei. So FH is contained in the product of the solution spaces of (22) for the bundles
Ei, each having dimension 4m2

i (γ − 1) + 4 (see Section 3.8 , where mi = rkEi. So

dimFH ≤
l∑

i=1

(4m2
i (γ − 1) + 4) = 4l + 4(γ − 1)

l∑
i=1

m2
i

and thus

dimF − dimFH ≥ 4(γ − 1)
∑

1≤i 6=j≤l
mimj + 4− 4l ≥ 4(γ − 1)l(l − 1)− 4(l − 1).

Corollary 3.24. If γ ≥ 2, the subset X ∗
k = Xk(S1) ⊂Xk of solutions to Hitchin’s equations

with stabilizer S1 is Gk+1–invariant, open and dense and satisfies X ∗
k ∩X = X ∗.

Proof. Since X ∗
k = C ∗k ∩Xk it is clear that X ∗

k is Gk+1–invariant, open in Xk and X ∗
k ∩

X = X ∗. The set Xk \X ∗
k of reducible solutions is the union of the sets (Xk)(H) for all

subgroups S1 6= H ⊂ Gk+1 which occur as stabilizers. These sets are submanifolds of Xk

with codimension at least 8γ−12 by Theorem 3.23, so they are nowhere dense. Corollary 2.15
thus shows that the set of reducible solutions is a countable union of nowhere dense sets, so
it is nowhere dense by Baire’s theorem.

3.8 The moduli space

Now we have all ingredients together to obtain a smooth moduli space of solutions of Hitchin’s
equations (3) and (4). Fix an integer k ≥ 1. Then by Section 3.3 there is a smooth action

Ck × Gk+1 → Ck (23)

which is proper by Corollary 3.15 and splits by Section 3.5. According to Proposition 3.22,
there is an open Gk+1–invariant subset C ∗k ⊂ Ck where the stabilizer of this action equals
S1 ⊂ Gk+1 and the smooth Higgs pairs C ∗ = C ∗k ∩C in this set are precisely the irreducible
ones.
Furthermore, Section 3.2.2 defined a Riemannian metric G, complex structures J1, J2, J3

and symplectic structures ω1, ω2, ω3 on Ck, which are all compatible and Gk+1–invariant and
with respect to which, by Section 3.3, the action (23) is Hamiltonian with moment maps
µ1, µ2, µ3, which split by Section 3.5 (their differentials are given by the operator d2). The
intersection of their zero sets is precisely the set Xk of weak solutions of Hitchin’s equations
and Xk ∩ C ∗k = X ∗

k by definition.
Theorem 2.24 then implies that the moduli space M ∗

k = X ∗
k /Gk+1 naturally carries the

structure of a smooth Hyperkähler manifold. The map π : X ∗
k →M ∗

k is a smooth submersion
and X ∗

k ⊂ Xk is open, so its differential Dπ induces an isomorphism T(∇,Φ)Xk/ kerDπ ∼=
T[∇,Φ]M

∗
k at every (∇,Φ) ∈X ∗

k . From the infinitesimal picture in the proof of Corollary 2.16
it is clear that kerDπ = im d1 ⊂ Ω1

k(uE) ⊕ Ω1,0
k (End E) and since T(∇,Φ)Xk = ker d2, the

tangent space T[∇,Φ]M
∗
k equals the first cohomology of the complex (17). To obtain its

dimension
dimH1 = dimH0 + dimH2 − χ,
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we use that dimH0 = dim ker d1 = dim s1 = 1 by irreducibility and dimH2 = 3 dim s1 = 3
by the proof of Theorem 2.24. Then Section 3.5 tells us that χ = −4m2(γ − 1), so

dim M ∗
k = dimH1 = 4m2(γ − 1) + 4.

If k, l ≥ 1 then M ∗
k and M ∗

l+1 are diffeomorphic. Indeed, consider the map

M ∗
k+1 →M ∗

k , [∇,Φ] 7→ [∇,Φ]. (24)

It is well–defined since Gk+2–equivalent pairs are also Gk+1–equivalent. To see that it is
injective, let (∇2,Φ2) = g∗(∇1,Φ1) for (∇1,Φ1), (∇2,Φ2) ∈ X ∗

k+1 and g ∈ Gk+1. Then, for
any ∇0 ∈ A (E), η1 = ∇1 −∇0 and η2 = ∇2 −∇0, we have

∇0g = gη2 − η1g,

which is Hk+1 by the Sobolev multiplication theorem, so g ∈ Gk+2. The map (24) is also
surjective by Theorem 3.17. It is smooth because the inclusion X ∗

k+1 ↪→ X ∗
k is and as a

smooth submersion the map X ∗
k+1 → M ∗

k+1 admits smooth local sections. Identifying the
tangent space of M ∗ with the cohomology H1 of the complex (17) as above, the differential
of (24) is just the identity on H1, which is an isomorphism since its dimension does not
depend on k. So (24) is indeed a diffeomorphism. It is evident from the definition of all
relevant structures that this is even an isomorphism of Hyperkähler manifolds.
In particular, if we endow X and G with the C∞–topology and M ∗ = X ∗/G with its

induced quotient topology, there is a similar inclusion M ∗ ↪→ M ∗
k which is bijective by

the same argument. It is continuous by the very definition of the quotient topology and
so is its inverse by Theorem 3.17. So it is a homeomorphism and we can therefore transfer
the smooth Hyperkähler structure to the space M ∗ respecting its topology. This does not
depend on k by the last paragraph.
In conclusion, the space M ∗ = X ∗/G is a (4m2(γ − 1) + 4)–dimensional Hyperkähler

manifold arising as a Hyperkähler quotient C ∗k ///Gk+1 for any k ≥ 1. Its tangent space at
[∇,Φ] ∈M ∗ is the first cohomology of the complex (17) and it is an open and dense subset
of M = X /G . Its symplectic structures are given by the restriction of (9) to vectors tangent
to X (i.e. solutions of d2 in the complex (17)).
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4 The Hitchin fibration

4.1 Elementary symmetric polynomials

Let V be a m–dimensional complex vector space with a scalar product. Then we can define
maps si : End V → C for i = 0, . . . ,m by

det(t id +f) =
m∑
i=0

si(f) tm−i ∀t ∈ C.

They are called elementary symmetric polynomials. The limit cases are s0(f) = 1 and
sm(f) = det(f).
Very similar in their properties, but easier to define concretely, are the functions

tri : End V → C, f 7→ tr f i

for i = 1, . . . ,m.
Both these families of maps are invariant under conjugation, i.e. if g ∈ GL(V ), then

si(gfg
−1) = si(f) and tri(gfg−1) = tri(f). By representing an endomorphism f in a basis

and triangularizing the resulting matrix, it is easy to see that si(f) and tri(f) only depend on
the eigenvalues of f . In other words, adding a nilpotent endomorphism to f does not change
the value of si(f) and tri(f). The following lemma shows that every si can be expressed as
a polynomial of the trj and vice–versa.

Lemma 4.1. Let f ∈ End V . The elementary symmetric polynomials si(f) and the tri(f)
are determined by each other via the recursive identity

isi(f) =
i∑

j=1

(−1)j+1 trj(f)si−j(f) (25)

for all i ∈ {1, . . . ,m}.

Proof. As si(f) and tri(f) are unchanged when adding a nilpotent endomorphism to f ,
we can assume that f is normal with the eigenvalues x1, . . . , xm ∈ C. In a diagonal basis
representation for f we see that

m∑
i=0

si(f)ti = tm
m∑
i=0

si(f)ti−m = tm det(t−1 id +f) =
m∏
i=1

(1 + txi). (26)

Differentiating the right hand side of this for small enough values of t gives

d

dt

m∏
i=1

(1 + txi) =

m∑
j=1

xj
1 + txj

m∏
i=1

(1 + txi) =

 m∑
j=1

∞∑
l=0

(−1)lxl+1
j tl

 m∏
i=1

(1 + txi) =

=

( ∞∑
l=0

(−1)l trl+1(f)tl

)(
m∑
i=0

si(f)ti

)

Equation (25) then follows by comparing the coefficients of this power series with the deriva-
tive of the left hand side of (26).
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When expressing si(f) by tr1(f), . . . , tri(f) with recursive applications of (25), it becomes
clear that si is a homogeneous polynomial of degree i. That is, there exists a multilinear
map s̃i : (End V )i → C with si(f) = s̃i(f, . . . , f) for all f ∈ End V . This multilinear map is
unique if we also require it to be symmetric.

4.2 The Hitchin fibration

Let M be a compact connected Riemann surface and E → M a complex vector bundle
of rank m. The elementary symmetric polynomials si and the functions tri then induce
maps Ω1,0(End E) → Γ(K⊗i), which we also call si and tri, as follows. First, applying
si : End Ex → C pointwise, we get a map si : Γ(End E)→ Γ(C). Since it is a homogeneous
polynomial of degree i, there is a unique symmetric multilinear map s̃i : Γ((End E)i)→ Γ(C)
such that si(ϕ) = s̃i(ϕ, . . . , ϕ). Then we define the multilinear map

ŝi : Γ((T ∗M ⊗ End E)i)→ Γ((T ∗M ⊗ C)⊗i)

by multilinearly extending

ŝi(α1 ⊗ ϕ1, . . . , αi ⊗ ϕi) = s̃i(ϕ1, . . . , ϕi) α1 ⊗ · · · ⊗ αi,

for α1, . . . , αi ∈ Γ(T ∗M) and ϕ1, . . . , ϕi ∈ Γ(End E). This in turn corresponds to a homo-
geneous polynomial

si : Ω1(End E)→ Γ((T ∗M ⊗ C)⊗i), si(Φ) = ŝi(Φ, . . . ,Φ).

Clearly its restriction to Ω1,0(End E) maps into Γ((Λ1,0)⊗i) = Γ(K⊗i), where K is the
canonical line bundle on M . Applying the same construction to the functions tri gives maps

si, tr
i : Ω1,0(End E)→ Γ(K⊗i)

for every i = 1, . . . ,m. The canonical bundle K, and thus also K⊗i, carries a natural
holomorphic structure. The next lemma gives conditions for the result of si and tri to be
holomorphic with respect to this structure.

Lemma 4.2. Let ∇ ∈ A (E) be a unitary connection and Φ ∈ Ω1,0(End E) with d∇Φ = 0.
Then si(Φ) and tri(Φ) are holomorphic sections of K⊗i for all i ∈ {1, . . . ,m}.

Proof. First we show that d trϕ = tr∇ϕ for all ϕ ∈ Γ(End E). Let X ∈ TM and {ei} be a
∇–parallel local orthonormal frame of E. Then

X tr(ϕ) =
∑
i

X〈ei, ϕei〉 =
∑
i

〈∇Xei, ei〉+ 〈ei,∇X(ϕei)〉 =
∑
i

〈ei, (∇Xϕ)ei〉 = tr(∇Xϕ),

so d trϕ = tr∇ϕ.
Now let Φ ∈ Ω1,0(End E) be holomorphic. In local holomorphic coordinates on an open

set U ⊂ M , we can write Φ = dz ⊗ ϕ, where ϕ is a local holomorphic section of End E
with its holomorphic structure given by ∇, i.e. ∇ϕ ∈ Ω1,0(End E|U ). Then ∇ϕi is also a
(1, 0)–form and so is d trϕi = tr∇ϕi, hence trϕi is a holomorphic function on M . This in
turn implies that tri(Φ) = (trϕi)(dz)⊗i is a holomorphic section of K⊗i. By Lemma 4.1
si(Φ) is then holomorphic for all i ∈ {1, . . . ,m}.
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In particular this lets tri and si induce maps

si : X → H0(M,K⊗i) tri : X → H0(M,K⊗i),

where H0(M,K⊗i) is the space of holomorphic sections of K⊗i. Since si and tri are invariant
under conjugation, these maps descend to the moduli space M and together assemble to
maps

ρ : M →
m⊕
i=1

H0(M,K⊗i), [∇,Φ] 7→ (s1(Φ), . . . , sm(Φ)),

ρ̃ : M →
m⊕
i=1

H0(M,K⊗i), [∇,Φ] 7→ (tr1(Φ), . . . , trm(Φ)).

When restricting to the moduli space M ∗ of irreducible Higgs bundles, the maps ρ and ρ̃
are smooth and even holomorphic with respect to J1. The map ρ is often called the Hitchin
fibration.

Lemma 4.3. The space

B =

m⊕
i=1

H0(M,K⊗i)

is a m2(γ − 1) + 1–dimensional complex vector space, where γ is the genus of M .

Proof. This follows from the Riemann–Roch theorem, which states that for every holomor-
phic line bundle L→M we have

dimH0(M,L)− dimH0(M,K ⊗ L∗) = deg(L)− γ + 1.

When we insert the trivial line bundle for L, which has degree 0 and satisfies dimH0(M,L) =
1, since its only global sections are the constant functions, we obtain

dimH0(M,K) = γ. (27)

Now we apply Riemann–Roch again with L = K. Since K ⊗K∗ is isomorphic to the trivial
bundle we get

γ − 1 = deg(K)− γ + 1,

so deg(K) = 2γ − 2. Finally, we can use the Riemann–Roch theorem with L = K⊗i using
that deg(K⊗i) = i deg(K) and thatK⊗j for negative j has no holomorphic sections to obtain

dimH0(M,K⊗i) = i(2γ − 2)− γ + 1 = (γ − 1)(2i− 1)

for i ≥ 2, which added up together with (27) gives the statement of the lemma.

4.3 Properness

An important property of the Hitchin fibration, which we will prove now, is that it is proper,
i.e.the preimage of every compact set is compact. In particular this implies that every fiber
is a compact subspace of M . First, we need some estimates.
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Lemma 4.4. Every nilpotent matrix A ∈ Cm×m satisfies

‖A‖2 ≤ c ‖[A,A∗]‖

for some c ≥ 0 depending only on m.

Proof. For an arbitrary matrix A ∈ Cm×m the Frobenius norm satisfies the inequality

‖A‖2 = |trA∗A| = |〈1, A∗A〉| ≤ ‖1‖‖A∗A‖ =
√
n‖A∗A‖, (28)

the right hand side of which can be expressed using

‖[A,A∗]‖2 = tr(AA∗AA∗ −AA∗A∗A−A∗AAA∗ +A∗AA∗A) = 2‖A∗A‖2 − 2‖A2‖2. (29)

Plugging (28) and (29) together then gives the inequality

‖A‖4 ≤ 1
2m‖[A,A

∗]‖2 +m‖A2‖2. (30)

From the expansion

[A2, A∗2] = A[A,A∗]A∗ + [A,A∗]AA∗ +A∗A[A,A∗] +A∗[A,A∗]A,

sub–multiplicativity of the Frobenius norm and the elementary fact that ‖A‖ = ‖A∗‖, we
then get the estimate

‖[A2, A∗2]‖ ≤ 4‖A‖2‖[A,A∗]‖. (31)

We now show the lemma for every A such that A2k = 0, using induction over k ∈ N. The
case k = 0 is trivial, so let A ∈ Cm×m such that A2k+1

= 0. Using the induction hypothesis
for A2 and then (31), we get

‖A2‖2 ≤ c‖[A2, A∗2]‖ ≤ 4c‖A‖2‖[A,A∗]‖ (32)

and therefore, combining this with (30),

‖A‖4 ≤ 1
2m‖[A,A

∗]‖2 + 4mc‖A‖2‖[A,A∗]‖. (33)

This can easily be solved to

‖A‖2 ≤ (
√
m/2 + 4m2c2 + 2mc)‖[A,A∗]‖,

proving the lemma, since all nilpotent matrices are covered as soon as 2k ≥ m.

Lemma 4.5. Let A ∈ Cm×m have the eigenvalues λ1, . . . , λm ∈ C. Then

‖A‖2 ≤ c1‖[A,A∗]‖+ c2

m∑
i=1

|λi|2

for some constants c1, c2 ≥ 0 depending only on m.

45



Proof. Any matrix can be decomposed into a sum A = D+N such that D is normal and N
is nilpotent. Since D is normal, Lemma 4.4 and sub–multiplicativity of the Frobenius norm
yield the inequality

‖N‖2 ≤ c‖[N,N∗]‖ = c‖[D +N,D∗ +N∗]− [D,N∗]− [N,D∗]‖ ≤ c‖[A,A∗]‖+ 4c‖D‖‖N‖.

Solving this for ‖N‖ gives the estimate

‖N‖ ≤
√
c‖[A,A∗]‖+ 4c2‖D‖2 + 2c‖D‖

which can be rearranged into

‖A‖2 ≤ (‖D‖+ ‖N‖)2 ≤ 2c‖[A,A∗]‖+ (16c2 + 8c+ 2)‖D‖2.

This is the desired result since ‖D‖2 is the sum of the absolute squares of the eigenvalues of
D, which are equal to those of A.

A direct consequence is the following:

Corollary 4.6. Using any norm on the finite–dimensional space H0(M,K⊗i), there are
constants c1, c2 such that, for all Φ ∈ Ω1,0(End E),

‖Φ‖4L4 ≤ c1‖[Φ ∧ Φ∗]‖2L2 + c2

m∑
i=1

‖si(Φ)‖4,

where m = rkE and s1, . . . , sm are the elementary symmetric polynomials.

Lemma 4.7. Let ∇ be a unitary connection on E, ∇̃ the connection on T ∗M ⊗ E induced
by ∇ and the Levi–Civita– or Chern connection ∇C and let Φ ∈ Ω1,0(E). Then ∂∇Φ = 0 ∈
Ω1,1(E) is equivalent to ∂∇̃Φ = 0 ∈ Ω0,1(T ∗M ⊗ E).

Proof. Let ϕ1, . . . , ϕm be a local ∂∇–holomorphic frame of E and write Φ = αi⊗ϕi for some
αi ∈ Ω1. Then

d∇(αi ⊗ ϕi) = dαi ⊗ ϕi − αi ∧∇ϕi
∇̃(αi ⊗ ϕi) = ∇C α

i ⊗ ϕi + αi ⊗∇ϕi.

Taking the (0, 1)–parts of these equations, the last terms vanish, since ϕi is a holomor-
phic frame. Moreover, the (0, 1)–part of ∇C α

i equals ∂αi by the definition of the Chern
connection.

Lemma 4.8. Let (∇,Φ) be a solution of the Hitchin equations. Then Φ satisfies the inequal-
ity

‖[Φ ∧ Φ∗]‖L2 ≤
√
−κmin‖Φ‖L2 (34)

where κmin ≤ 0 is the minimum of the Gaussian curvature of M .
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Proof. Let ∇̃ be the unitary connection on T ∗M ⊗ End E induced by the Levi–Civita resp.
Chern connection on TM and the connection ∇ on E. Lemma 4.7 together with ∂

∇
Φ =

d∇Φ = 0 implies that ∇̃Φ ∈ Ω1,0(T ∗M ⊗End E). Consider the 1–form on M given by X 7→
〈Φ, ∇̃XΦ〉T ∗M⊗End E . The statement of the lemma will follow by calculating its derivative

d〈Φ, ∇̃Φ〉 = 〈∇̃Φ ∧ ∇̃Φ〉+ 〈Φ, F ∇̃Φ〉. (35)

The first summand is equal to

〈∇̃Φ ∧ ∇̃Φ〉 = −〈∇̃Φ, ? ∇̃Φ〉ω = i‖∇̃Φ‖2ω (36)

since ? = −j and ∇̃Φ is a (1, 0)–form. The second summand in (35) can be expressed in
terms of the curvatures of ∇ and the Levi–Civita connection.

〈Φ, F ∇̃Φ〉(X,Y ) = 〈Φ,−ΦFLC
X,Y + [F∇X,Y ,Φ]〉 = 〈Φ],−FLC

X,Y
∗Φ]〉+ 〈Φ, [F∇,⊥X,Y ,Φ]〉 (37)

Now suppose (X,Y ) = (e1, e2) is a positively oriented orthonormal basis of the tangent space
(at some point) and let ϕi = Φ(ei) ∈ End E. Then

〈Φ], FLC
e1,e2
∗Φ]〉 =

∑
i,j

〈ei ⊗ ϕi, FLC
e1,e2
∗ej ⊗ ϕj〉 =

∑
i,j

〈ϕi, ϕj〉〈ej , FLC
e1,e2ei〉 = −2κi Im〈ϕ1, ϕ2〉

where κ is the Gaussian curvature of M . But we also have

〈Φ ∧ Φ〉 =
∑
i,j

〈ϕi, ϕj〉ei ∧ ej = (〈ϕ1, ϕ2〉 − 〈ϕ2, ϕ1〉)e1 ∧ e2 = 2i Im〈ϕ1, ϕ2〉ω

so the first summand in (37) equals κ〈Φ ∧ Φ〉(e1, e2) = −κ〈Φ, ?Φ〉 = iκ‖Φ‖2. The second
summand in (37) can be calculated using

F∇,⊥e1,e2 = −[Φ ∧ Φ∗](e1, e2) = 〈[Φ, ?Φ∗]〉 = i〈[Φ,Φ∗]〉

which implies

〈Φ, [F∇,⊥e1,e2 ,Φ]〉 = 〈〈[Φ,Φ∗]〉, F∇,⊥e1,e2〉 = i‖〈[Φ,Φ∗]〉‖2 = i‖[Φ ∧ Φ∗]‖2, (38)

where the last equality again follows from ? = −j. Now we can combine (35), (36), (37) and
(38) and obtain

d〈Φ, ∇̃Φ〉 = i‖∇̃Φ‖2ω + iκ‖Φ‖2ω + i‖[Φ ∧ Φ∗]‖2ω.

Integrating this yields

‖∇̃Φ‖2L2 +

∫
M
κ‖Φ‖2ω + ‖[Φ ∧ Φ∗]‖2L2 = 0,

from which (34) follows.

Theorem 4.9. The map

ρ : M → B, [∇,Φ] 7→ (s1(Φ), . . . , sm(Φ))

is proper.
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Proof. Choose any norms on the finite–dimensional spaces H0(M,K⊗i), let C be a compact
subset of B and let (∇i,Φi) ∈ X represent a sequence in the preimage of C. We want to
show that a subsequence converges up to gauge transformations. Since C is bounded, by
Corollary 4.6 there are M, c ≥ 0 such that

‖Φi‖4L4 ≤ c‖[Φi ∧ Φ∗i ]‖2L2 +M (39)

for all i. But using Lemma 4.8 we have

‖Φi ∧ Φ∗i ]‖4L2 ≤ |κmin|2‖Φi‖4L2 ≤ c|κmin|2‖[Φi ∧ Φ∗i ]‖2L2 + |κmin|2M.

Solving by ‖[Φi∧Φ∗i ]‖L2 , we see that this is uniformly bounded in L2 by some constant, and
by the first of Hitchin’s equations so is F∇i . By Uhlenbeck’s weak compactness theorem
[Weh04, Theorem 7.1] there is a sequence of gauge transformations gi ∈ G2 such that a
subsequence of g∗i∇i converges weakly in the H1–topology to some ∇ ∈ X1. Passing to
this subsequence, [Weh04, Theorem 8.3] implies that there is a further sequence of gauge
transformations hi ∈ G1,4 ⊂ G1 with, for high enough i,

∇∗ηi = 0 and ‖ηi‖L4 ≤ c‖g∗i∇i −∇‖L4 .

where we wrote ηi = h∗i g
∗
i∇i −∇ ∈ Ω1

0(uE). The embedding H1 ↪→ L4 is compact, so this
shows that ηi converges to 0 in the L4 topology. Now consider the equation

0 = dh
∗
i g
∗
i∇iΦ′i = d∇Φ′i + ηi ∧ Φ′i. (40)

Because Φ′i = h∗i g
∗
i Φi is L4–bounded by (39) and ‖ηi ∧ Φ′i‖L2 ≤ c‖ηi‖L4‖Φ′i‖L4 for some

constant c, we see that d∇Φ′i converges to 0 in L2. But d∇ : Ω1,0(End E) → Ω2(End E) is
an elliptic operator, so elliptic regularity implies that Φ′i converges in H1 to some element
in the kernel of d∇. Now the gauge fixing ∇∗ηi = 0 together with Equation 40 and the first
of Hitchin’s equations

d∇ηi = −F∇ − ηi ∧ ηi − [Φ′i ∧ Φ′∗i ] + c id⊗ω

gives an elliptic system with the inhomogeneity converging in L2 (since ηi and Φ′i both
converge in the L4–topology), so ηi also converges in H1.
So we now have an H1–convergent sequence (∇+ ηi,Φ

′
i) which is G1–gauge equivalent to

(∇i,Φi). By Theorem 3.17 the limit is gauge equivalent via g ∈ G2 to a smooth solution.
The second part of Theorem 3.17 applied to g∗(∇+ ηi,Φ

′
i) then shows that a G2–equivalent

sequence of smooth solutions converges in C∞. Clearly, the limit is again a solution. So
(∇i,Φi) ∈ X is G1–equivalent to a C∞–convergent sequence (∇̃i, Φ̃i) ∈ X . But if gi ∈ G1

is a sequence such that g∗i∇i = ∇̃i and η̃i = ∇̃i −∇i ∈ Ω1(uE), then ∇igi = giη̃i for all i,
which implies gi ∈ G . So [∇i,Φi] ∈M converges. This shows that ρ−1(C) is compact.

4.4 Symplectic structure

In this section we will examine the symplectic structure of the Hitchin fibration and show
that its regular fibers are Lagrangian submanifolds. This requires a way to find tangent
vectors to the solution space satisfying certain relations. The following lemma gives a way to
deform a vector tangent to only the second of Hitchin’s equations to one that is also tangent
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to the first equation. It can be seen as an infinitesimal version of the Kobayashi–Hitchin
correspondence, where a holomorphic Higgs field (i.e. a solution of the second equation) is
transformed into a solution of both equations.

Lemma 4.10. Let (∇,Φ) ∈ X and (η,Ψ) ∈ Ω1(uE) ⊕ Ω1,0(End E) be tangential to the
equation d∇Φ = 0, i.e.

d∇Ψ + [η ∧ Φ] = 0. (41)

Then there exists ξ ∈ Γ(i uE) such that (η′,Ψ′) = (η− i ?∇ξ,Ψ + [Φ, ξ]) in addition to (41)
satisfies

d∇η′ + [Φ ∧Ψ′∗] + [Ψ′ ∧ Φ∗] = 0, (42)

so that (η′,Ψ′) ∈ T(∇,Φ)X .

Proof. Let us first show that (η′,Ψ′) still satisfies (41). This property is independent of ξ
and follows from

d∇[Φ, ξ] = [d∇Φ, ξ]− [∇ξ ∧ Φ] = −[∂
∇
ξ ∧ Φ] = −[−i ? ∂∇ξ ∧ Φ] = −[−i ?∇ξ ∧ Φ],

where we have used that i = −j = ? on Ω0,1(End E) and that the (1, 0)–part of ∇ξ does
not enter.
Now we require ξ to be a solution of the equation

∇∗∇ξ + 〈[Φ, [Φ∗, ξ]]〉+ 〈[Φ∗, [Φ, ξ]]〉 = i ?d∇η + i ? [Φ ∧Ψ∗] + i ? [Ψ ∧ Φ∗]. (43)

The left hand side of (43) is a self–adjoint elliptic operator Γ(i uE) → Γ(i uE), so a so-
lution exists if and only if the right hand side is L2–orthogonal to every solution θ of the
homogeneous equation

∇∗∇θ + 〈[Φ, [Φ∗, θ]]〉+ 〈[Φ∗, [Φ, θ]]〉 = 0 (44)

If θ ∈ Ω1(i uE) solves (44), then

‖∇θ‖2L2 + ‖[Φ∗, θ]‖2L2 + ‖[Φ, θ]‖2L2 = 0,

so integrating the right hand side of (43) against θ and using the identities 〈d∇η, θ〉 =
d〈η, θ〉+ 〈η ∧∇θ〉 and 〈[Φ∗ ∧Ψ], θ〉 = −〈Ψ ∧ [Φ, θ]〉 yields

−i
∫
M

d〈η, θ〉+ 〈η ∧∇θ〉 − 〈Ψ∗ ∧ [Φ∗, θ]〉 − 〈Ψ ∧ [Φ, θ]〉 = 0.

This shows that a solution ξ ∈ Γ(i uE) of (43) exists. Next observe that ∇∗ = −? d∇? as
an operator from Ω1(End E) to Γ(End E). This follows by integrating

〈Ψ,∇ϕ〉ω = −〈?Ψ ∧∇ϕ〉 = d〈?Ψ, ϕ〉 − 〈d∇ ?Ψ, ϕ〉 = d〈?Ψ, ϕ〉 − 〈?d∇ ?Ψ, ϕ〉ω

for Ψ ∈ Ω1(End E) and ϕ ∈ Γ(End E). Furthermore, the second term on the left hand side
of (43) equals

〈[Φ, [Φ∗, ξ]]〉 = ?[Φ ∧ ?[Φ∗, ξ]] = i ?[Φ ∧ [Φ∗, ξ]] = −i ?[Φ ∧ [Φ, ξ]∗]

and a similar transformation for the third term shows that (43) is equivalent to

d∇(i ?∇ξ)− [Φ ∧ [Φ, ξ]∗]− [[Φ, ξ] ∧ Φ∗] = d∇η + [Φ ∧Ψ∗] + [Ψ ∧ Φ∗],

which is just (42).
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Proposition 4.11. Let α1, α2 ∈ B∗ be linear functionals on the complex vector space B.
Then the complex functions f1 = α1 ◦ ρ̃ and f2 = β2 ◦ ρ̃ on M ∗ are Poisson–commuting with
respect to the complex symplectic structure ω+ = ω2 + iω3 on M ∗.

Proof. Let without loss of generality α ∈ H0(M,K⊗i)∗ and f = α ◦ ρ̃. By Serre duality,
there is a K⊗−i–valued 2–form β such that α is of the form α(q) =

∫
M βq and thus

f([∇,Φ]) =

∫
M
β tr(Φi).

Let p : X ∗ →M ∗ be the projection map and ι : X ∗ → C the inclusion. Then Theorem 2.24
defines the complex symplectic form ω+ by p∗ω+ = ι∗ω̂+, where

ω̂+((η1,Ψ1), (η2,Ψ2)) = i

∫
M

tr(Ψ1 ∧ η2 + η1 ∧Ψ2).

Let Xf be the Hamiltonian vector field for f . It is defined by df(Y ) = ω+(Xf , Y ) for all
Y ∈ TM ∗. Let X̂f ∈ TX ∗ such that Dp(X̂f ) = Xf , then d(f ◦ p)(Y ) = p∗ω+(X̂f , Y ) =

ω̂+(X̂f , Y ) for all Y ∈ TX ∗. With X̂f = (η1,Ψ1), this yields∫
M
β′ tr(Φi−1Ψ2) = i

∫
M

tr(Ψ1 ∧ η2 + η1 ∧Ψ2) ∀(η2,Ψ2) ∈ T(∇,Φ)X
∗, (45)

where β′ is a suitable symmetrization of β. Now consider β′Φi−1 ∈ Ω2(K⊗(−1) ⊗ End E)
and its contraction trK β

′Φi−1 ∈ Ω0,1(End E). Since the projection pr0,1 from Ω1(uE) to
Ω0,1(End E) is an isomorphism, there is a unique η ∈ Ω1(uE) such that η0,1 = −i trK β

′Φi−1.
Then (η, 0) ∈ Ω1(uE)⊕Ω1,0(End E) satisfies (45). To see this, let z be a local holomorphic
coordinate and write locally Φ = ϕdz and Ψ2 = ψ dz and ω = ir dz ∧ dz for ϕ,ψ ∈ End E
and a real–valued function r on M . Then

η0,1 = −i trK β
′(dz)i−1 ⊗ ϕi−1 = −i(? β′(dz)i) trK ω ⊗ ∂z ⊗ ϕi−1 = qrϕi−1dz

with the complex function q = ? β′(dz)i. Furthermore,

β′ tr(Φi−1Ψ2) = tr(ϕi−1ψ)qω = iqr tr(ϕi−1dz ∧ ψ dz) = i tr(η0,1 ∧Ψ2)

and (η, 0) thus satisfies (45). But (η, 0) is not necessarily an element of T(∇,Φ)X
∗. It is

however tangent to d∇Φ = 0 since [η ∧ Φ] = 0. So by Lemma 4.10 there is a ξ ∈ Γ(i uE)
such that (η− i ?∇ξ, [Φ, ξ]) ∈ T(∇,Φ)X

∗. This modification does not change the right hand
side of (45) since

tr([Φ, ξ] ∧ η2 − i ?∇ξ ∧Ψ2) = − tr([η2 ∧ Φ]ξ) + d tr(Ψ2ξ)− tr(d∇Ψ2ξ),

which integrates to 0. So Xf = Dp(η − i ?∇ξ, [Φ, ξ]). If g is another function arising in the
same way as f , with its differential represented by β′′, then

{g, f} = dg(Xf ) = d(g ◦ p)(X̂f ) =

∫
M
β′′ tr(Φi−1[Φ, ξ]) = 0.
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Corollary 4.12. Let F ⊂ M ∗ be a regular fiber of ρ̃ : M ∗ → B. Then F is a Lagrangian
submanifold with respect to ω+ and for all x ∈ F the map B∗ → TxF, α 7→ Xα◦ρ̃ is an
isomorphism with Xiα◦ρ̃ = J1Xα◦ρ̃.

Proof. Let x ∈ F and Hx = {(Xα◦ρ̃)x | α ∈ B∗} ⊂ TxM ∗ be the subspace of Hamiltonian
vector fields of the form as in Proposition 4.11. Then its symplectic complement Hω+

x

consists of all tangent vectors Y ∈ TxM ∗ with α(Dρ̃(Y )) = D(α ◦ ρ̃)(Y ) = ω(Xα◦ρ̃, Y ) = 0
for all α ∈ B∗, so Hω+

x = kerDxρ̃ = TxF is the tangent space along the fiber F ⊂ M ∗.
Proposition 4.11 shows that ω+(Xα◦ρ̃, Xβ◦ρ̃) = 0 for all α, β ∈ B, so Hx ⊂ Hω+

x = TxF , i.e.
F is a coisotropic submanifold of M ∗. Since Dxρ̃ is surjective, we have dimF = 1

2 dim M ∗,
so F is indeed a Lagrangian submanifold and Hx = H

ω+
x = TxF . It follows that the map

B∗ → TxF is surjective and thus an isomorphism by dimension. For all Y ∈ TxM ∗, it
satisfies

ω+(Xiα◦ρ̃, Y ) = iα(Dρ̃(Y )) = α(Dρ̃(J1Y )) = ω+(Xα◦ρ̃, J1Y ) = ω+(J1Xα◦ρ̃, Y ).

Since we know by Theorem 4.9 that the Hitchin fibration is a proper map, every fiber
not containing any reducible solutions is a compact submanifold. On these fibers we can
integrate the Hamiltonian vector fields Xα◦ρ̃ to get a group action of B∗ on the fiber. This
gives the following result.

Corollary 4.13. Let b ∈ B such that the fiber F = ρ−1(b) of ρ : M → B over b contains
only irreducible solutions and assume b is a regular value of ρ : M ∗ → B. Then every
connected component of F is biholomorphic to a complex torus Cd/Λ of complex dimension
d = m2(γ − 1) + 1.

Proof. Let F be a regular fiber of ρ. Since the maps ρ and ρ̃ have the same fibers, we can
use ρ̃ instead for this proof. By Corollary 4.12 every α ∈ B∗ induces a vector field Xα◦ρ̃
tangent to the fiber F . Proposition 4.11 shows that any two of these vector fields commute.
Let ϕα : R×M ∗

reg →M ∗
reg be the flow of Xα◦ρ̃, which exists for all times since F is compact

and all integral curves stay in a single fiber. Then (α, x) 7→ ϕα(1, x) is a fiber–preserving
action of the Abelian Lie group B∗ on M ∗

reg.
Now for a single regular fiber F and x ∈ F let rx : B∗ → F be the evaluation map.

Its differential D0rx : B∗ → TxF is the isomorphism α 7→ Xα◦ρ̃. Therefore, the image of
rx, which is the B∗–orbit containing x, is open in F . Since F is a disjoint union of such
open orbits and B∗ is connected, every connected component of F is exactly one orbit. Let
F ′ ⊂ F be the component containing x. Then B∗ acts transitively on F ′. Now consider the
stabilizer subgroup Λ = (B∗)x = r−1

x (x). Since Dαrx is an isomorphism for all α ∈ Λ, Λ is a
discrete subgroup of B∗. It does not depend on the choice of x ∈ F ′, as for Abelian groups
all stabilizers along an orbit are equal.
The map rx : B∗/Λ → F ′ is clearly bijective. Its differential at β ∈ B∗ is the map

Dβrx(α) = (Xα◦ρ̃)βx, which is an isomorphism and satisfies Dβrx(iα) = J1Dβrx(α), so rx is
biholomorphic. It is only left to show that B∗/Λ is a torus, that is Λ is 2d–dimensional as a
Z–vector space. If its dimension was less than 2d, then B∗/Λ would not be compact, but F ′

is compact. On the other hand, if the dimension of Λ was greater than 2d, we could take a
2d–dimensional Z–subspace Λ′ ⊂ Λ and consider the action of Zα on the compact manifold
B∗/Λ′ for some α ∈ Λ \ Λ′. Its stabilizer must be trivial, as otherwise α and a basis of Λ′

would be Z–linearly dependent. But this implies that the Zα–orbit has a limit point, which
is impossible since Λ is discrete.
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We have not addressed the question whether the Hitchin fibration ρ has any regular values.
But it can be shown by an algebraic argument [Hit87a, Section 5.1] that ρ is a surjective
map. First of all, this implies that solutions to Hitchin’s equations always exist, i.e. M is
not empty. Moreover, by Sard’s Theorem there is an open dense set Breg ⊂ B of regular
values of ρ. If in addition there exist no reducible solutions in M (for example if deg(E)
and rk(E) are coprime), then Mreg = ρ−1(Breg) is locally a product of B and a complex
torus, i.e. a fiber bundle over Breg with tori as fibers.
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